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Superfluid transition of a ferromagnetic Bose gas
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The strongly ferromagnetic spin-1 Bose-Einstein condensate has recently been realized with atomic "Li. It
was predicted that a strong ferromagnetic interaction can drive the normal gas into a magnetized phase at a
temperature above the superfluid transition, and "Li likely satisfies the criterion. We reexamine this theoretical
proposal employing the two-particle-irreducible effective potential, and conclude that there exists no stable
normal magnetized phase for a dilute ferromagnetic Bose gas. For "Li, we predict that the normal gas undergoes
a joint first-order transition and jumps directly into a state with finite condensate density and magnetization. We
estimate the size of the first-order jump and examine how a partial spin polarization in the initial sample affects
the first-order transition. We propose a qualitative phase diagram at fixed temperature for the trapped gas.
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The realization of Bose-Einstein condensation (BEC) in
dilute atomic gases [1-3] led to an explosion of a number
of superfluid systems that can be studied experimentally, and
many of them display exotic, richer physics beyond the simple
spinless Bose gas model. Atomic 'Li gas is such a system:
its low-energy hyperfine states form a triplet with total spin
1. (For a review on spinor Bose gas, see Ref. [4].) Early ex-
periments [3] employed magnetic trapping of a spin-polarized
gas, while later all-optical techniques nonetheless relied on
magnetic Feshbach resonance to produce a condensate [5,6].
Recent technology allows the trapping of unpolarized "Li [7],
which enjoys an internal SO(3) symmetry of spin rotation.
Notably, 'Li has a spin-dependent, strongly ferromagnetic
interaction [4,7-9].

The zero-temperature mean-field ground state of the spin-1
Bose gas is considered in Refs. [10,11]. Two BEC phases
are predicted, depending on the interaction parameters: one
has a spin dipole moment (ferromagnetic) and the other has
a quadruple moment (polar). Most prior works on the finite-
temperature phase diagram assume a weak spin dependence
in interaction [12—-14]. When the relative strength of the spin-
dependent part is sufficiently large, Natu and Mueller [15]
predicted a two-step process toward BEC: a ferromagnetic
gas first undergoes a bosonic version of Stoner’s transition to
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develop a spontaneous spin dipole moment, then condenses at
a lower temperature. 'Li likely satisfies the criterion.

The magnetization is an obvious choice for the order pa-
rameter characterizing the intermediate ferromagnetic phase
(if exists.) In a second-quantized description, the Bose field
itself remains normal, but certain bilinear of the field acquires
a nonzero expectation value that spontaneously breaks the
spin SO(3) but keeps the gauge U (1) intact. In this regard, it
is also akin to the more exotic pair condensate phase [15-18].
Phases characterized by bilinear order parameters (due to
various mechanisms) have been proposed in several superfluid
systems [19-22].

On the level of Gizburg-Landau theory, this normal-state
magnetism is closely related to the time-reversal [23,24]
and lattice rotational [25,26] symmetry breaking above un-
conventional superconductors, as well as the elusive quartet
condensation or charge-4e superconductivity [27-32]. We
want to especially highlight the similarity between the fer-
romagnetic Bose gas and the so-called vestigial order in
the context of unconventional superconductivity [29,32,33],
where the lattice symmetry plays a role similar to the spin
SO(3). Both proposals share the same mechanism: the orders
are mediated purely by the fluctuations of the underlying
Bose fields (bosonic matter field or Ginzburg-Landau order
parameter, respectively.)

In a previous paper, the present authors concluded that the
vestigial order scenario cannot be realized in a weak-coupling
superconductor [34]: the apparent instability toward a vesti-
gial order, in fact, signals a joint first-order transition directly
into the appropriate superconducting phase. For a pseudo-
spin-% Bose gas, a similar theoretical claim of normal-state
magnetism was made [35,36] and refuted [37]. In this Letter,
we will show that the same claim for a ferromagnetic spin-1
Bose gas is also incorrect: when the relative strength of the
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spin-dependent interaction is sufficiently large, the gas under-
goes a joint firs- order transition into the BEC phase directly,
just like its spin-% and superconductor cousins.

We will start by reviewing our theoretical method. Next,
we describe the ferromagnetic instability of a homogeneous
normal gas, how it is unphysical, and the actual first-order
normal-BEC transition. We discuss the experimental signature
and propose a qualitative phase diagram for a trapped gas.
Numerical estimations are given for 'Li under experimental
conditions.

Theoretical model. Let ¥/, be the annihilation field operator
of a spin-1 boson in m, spin state s = 1, |, 0. We adopt the
notation found in Refs. [10,16] for the Hamiltonian density:

"2 C
H=wﬂywﬂm+iwwwm
m 2

(1)
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Here F is the triplet of spin-1 matrices, and repeated indices
are summed over. The effective interaction is due solely to
two-body s-wave scattering, an approximation valid in the
dilute limit. This Hamiltonian enjoys an SO(3) symmetry in
the spin space, and the total magnetization of the system is
conserved.

In terms of s-wave scattering lengths ayp and a, in the
channels of total spin-0 and -2, respectively, the parameters
C; and G, are

_AmR?

4 h?
C = (ap +2a3); C =

3m 3m
Stability requires C; > 0 and C; > —Cj, and we restrict our
attention to C, < 0 that favors a ferromagnetic spin moment.
Numerical calculations put C,/C; = —0.46 [4,9] for "Li.

We explore the thermodynamic of a uniform gas. Pass-
ing to the grand canonical ensemble, the gas is coupled to
the spin-dependent chemical potential uy = +h — g, u;, =
u—h—gq, and o = u. This describes an overall chemical
potential u and linear and quadratic Zeeman energies & and
g, respectively. We assume that the timescale of typical exper-
iments forbids the relaxation of total magnetization, and /% is
merely a corresponding Lagrange multiplier for the conserved
magnetization [38]: the linear Zeeman effect of a physical
magnetic field is absorbed into 4. We will assume vanishing
residual field and set ¢ = 0. The qualitative physics of the
first-order transition is unaffected by a small g # 0, and we
will comment on the role of g later.

We employ the two-particle irreducible (2PI) effective po-
tential method, essentially a nonrelativistic version of the
CIJT potential [39,40]. The spin-dependent self-energy of the
boson is treated as the variational parameter in this for-
malism. Before proceeding, we adopt a dimensionless form
by choosing kgT and Ap = \/2nh2/kaT as the units of
energy and length, respectively. All subsequent numerical
values are reported in this unit system. The dimensionless
coupling constants are defined as ¢; » = Cl,z/(kBT)\%). Based
on the reported parameters [7], we adopt c¢; =~ 0.0024 and
c2 &~ —0.0011 for "Li [41]. The interaction parameters being
small is a direct consequence of the diluteness condition.

(ax —ap). (2

The 2PI potential is truncated at two-loop order, and
for the normal gas the treatment is identical to a self-
consistent Hartree-Fock (HF) approximation [37,42]. The HF
self-energy is diagonal in the spin basis and momentum inde-
pendent, leading to the ansatz that the density of spin-s atom
is A;3Li 2 (e7™), where the dimensionless energy gap m; be-
comes the variational parameter. We introduce the shorthand
L, =Li 3 (e7™). The dimensionless 2PI potential for normal
gas is

Qu =) [—Lig(e™) — (my+ po)Ls]

+(c1 + ¢2)(L] + L] +LyLo + Ly Lo)
+(c1 — c2)LyLy + 1Ly, 3)

(Subscript n stands for normal.) Once minimized with respect

to m,, min Q, is the negative of pressure in unit of kT /A3..
Ferromagnetic instability. We obtain the saddle point equa-

tions by taking derivatives of €2,,. The three equations read

my 4 g — (c1 + ¢2)2Ly +Lo) — (¢; — )Ly =0, (4a)
mo + o — (c1 +c2)(Ly + L) — 2¢;Lo = 0, (4b)
my 4y — (c; +¢2)2Ly +Lo) — (¢; — )Ly = 0. (4c)

We first consider & — 07. There is a symmetric branch of
solution with m; = m(u) for all s, implicitly given by

m+ pu — (4cy +2c2)Li%(e*"’)=0, 3)

The solution m(u) is positive and monotonically decreas-
ing, ending at the mean-field critical point u. = (4c; +
2¢2)¢(3/2), where m(u.) = 0. For "Li under experimental
conditions, u. ~ 0.012.

Take the difference of (4a) and (4¢):

mT—le(C1+3C2)(L¢—LT). (6)

It becomes possible to have my # my if c2/c; < —1/3, a
regime we dub deep ferromagnetic. (The ratio is —0.46 for
"Li) Equivalently, the criterion is 2ag > 5a,. Linearizing this
equation, one obtains the implicit condition for ferromagnetic
instability at ;& = piys along the symmetric branch:

Li, (e ")) = — L) (7
2 c1+ 3¢

The RPA spin susceptibility diverges when (7) is satisfied.
By analyzing the Hessian matrix, it can be shown that the
symmetric branch is a local minimum of 2, when @ < i,
but only a saddle point for (4 > ins.

It is tempting to (incorrectly!) identify this instability as an
SO(3)-breaking, second-order critical point separating sym-
metric and ferromagnetic phases [15]. In the usual textbook
scenario, one expects to find an SO(3)-breaking minimum
emerging from the critical point when © > iy, becoming
the new equilibrium state with magnetic order. [The SO(3)
degeneracy is broken by the infinitesimal /, leaving a unique
equilibrium state.] The usual justification is that, assuming the
free energy is bounded from below, a new minimum must
emerge if the symmetric branch ceases to be a minimum as
u is raised. But this innocuous conjecture turns out to be
false: we will presently show that no such solution exists when
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FIG. 1. The symmetric and vestigial ferromagnetic solutions for
h — 0~ are plotted for "Li. The vestigial solution ends when m = 0.

W > Wips for a dilute gas [43]. The free energy is still bounded
from below, but the true global minimum turns out to also have
a superfluid order, an extra ingredient absent in the textbook
scenario. We note that there is no other competing instability
within the range —c; < ¢, < 0 [15].

The saddle point equations (4) can be solved numeri-
cally as-is. Given the small interaction parameters, however,
the so-called critical approximation Li %(e’m“‘) ~(3/2)—
2, /mwmg 4 O(my) is appropriate (for this section only). Within
this approximation, the ./m, correction term becomes im-
portant when p — . and my are of order O(C%), and this
nonanalytic term drives the instability.

With the critical approximation, (4) admits a closed-form
solution when 42 — 07. The instability occurs at i — (e &
7(c) +3¢2)(Ter + ¢3) = —4.4 x 107 for "Li. See Fig. I.
There is only one ferromagnetic solution branch with m; #
m, and it emerges from the instability. But this solution lies
on the wrong (1 < Wins) side and consequently cannot be a
minimum of . Recall that the symmetric solution itself is a
minimum for © < wins; given that the ferromagnetic solution
can be brought arbitrarily close to the symmetric solution as
u — ;. without another saddle point coming in between, it
cannot be a local minimum. The fact is also directly verified
by computing the Hessiah matrix. This ferromagnetic branch
therefore does not represent a physical equilibrium state. The
branch ends when the down-spin is gapless (m; = 0) at some
Mend < Mins- This so-called ferromagnetic end point is also not
physical by any means, but will be of some importance in the
discussion of the BEC branch later.

For it > pins, there exists no (meta)stable normal solution
at all. If © is bounded from below, its global minimum must
also have a superfluid order. Given that no other instability
exists along the symmetric branch, the transition must be of
first order. We thus conjecture that the gas undergoes a joint
first-order transition directly into a ferromagnetic BEC state
at some [ < [ips.

Our grand canonical approach makes this correct picture
apparent. If one imposes a uniform density constrain instead,
it seems at first that the gas enters a ferromagnetic phase as
the density is raised [15]; one needs to work harder to see
that the vestigial branch has a negative compressibility and is
unstable, as pointed out in Ref. [37] for the spin-half case.

Before moving on to substantiate our claim of first order
transition, we’d like to consider 4 # 0, or just 1 < 0 without
loss of generality. This explicitly breaks the SO(3) symme-
try. See Fig. 2(a). For sufficiently small %, a unique normal
branch evolves from the combination of the u < pins portion
of symmetric branch and the vestigial branch. The solution is

1x10~° (a)
1.00 ms
0.75 A Mo
—m,
0.50
000 1 T T T T T T
-5.1 -5.0 -4.9 -4.8 -4.7 -4.6
M= e 1x107°
1x10~7 (b) 1x1077 (€) 1x10~7 (d)
1.5 1.5 1.5
mi1.04 1.0 4 1.0 A
0.5 0.5 0.5
0.01_- 001, ‘ 0.0 1 . .
—5.415 —5.400 -5.70 —5.68 —-6.50 —6.45
1x107° H=He 1X107° 1x107°

FIG. 2. We plot the solution with 72 < 0. (a) Three m; com-
ponents for a relatively small |2] =3 x 1078, The U-turn is the
ferromagnetic instability. To illustrate the suppressing of instability,
we plotm,, for (a) |h] =7 x 1077 < h,, (b) |h| =1 x 107% < h,, and
©) |h] =2 x107% > h,.

still multivalued, and this U-turn is the surviving ferromag-
netic instability. One therefore still expects a first-order BEC
transition preempting the instability. Above some threshold
|h| > h,, the instability is eliminated, and one finally expects
a mean-field-like BEC transition taking place at the gapless
(m, = 0) end point. See Figs. 2(b)-2(d). For "Li gas under
experimental conditions, we numerically find the threshold
h ~ 1.2 x 1076,

Experimentally, this picture of a joint first-order transition
manifests as coexistence of normal and superfluid phases in
a trapped quantum gas. To estimate the discontinuity across
the phase boundary, we need to extend (3) to incorporate the
superfluid order.

Superfluid solution. When |h| > h;, the normal solution
sees no instability until m| reaches zero. From here, we expect
a continuous transition into the U (1)-breaking BEC state as
indicated by familiar renormalization group arguments [44];
the gapless end point is also the onset of a BEC branch.
By continuity, when |h| < h, we also expect the end point
of the normal branch to mark the onset of a BEC branch.
The ferromagnetic instability, however, prevents the gas to
continuously follow the path. Before hitting the instability, the
gas must makes a first-order jump from normal to BEC phase.

The original work on the CJT potential [39] already
provides a general prescription to treat a BEC order. Concen-
trating on & — 07, we assume the ansatz for the BEC order
(Y1) = (Yo) = 0 and () = ¢, in unit of A;>/>. We add to
(3) the BEC part:

Q= —pu¢® + 3(c1 + )0
+%[(c1 + )Ly + Lo) + (¢1 — )4, (8)
The total 2PI potential 2 = 2, + 2, is required to be sta-
tionary with respect to m; and ¢: to the right-hand side

of (4a)—(4c), one adds (c; — ¢2)¢?%, (¢ + ¢2)¢? and 2(c; +
c2)¢>, respectively; these goes together with the fourth
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FIG. 3. (a) The solution to the saddle-point equations with ¢ #
0. Only the solid part corresponds to local minimum of €2, and the
turning point pg, is the spinodal point. The insert is the close-up
view of the solution near ftenq: one sees the small U-turn identified
as the infrared artifact of the HF approximation. (b) The plot of
AU = U, — U,. The first-order transition occurs when AU = 0 at

= py.

equation

0=—uno+(c1 +c2)p’
+ol(c) + )Ly + Lo) + (c1 —c)Ly]. (9)

As ¢ = 0 always solves (9), the symmetric and ferromagnetic
branches remain stationary solutions. But now another (BEC)
solution branch with ¢ # 0 emerges where the ferromagnetic
branch ends. Let U, (U,) denotes the corresponding stationary
value of Q2 at the BEC (symmetric) solution, respectively, and
the first-order transition occurs when U, = U,,. For "Li, our
result is summarized in Fig. 3. The section of the BEC branch
connected to the ferromagnetic end point is a unstable, as can
be checked by computing the Hessian. After initially going
toward the direction of larger u, it soon turns around and ex-
tends toward the wrong (it < peng) side of the ferromagnetic
end point. But the branch turns around again when it touches
the spinodal point and becomes a local minimum. (On the nor-
mal side, the spinodal point is the ferromagnetic instability.)
We identify the first-order transition at s =~ 0.01914. The
scenario is reminiscent of the spin-half case explored by He
etal. [37].

The combination of 2PI potential and HF approximation
is well-known to incorrectly predict a first-order transition
[34,45-47] even when one truly expects a second-order one,
due to the strong infrared fluctuation when the system is
almost gapless. It also weakly violates [45] the Goldstone
or Hugenholtz-Pines theorem [48]. The manifestation of this
infrared problem is the emergence of the nonanalytic ,/m;
in the small-m; expansion of L;. We therefore argue that the
spinodal structure found here is physical and not an artifact of
the infrared problem, since the first-order transition occurs far
from the region where the ,/m; terms dominate. Following
He et al. [37], one would identify the infrared artifact with
the small U-turn in the unstable portion of the BEC branch

0 M

FIG. 4. The schematic phase diagram. The solid (dashed) line
represents first- (second-) order phase boundary separating the nor-
mal (N) and ferromagnetic BEC phases. The first-order section of
the boundary only exists if ¢; — 3¢, < 0, or 2ay > 5a, in terms of
scattering lengths.

[see inset of Fig. 3(a)]. The result thus far can be qualitatively
summarized in Fig. 4.

Experimental signature. Within the local density approx-
imation (LDA), an experiment in a trap can be interpreted
as a sampling across a range of w at fixed 7 and k. The
first-order transition shows up as a spatial discontinuities in
total density, density of individual spin, magnetization, con-
densate density, and superfluid density. The jump is robust
against a finite spin imbalance in the cloud. To estimate the
size of the discontinuity, we calculate (at 4 — 07) the den-
sity of each spin component on either side of the first-order
transition. On the normal side, the density per component is
n, = 2.592. On the BEC side, the (purely spin-down) con-
densate density is ¢* = 0.237; the densities n, of the thermal
spin-s cloud are ny = 2.531, ng =2.573, and n, = 2.551,
respectively. These results are only weakly dependent on
the physical density in the trap [49]. One then proceeds to
work out the mismatches in various quantities. For exam-
ple, total density jumps by (ny +no +n, +¢?)/3n, — 1 =
2.3%. Relative magnetization is (ny —n, — ¢2)/(n¢ + ng +
n, + ¢*) = 3.7% on the BEC side and zero on the normal
side. Not surprisingly, spin-down density shows the biggest
discontinuity: (n, + ¢)/n, — 1 = 8.3%.

In a real experiment, the total particle number and magne-
tization are the external constrains rather than their conjugates
@ and h. In a trap at fixed temperature, assuming g = 0,
the 1 — 0F solution (coexisting ferromagnetic BEC core and
unpolarized normal fringe) sets the minimally allowed mag-
nitude of magnetization: a smaller total magnetization can
only be accommodated by setting # = 0 (hence all polariza-
tion directions are degenerate) and allowing the BEC core to
have spatially varying polarization. The normal fringe remains
unpolarized. (The polarization textual of the BEC core is
beyond the scope of this paper.) If the magnetization is raised
from zero at fixed particle number, the trapped gas exhibits
three distinct phases in sequence: discontinuous coexistence
of a textured BEC core and an unpolarized normal fringe
(phase A), discontinuous coexistence of ferromagnetic BEC
and normal fringe (phase B), and continuous coexistence of a
ferromagnetic BEC and normal fringe (phase C). We propose
the qualitative in-trap phase diagram Fig. 5. In phase A, the
normal-BEC discontinuities at the coexistence interface are
locked at the & = 0F values given above. Phase B has reduced
discontinuities at finite 4, and phase C has no discontinuity.
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> N

FIG. 5. Qualitative phase diagram of a trapped gas at fixed 7.
Let N; be the total number of spin-s atoms, then N = ZS Nyand P =
(Nt — N,)/N here. Phases A, B, and C are given in the text, and NG
stands for normal gas.

The quadratic Zeeman shift g due to the residual magnetic
field is naturally positive in 'Li gas. It therefore favors the
spin-0 polar state, and can potentially wreck havoc on the
ferromagnetic physics discussed here. The relevant energy
scales are the gaps m; on either sides, and the single particle

condensation energy 2?5/”3)(/)4. The smallest is the symmetric

gap on the normal side m ~ 3.5 x 1075, If ¢ is positive and
has a comparable magnitude, the first-order transition will
be destroyed. The scale is estimated to be about 40 mG. At
10 mG, the resultant g is more than one order of magnitude
smaller than m, and is but a small perturbation. Furthermore,
complete experimental control over g using microwave dress-
ing [50] has recently been demonstrated for "Li [51]: g can
be tuned to zero or even a negative value independent of the
magnetic field. The residual field thus poses no issue.

We assume q is a fully controllable parameter. While ¢ = 0
is a quantum critical point separating easy-plane and easy-axis
ferromagnetisms in a large, homogeneous system, the size of
any topological defect would be extremely large with respect
to interparticle distance when ¢ is small. In a modest-sized
cloud, we do not expect polarization textual in phase A to
be substantially affected by a small g # 0 of either sign.
Even though the first-order transition is destroyed by a large
and positive g, it will survive an arbitrarily negative g. In
this ¢ — —oo extreme easy-axis limit, the gas is effectively
two-component and the first-order transition should follow the

prediction made in Ref. [37]. In this limit, the phase A spin
textual becomes domains of spin-up or -down separated by
sharp domain walls. Experimentally, this will, in fact, be a
much clearer signature compared to the transverse polariza-
tions seen around g ~ 0.

Conclusion. We study the superfluid transition of a dilute
ferromagnetic spin-1 Bose gas. Contrary to a previous claim
[15], we find that the normal gas cannot support a ferromag-
netic phase, regardless of the ratio of interaction parameters.
In the deep ferromagnetic regime where the normal gas does
exhibit a ferromagnetic instability upon increasing chemical
potential (or density), a ferromagnetic solution exists for the
self-consistent HF equation of state, but our grand canonical
approach makes it apparent that the solution is thermodynam-
ically unstable. Instead, a stable BEC solution branch emerges
already at a lower chemical potential, and the gas undergoes a
joint first-order transition into this BEC state before hitting the
ferromagnetic instability. In our opinion, such vestigial order
is usually not stabilized in a weakly interacting system, and
this is another example.

In a trapped gas, the trap potential translates into spa-
tial variation of the chemical potential  within LDA, and
the first-order transition shows up as the (discontinuous) co-
existence of a superfluid core and a normal fringe, with
discontinuities in densities and magnetization. The jump of
the majority spin density, the largest of these discontinuities,
is estimated to be about 8%. These discontinuities are found
to be robust for a range of magnetization in the sample. We
propose the constant-temperature phase diagram Fig. 5. A big
positive quadratic Zeeman shift ¢ favoring the polar state can
destroy the first-order ferromagnetic BEC transition described
here, but independent experimental control over g has been
recently demonstrated for Li [51] and this is a nonissue. On
the ¢ < 0 easy-axis side, the first-order behavior qualitatively
persists even in the extreme ¢ — —oo limit.
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