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Protection of correlation-induced phase instabilities by exceptional susceptibilities
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At thermal equilibrium, we find that generalized susceptibilities encoding the static physical response prop-
erties of Hermitian many-electron systems possess inherent non-Hermitian (NH) matrix symmetries. This leads
to the generic occurrence of exceptional points (EPs), i.e., NH spectral degeneracies, in the generalized suscep-
tibilities of prototypical Fermi-Hubbard models, as a function of a single parameter such as chemical potential.
We demonstrate that these EPs are necessary to promote correlation-induced thermodynamic instabilities, such
as phase separation occurring in the proximity of a Mott transition, to a topologically stable phenomenon.
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Introduction. Topology has been introduced in physics to
understand robustness. A pioneering achievement of this ap-
proach is the understanding of the quantum Hall effect [1],
where the striking quantization of a transverse conductance
has been explained in terms of topological properties of Bloch
bands [2–4]. Since then, topology has conquered a wide range
of physical settings far beyond the band theory of solids
[5–15]. As an intriguing direction within this paradigm, here
we explain the robustness of phase instabilities in Fermi-
Hubbard models by revealing and studying unique topological
properties of their generalized susceptibilities [16,17]. These
quantities, which encode information on the electronic fluc-
tuations of a many-body system, can be linked to basic
observables such as the uniform charge response (isothermal
compressibility) χq=0 [16,18].

Importantly, even for closed many-body systems described
by a Hermitian Hamiltonian, such generalized susceptibil-
ities naturally acquire a complex spectrum as matrices in
Matsubara frequency space, and are thus subject to a non-
Hermitian (NH) topological classification approach [15,19].
There, we identify the emergence of inherent NH symmetries
[20,21], requiring merely the physical assumptions of thermal
equilibrium and Fermi statistics of the constituents. Under
these ubiquitous circumstances, pairs of exceptional points
(EPs), i.e., NH spectral degeneracies at which the generalized
charge susceptibility matrix χνν ′

c becomes nondiagonalizable
[22–29], generically occur as a function of a single tuning
parameter such as chemical potential (or filling fraction).
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These EPs are topologically protected by the aforementioned
inherent NH symmetry and their splitting in parameter space
[see Fig. 1(b) for an illustration].

As a consequence, purely real eigenvalues λI of χνν ′
c oc-

cur in an extended parameter range in between the EPs and
generically trigger divergences in the uniform charge response
χq=0 [30] that are robust against small parameter changes
[cf. Fig. 1(a) for an illustration]. These divergences in χq=0

signal the propensity of the correlated system to undergo
a thermodynamic phase separation between a compressible
metallic and an almost incompressible “bad metal” phase,
often occurring in the proximity of Mott metal-to-insulator
transitions [30–34]. This phase separation can be viewed, in
many respects, as the electronic counterpart of the liquid gas
transition for water molecules.

Non-Hermitian topology and EPs have been widely dis-
cussed in systems where the Bloch band structure has been
augmented by dissipative terms of various physical origin,
ranging from scattering rates of quasiparticles [35–45] to gain
and loss in optical systems [46–52]. There, the experimental
visibility of NH signatures is oftentimes limited by the over-
all blurring introduced by imaginary damping terms in the
dissipative time evolution. By contrast, since the generalized
susceptibilities at the heart of our present analysis do not relate
to effective complex energy spectra, their NH topology has a
direct impact on natural observables, independent of idealistic
assumptions on temperature and without the need for complex
multiorbital models, respectively.

NH symmetries of generalized susceptibilities. The central
objects of our analysis are four-point functions describing the
propagation of a particle-hole pair [see Fig. 2(b)] in the setting
of a time-independent Hamiltonian H at thermal equilibrium.
These are expressed as matrices of two fermionic Matsubara
frequencies ν and ν ′, where ν (′) = (2n(′) + 1)π/β, n(′) ∈ Z,
and β = 1/T is the inverse temperature. In the literature, such
quantities are referred to as generalized susceptibilities, since
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FIG. 1. Schematic illustration of the enhancement of the uniform
charge response χq=0 (a) triggered by the eigenvalue λI reaching the
condition λI = −1/t2 (b). The chemical potential μ at which
the divergence happens is located within a finite range, bounded by
the EPs [red dots on (b)]. If a divergence is found, no small pertur-
bation can wash it out, as the intersection between the “rectified” λI

curve (thin gray line) and the −1/t2 limit can only be continuously
shifted.

they yield static physical response functions when summed
over both fermionic frequencies [53]. Specifically, we define
them as

χνν ′
ph,α1...α4

=
G(2)νν′

α1 ...α4︷ ︸︸ ︷
〈T c†

να1
cνα2

c†
ν ′α3

cν ′α4
〉−〈T c†

να1
cνα2

〉〈T c†
ν ′α3

cν ′α4
〉

(1)

[illustrated in Fig. 2(a)], where T denotes the imaginary
time ordering operator, 〈 . . . 〉 = 1/Z Tr(e−βH . . . ) the ther-
mal expectation value, c(†)

ναi
= 1√

β

∫ β

0 dτe(−)iντ eHτ c(†)
αi

e−Hτ the
Fourier transform of the (creation) annihilation operators [54],
and G(2)νν ′

α1...α4
the two-particle Green’s function. αi refers to,

in principle, any of the degrees of freedom of the model
(momenta, spin, orbital, etc.). Some properties of χνν ′

ph,α1...α4

have been already analyzed in Refs. [16,17,53,55,56]. In this
work, we are investigating the topological properties of the
corresponding eigenvalue spectrum.

Taking the complex conjugate of Eq. (1) and considering
(c†

ν )∗ = −c−ν , and (cν )∗ = −c†
−ν inside of 〈 . . . 〉, one obtains

(χνν ′
ph,α1...α4

)∗ = χ−ν ′−ν
ph,α4...α1

[57]. With simple further manipula-

tions on the indices leaving 〈T . . . 〉 invariant, this leads to
(χνν ′

ph,α1α2α3α4
)∗ = χ−ν−ν ′

ph,α2α1α4α3
. The latter mathematical object

has the form of a matrix with coefficients χ
ββ ′
ph , which, cru-

cially, satisfies the relation

χ
ββ ′
ph =

∑
β1β2

	ββ1
(
χ

β1β2
ph

)∗
	β2β

′
, (2)

where 	ββ ′
is the permutation matrix β := (ν, α1, α2) →

β ′ := (−ν, α2, α1). This property has important consequences
for the eigenvalues λ of χph, which belongs to the class of
κ-real matrices Kr = �K∗

r � [58], where � refers to any
permutation matrix. These have been shown [58] to have a

FIG. 2. Panels (a) and (b) are a diagrammatic representation of
the generalized susceptibility, as given in Eq. (1), using 〈T cνc†

ν′ 〉 =
= δνν′

G(iν ) and 〈T cνc†
ν′ 〉 = = −δνν′

G(iν ),
where G(iν ) refers to the one-particle Green’s function (here, we
dropped the αi indices for clarity). Panel (c), schematic illustration
of the centro-Hermitian matrix symmetry.

characteristic polynomial with real coefficients and, hence,
either real or complex conjugate eigenvalues due to the fun-
damental theorem of algebra. A relevant subclass of κ-real
matrices are centro-Hermitian matrices [59,60], which are
invariant under a transformation that combines complex con-
jugation with centrosymmetry, as illustrated in Fig. 2(c).

In the following, we consider the local generalized charge
susceptibility χνν ′

c = 1
2

∑
σσ ′ χνν ′

ph,σσσ ′σ ′ of a one-orbital model
that satisfies the following relation:(

χνν ′
c

)∗ = 1

2

∑
σσ ′

χ−ν−ν ′
ph,σσσ ′σ ′ = χ−ν−ν ′

c (3)

and is therefore a centro-Hermitian matrix. In addition, if the
Hamiltonian possesses specific symmetries, these can impose
even stricter matrix properties. For instance, for particle-hole
symmetry (PHS) χνν ′

c becomes real and has only real eigen-
values [17,56].

Minimal model for exceptional susceptibilities. To illustrate
our general findings, we consider a 2 × 2 matrix χ2×2

ph obeying
the centro-Hermitian condition:

χ2×2
ph =

(
a + ib c − id

c + id a − ib

)
= a · I + 	v · 	σ , (4)

where a, b, c, d ∈ R, and 	v = 	vR + i	vI = (c, d, 0) +
i(0, 0, b) is a complex vector. The a parameter can be safely
disregarded, as it only amounts to a rigid eigenvalue shift. EPs
are globally stable for a two- or higher-dimensional parameter
space, because for the matrix to become nondiagonalizable,
two conditions (v2

R − v2
I = 0, 	vR · 	vI = 0) have to be

simultaneously satisfied. It is immediate to see that the
centro-Hermitian property implies that the second is always
fulfilled. It is then sufficient, for the exceptional points to
manifest, that c2 + d2 − b2 = 0, which implies that even
in a one-dimensional space, EPs—if any are present—will
be globally robust against any perturbation representable
by a matrix of the form given in Eq. (4) [61]. Crucially, no
other perturbation can arise, because the centro-Hermitian
condition does not originate from any further symmetry, but
it is an intrinsic consequence of the time independence of H
and a defined quantum (here: Fermi-Dirac) statistics [62].
The occurrence of these stable EPs generically mark the
borders of regions with complex conjugate pairs on the one
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FIG. 3. Real part (top row) and imaginary part (bottom row) of
the eigenvalues λi of χνν′

c for the atomic limit (AL) at tempera-
ture T = 1/100, U = 0 (a), (b) and at U = 1 (c), (d) as functions
of chemical potential away from particle-hole symmetry (PHS) at
μ = U/2. The ten eigenvalues which are lowest in Re λi at U = 1
are displayed.

hand and real and distinct eigenvalues on the other hand. On
the contrary, if we additionally impose PHS, χ2×2

ph becomes
purely real and symmetric (b, d = 0), which implies that the
only solution of the two conditions for the EPs will be for
	vR = 	vI = 0. This is known in literature as a diabolic point,
which is effectively concurrent with a Hermitian degeneracy
[15] and, indeed, generally requires fine tuning.

Analytical study of the atomic limit. As the simplest phys-
ical platform to exemplify the spectral properties of χνν ′

c , we
now study the exactly solvable atomic limit of the Hubbard
model (AL)

H = −μ(n↑ + n↓) + Un↑n↓, (5)

where μ is the chemical potential, nσ = c†
σ cσ the occupation

of an electron with spin σ , and U the on-site Coulomb repul-
sion given in arbitrary units of energy. This model fulfills PHS
if μ = U/2 and is in general SU(2) symmetric [63]. In the
case of zero interaction U = 0, the local generalized charge
susceptibility reads

χνν ′
c

U=0= −G(iν)G(iν ′)δνν ′ = − δνν ′

(iν + μ)2
, (6)

where G(iν) = 〈T c†
νσ cνσ 〉 is the one-particle Green’s func-

tion. χνν ′
c is diagonal, hence the eigenvalues can be imme-

diately read from Eq. (6). These become doubly degenerate
(λν = λ−ν = 1/ν2) at PHS, i.e., μ = 0, while they form com-
plex conjugate pairs (λν = λ∗

−ν) at finite μ. In the left column
of Fig. 3 the real (i) and imaginary part (ii) of λi are shown for
different μ at finite temperature T = 1/100.

At finite interaction U > 0, χνν ′
c becomes a more com-

plicated expression [17,64–66], given in the Supplemental
Material [67]. The crucial point is the appearance of pro-
gressively larger off-diagonal components. The resulting
eigenvalues λi are shown in the right column of Fig. 3. Signifi-
cantly, at PHS, λi are still purely real but no longer degenerate.
Importantly, this remains true in a finite region of μ around
U/2. Far away from PHS, however, the effect of the interac-
tion weakens, and all eigenvalues become complex conjugate

pairs. To switch between these two regimes, two eigenvalues
have to coalesce: this creates a pair of distinct EPs in μ space,
which delimit and protect the real-eigenvalue “lens”-shaped
structure [Fig. 3(c)]. In the 2×2 picture of Eq. (4), we can
identify the interaction U as responsible for the presence of
the off-diagonal finite elements c and d in the matrix, and
the finite μ for the diagonal element b, which are the two
ingredients necessary to satisfy the EP conditions. Hence, for
the AL, any finite value of U will result in exceptional points
away from PHS and a finite-size real eigenvalue lens shape.

Implications on correlation-induced instabilities. We now
turn to a more generic scenario, namely the single-orbital
Hubbard Hamiltonian on a lattice:

H = − t
∑
〈i j〉,σ

(c†
iσ c jσ + c†

jσ ciσ ) − μ
∑
i,σ

niσ

+ U
∑

i

ni↑ni↓ (7)

with constant hopping t between neighboring sites i and j.
This model is again SU(2) symmetric and for μ = U/2 it
fulfills PHS. Except for one or infinite spatial dimensions,
the model has not been solved analytically. In order to get
a nonperturbative, albeit approximated many-body solution,
we use dynamical mean-field theory (DMFT) (which be-
comes exact only in the limit of infinite dimensions) [68,69]
with a continuous-time quantum Monte Carlo solver from
w2dynamics [70]. As shown in Ref. [30], the eigenvalues λi

and the corresponding eigenvectors vν
i of the local generalized

susceptibility χνν ′
c (

∑
ν ′ χνν ′

c vν ′
i = λiv

ν
i ) play an important

role for the response functions of the whole lattice: they lead
to an enhancement and, in some cases, to a divergence of
the uniform (i.e., for zero transfer momentum q = 0) sus-
ceptibility. In particular, for the Bethe lattice with infinite
connectivity (where DMFT is exact), the static uniform charge
response, obtained by summing the generalized susceptibil-
ity over all Matsubara frequencies χq=0 = ∑

νν ′ χνν ′
q=0, can be

re-expressed in terms of λi and corresponding weights wi =
(
∑

ν (v−1
i )ν )(

∑
ν ′ vν ′

i ). This leads to the following expression

χq=0 = 1

β

∑
i

(
1

λi
+ t2

)−1

wi, (8)

which diverges—thus inducing a phase instability in the
charge sector—when one eigenvalue fulfills the condition
λi = −1/t2. Close to this condition, λi gives the dominating
contribution to the charge response and determines the stabil-
ity of the physical solution [71]. Importantly, this is possible
only when λi is real [72].

Although Eq. (8) is only exact in the case of the Bethe
lattice, numerical calculations have shown [30] that it holds
also for a square lattice if t is replaced by a temperature- and
μ-dependent teff (μ, T ). Here, the central role of EPs becomes
apparent: their presence guarantees that the imaginary part
of λi remains zero in the whole extended region of the lens
shape. In other words, the possibility of inducing a divergence
in χq=0 is not accidental and does not rely on a fine tuning of
U , T, and μ: the phase instability is in fact topologically pro-
tected. For the square lattice, this is illustrated in Fig. 4, where
we plot the real (a) and imaginary part (b) of the eigenvalues
λi of the local charge susceptibility χνν ′

c close to the critical
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FIG. 4. Real part (a) and imaginary part (b) of the eigenvalues λi of χνν′
c for the square lattice Hubbard model (with half bandwidth D =

4t = 1) solved within DMFT as a function of chemical potential away from PHS at μ = U/2. Interaction strength U = 2.4 and temperature
T = 1/53 coincide with Ref. [30] to show the situation close to the thermodynamic instability. Calculated data are displayed as dots, the
positive (μ − U/2) axis is mapped from the negative one, exploiting the symmetry of the model considered. The ten eigenvalues which are
lowest in Re λi at μ − U/2 = 0 are displayed.

point of the phase separation (cf. sketch in Fig. 1). Here, the
lowest eigenvalue λI satisfies (up to numerical accuracy) the
condition λI = −1/t2

eff in the region of the lens shape. Hence,
the phase instability condition is also fulfilled for any further
reduction of the temperature T (or for any moderate reduction
of the interaction U ). In particular, at lower T , we enter
a regime, where a first order phase separation occurs. This
regime is, thus, characterized by two locally stable DMFT
solutions (i.e., two coexisting values of λI ), corresponding to a
less correlated metallic and a “bad metal” phase (connected by
an instable solution, where λI < −1/t2

eff [71]). Here, the topo-
logical robust arguments related to the condition λI = −1/t2

eff
remain nonetheless applicable, albeit to the two corresponding
metastable solutions [73].

Finally, let us notice that a negative eigenvalue is a nec-
essary condition for the instability criterion to be fulfilled
[30]. Remarkably, the role of the negative eigenvalues in
the generalized charge susceptibility has been recently re-
lated to the local moment formation [74–77] and, on a more
formal level, to divergences of the irreducible vertex func-
tion and the multivaluedness of the Luttinger-Ward functional
[17,30,34,56,74–98]. Therefore, these negative eigenvalues
can be regarded as a feature of strong electronic correlations,
which cannot be commonly described by “perturbative” the-
ories, e.g., the random phase approximation. However, the
considerations behind Eq. (8) are not solely restricted to neg-
ative eigenvalues. They can be also applied to the opposite
case, where a positive eigenvalue reaching a maximum (e.g.,
λi = 1/t2

eff ) triggers a phase instability, such as the antifer-
romagnetic transitions of the Hubbard model [99]. Thus, in
these strongly correlated systems, the presence of EPs is found
to generally promote phase instabilities in the ph channel
[100] to a stable phenomenon, and thereby enables the in-
stabilities to naturally occur for a finite range in parameter
space.

Conclusion. We have found the opening of an EP phase
for the associated eigenvalues of the static local suscepti-
bility in the U/μ phase diagram of models for correlated
electron systems. The remarkable consequence is that the

interaction-induced charge instabilities, such as the phase sep-
aration occurring close to the Mott metal-to-insulator transi-
tion in the Hubbard model, do not need any fine tuning but can
occur in an entire finite range of parameters. This unexpected
global robustness is a consequence of the peculiar centro-
Hermitian form of the susceptibility matrix, which is not
dictated by some ad hoc antiunitary symmetry but by the time
independence of H and the intrinsic nature of Fermi-Dirac
statistics.

The susceptibility EPs represent a clear-cut and com-
pelling manifestation of non-Hermitian topology, surpassing
the conventional realizations based on spectral functions. This
phenomenon is indeed ubiquitous even in the simplest cor-
related fermion models and does not require any assumption
on the interaction, nor any specific choice of non-Hermitian
Hamiltonian terms. Our results call for future investigations
beyond the local correlation effects on the charge sector con-
sidered here, e.g., of the spin or particle-particle channel and
including nonlocal correlations in the description. Further, one
could also search for higher order exceptional degeneracies in
the susceptibility spectrum and explore the respective conse-
quences on the phase instabilities. This may open new doors
to experimentally detectable hallmarks of non-Hermitian
topology.
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