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Correlation dimension of natural language in a statistical manifold
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The correlation dimension of natural language is measured by applying the Grassberger-Procaccia algorithm
to high-dimensional sequences produced by a large-scale language model. This method, previously studied only
in a Euclidean space, is reformulated in a statistical manifold via the Fisher-Rao distance. Language exhibits
a multifractal, with global self-similarity and a universal dimension around 6.5, which is smaller than those of
simple discrete random sequences and larger than that of a Barabási-Albert process. Long memory is the key to
producing self-similarity. Our method is applicable to any probabilistic model of real-world discrete sequences,
and we show an application to music data.
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Introduction. The correlation dimension of Grassberger
and Procaccia [1] quantifies the degree of recurrence in a
system’s evolution and has been applied to examine the char-
acteristics of sequential data, such as the trajectories of strange
attractors [1], random processes [2], and sequences sampled
from complex networks [3].

In this Letter, we report the correlation dimension of
natural language by regarding texts as the trajectories of a
language dynamical system. In contrast to the long-memory
quality of natural language as reported in [4–6], the correla-
tion dimension of natural language has barely been studied
because of its high dimensionality and discrete nature. An
exceptional previous work, to the best of our knowledge,
was that of Doxas et al. [7], who measured the correlation
dimension of language in terms of a set of paragraphs. Every
paragraph was represented as a vector, with each dimen-
sion being the logarithm of a word’s frequency. The distance
between two paragraphs was measured as the Euclidean dis-
tance. Such a representation has also been used for measuring
other scaling factors of language [8–10]. However, without
a rigorous definition of language as a dynamical system, the
correlation dimension is difficult to interpret, and its value
may easily depend on the setting. For example, the dimen-
sion would vary greatly between handling word frequencies
logarithmically and nonlogarithmically.

Today, language representation has become elaborate by
incorporating semantic ambiguity and long context. Large
language models (LLMs) [11–14] such as ChatGPT generate
texts that are hardly distinguishable from human-generated
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texts. The generation process is autoregressive, which nat-
urally associates a dynamical system. Such state-of-the-art
(SOTA) models (i.e., the GPT series, including GPT-4 [12],
Llama-2 [13], and “Yi” [14]) have opened a new possibility of
studying the physical nature of language as a complex dynam-
ical system. Furthermore, exploration of the fractal dimension
of language offers an approach to examine the underlying
structures of pretrained neural networks, thus shedding light
on the intricate ways they mirror human intelligence.

These systems, however, are not defined in a Euclidean
space and thus require reformulation of the state space and
the metric between states. Because a neural model assumes a
probability space, the analysis method that was originally de-
fined in a Euclidean space must be accommodated in a space
of probability distributions, and the distance metric must
be statistical. Specifically, we consider a statistical manifold
[15,16] whose metric is the Fisher information metric. Hence,
this letter proposes a rigorous formalization to analyze the
universal properties of these GPT models, thus representing
language as an original dynamical system. Although we report
results mainly for language, given the impact of ChatGPT,
our formalization applies to any other GPT neural models
for real-world sequences, such as DNA, music, programming
sources, and finance data. To demonstrate this possibility, we
show an application to music.

Method. Let (S, d ) be a metric space and [x1, x2, . . ., xN ]
be a point sequence, where xt ∈ S for t = 1, . . ., N . The
Grassberger-Procaccia algorithm [1] (GP in the following)
defines the correlation dimension of this point sequence in
terms of an exponent ν via the growth of the correlation
integral C(ε) as follows:

C(ε) ∼ εν as ε → 0, (1)

where

C(ε) = lim
N→∞

1

N2

∑
1�t,s�N

#{(t, s) : d (xt , xs) < ε}, (2)
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FIG. 1. Our model of language as a stochastic dynamical system. (a) The difference between the system state xt and the next-word
probability distribution pt . (b) {pt } [where pt ∈ Mult(V )] as the image of {xt } (where xt ∈ S) through the marginalization mapping φ in
formula (5). In this study, we use ν̂ to approximate ν.

# denotes a set’s size, and d is the distance metric. In the
original GP, the sequence lies in a Euclidean space and d is the
Euclidean distance. For an ergodic sequence, the correlation
dimension suggests the values of other fractal dimensions
such as the Haussdorf dimension [17]. For example, the
Hénon map has ν = 1.21 ± 0.01 [1], which is close to its
Hausdorff dimension of 1.261 ± 0.003 [18]. GP can be gen-
eralized to apply to a sequence in a more general smooth
manifold [17].

In our study, we examine natural language through this
correlation dimension. Thus far, language texts have typically
been considered in a Euclidean space. However, recent large
language models have shown unprecedented performance in
the form of an autoregressive system, which is defined in a
probability space. Hence, we are motivated to measure the
correlation dimension in a statistical manifold.

We consider a language dynamical system {xt } that de-
velops word by word: f : xt �→ xt+1. Let V represent a
vocabulary that comprises all unique words. A sequence of
words, a = [a1, a2, . . ., at , . . . ,], where at ∈ V , is associated
with a sequence of system states, [x1, x2, . . ., xt , . . . ,]. As
demonstrated in Fig. 1(a) at the top, we define each state xt as
a probability distribution over the set � of all word sequences.
xt measures the probability of any text to occur as a�t =
[at , at+1, . . . ,], following a context a<t = [a1, . . ., at−1]. Fur-
thermore, we consider the next-word probability distribution
pt over the vocabulary V . xt and pt are formally defined as
follows:

xt (a�t ) = P(a�t | a<t ) ∀a�t ∈ �, (3)

pt (w) = P(at = w | a<t ) ∀w ∈ V. (4)

pt can be represented as the image of xt by a mapping φ,

pt = φ(xt ). (5)

Here, φ is the marginalization across � and is linear with
respect to a mixture of distributions, as explained in the Sup-
plemental Material [19].

Hence, a language state xt is represented as a probability
function instead of a point in a Euclidean space. The correla-
tion dimension ν can be defined for the sequence {xt } as long

as the distance metric d in formula (2) is specified between
any pair of states xt and xs. However, direct acquisition of
d (xt , xs) is nontrivial because {xt } as a language is unobserv-
able. One alternative path today is to represent xt via pt , where
pt is produced by a large language (especially a GPT-like)
model (LLM). We denote the correlation dimension of the
sequence {pt } as ν̂. Our approach is summarized in Fig. 1(b) at
the bottom. The Supplemental Material [19] provides a brief
introduction to GPT-like LLMs.

Theoretically, ν̂ = ν when the sequence of words is gener-
ated by a Markov process. We prove this in the Supplemental
Material [19]. Natural language exhibits the Markov prop-
erty to a certain extent, but strictly speaking, it violates the
property. This phenomenon has been studied in terms of long
memory [4–6,20], as mentioned in the Introduction. There-
fore, the ν̂ acquired from pt will remain an approximation of
ν. In general, ν̂ � ν holds [21] and ν̂ thus constitutes a lower
bound of ν.

The distance metric d in formula (2) is chosen as the
Fisher-Rao distance, defined as the geodesic distance on a sta-
tistical manifold generated by Fisher information [16]. When
{pt } is presumed to follow a multinoulli distribution (over
the vocabulary V ), the statistical manifold is the space of
all multinoulli distributions over V , denoted as Mult(V ), as
shown at the top right in Fig. 1(b). Mult(V ) has a (topological)
dimension of |V | − 1 and is isometric to the positive orthant of
a hypersphere. The Fisher-Rao distance is analytically equal
to twice the Bhattacharyya angle as follows:

dFR(pt , ps) = 2 arccos

(∑
w∈V

√
pt (w)ps(w)

)

t, s = 1, 2, . . ., N. (6)

This statistical manifold is a Riemannian manifold of constant
curvature (as it constitutes a part of a hypersphere), sharing
many favorable topological properties with Euclidean spaces.
Particularly, the Marstrand projection theorems [22,23] for
Euclidean spaces, which state that linear mappings almost
surely preserve a set’s Hausdorff dimension, can be gen-
eralized to such Riemannian manifolds. Recently, Balogh
and Iseli [24] proved Marstrand-like theorems for sets on a
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FIG. 2. Sequence of distributions pt underlying the words in Don Quixote, as visualized for words “,” (comma) and “;” (semicolon). Each
point represents one timestep. The green points represent timesteps at which pt (“,”) dominates and the Shannon entropy H (pt ) < 2.0, whereas
the orange points correspond to high-entropy states with H (pt ) > 3.0. Self-similar patterns are observed in both the green and orange regions.

2-sphere. Because the mapping φ : xt �→ pt is linear, as men-
tioned before and proved in the Supplemental Material [19],
these theorems could be generalized to suggest the equality
ν = ν̂. This possible generalization goes beyond this Letter’s
scope; even if it were true, Marstrand-like theorems do not
guarantee a specific linear mapping (i.e., φ) to be dimension
preserving. Nevertheless, these theorems motivate our pro-
posal to analyze ν via its lower bound ν̂.

The calculation of distances over N timesteps takes O(|V | ·
N2) time, with a vocabulary size |V | around 104. This compu-
tational cost can be reduced to O(M · N2) through dimension
reduction from {pt } to {qt }, without altering the estimated
correlation dimension ν̂, where M � |V | is the new, smaller
dimensionality. For t = 1, . . ., N , the dimension-reduction
projection transforms pt to qt as follows:

qt (m) =
∑

w∈�−1({m})

pt (w), ∀m = 1, . . ., M. (7)

Here, � is determined via the modulo function �(w) =
index(w) mod M, where index(w) indicates a word’s index in
the vocabulary. Essentially, we “randomly” group words from
the extensive vocabulary V in a smaller set {1, . . ., M} and
estimate ν̂ according to this condensed vocabulary. We em-
pirically validated this method, which is rooted in Marstand’s
projection theorem, as detailed in the Supplemental Material
[19]. Specifically, dimensionality reduction from approxi-
mately 50 000 to 1000 retained the consistency of estimating
ν̂ and achieved up to 50x faster computation.

Results. Before showing the correlation dimension, we ex-
amine language’s inherent self-similarity. Figure 2 includes
a plot showing the probability pt of encountering “,” (com-
mas) and “;” (semicolons) over t = 1, 2, . . ., N in an English
translation of Don Quixote by Miguel de Cervantes from
Project Gutenberg [25]. These punctuation marks, chosen for
their high frequency, illustrate the role of semantic ambiguity.
Each pt represents a point in Mult(V ), a probability vector
of the next-word occurrence, estimated using GPT2-xl [11].

The figure maps these points, varying with input context
a<t , and classifies them by Shannon entropy H (pt ), revealing
self-similarity in both low- and high-entropy regions through
magnified views at different scales. Nevertheless, a thorough
assessment of this self-similarity necessitates examining the
high-dimensional space of Mult(V ), beyond the limits of a
two-dimensional display that cannot represent correlation di-
mensions above two.

We conjecture that the trajectory has two kinds of frac-
tals: local and global. The local fractals, potentially arising
from simple word distributions across contexts akin to those
in topic models like LDA [26], are evident in low-entropy
areas where single words predominate. In the Supplemen-
tal Material [19], we show that even i.i.d. samples from a
Dirichlet distribution (a commonly assumed prior for multi-
noulli distributions) can reproduce the local fractal seen in
Fig. 2. The local kind’s occurrence could be related to the
finding in Doxas et al. [7] that topic models can repro-
duce self-similar patterns. However, the local kind is not
especially concerned in this letter because it characterizes sin-
gle words and hence does not reveal the nature of the original
system {xt }.

In this Letter, we are mainly interested in the correlation
dimension of the global phenomenon. Unlike the local kind,
the global fractals represent high-entropy regions that are
governed by the trajectory’s global development. Hence, we
consider points in the higher-entropy region, as filtered by a
parameter η:

max
w∈V

pt (w) < η. (8)

Figure 3(a) shows the correlation integral from formula
(2) with respect to ε for Don Quixote in terms of different
probability thresholds η in formula (8). As η decreases to
0.5 (red curve), the linear region becomes visible across all
scales, and the correlation dimension (given by the slope)
converges to ν̂ = 6.42. In contrast, the curve for η = 1.0 (i.e.,
when no timesteps are excluded) shows great deviation from
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FIG. 3. Correlation integral curves as defined by formula (2) and estimated with GPT2-xl with respect to (a) the maximum-probability
threshold η in formula (8), (b) the sequence length N , and (c) the context length c in Formula (9).

the other curves, especially at smaller ε values, producing a
local correlation dimension that drops below 2.0. Hence, un-
less mentioned otherwise, η = 0.5 in this Letter. For η = 0.5,
Fig. 3(a) shows a long span across more than six orders of
magnitude, from 10−1 to 10−8 on the vertical axis.

Figure 3(b) characterizes the effect of N , the length of the
text used to estimate the correlation dimension. The longest
text fragment had 150 000 words and is indicated by the
red curve. Convergence is visible for all N , starting from
N = 500. Unless mentioned otherwise, N = 150 000 here.

We also investigated the effect of the context length, de-
noted as c. Ideally, an LLM estimates the distribution pt by
using the whole text [a1, . . ., at−1] before timestep t as the
context, but in practice, a maximum context length c is often
set; that is,

p(c)
t (w) = P(at = w | at−c, at−c+1, · · · , at−1)

≈ pt (w) ∀w ∈ V. (9)

Unless mentioned otherwise, all results in this letter were
obtained with c = 512.

Figure 3(c) shows the correlation dimension with values of
c as small as 1 (i.e., a Markov model). For context lengths
above 32, a clear linear scaling phenomenon is observed
across all scales, which resembles the case of c = 512. As
c decreases, the linear-scaling region becomes narrower and
the self-similarity becomes less evident. Dependency of the
correlation dimension on c is seen only for the global fractal,
whereas the dimension is consistent across c values for the
local fractals, as detailed in the Supplemental Material [19].

This difference in the behavior of local and global fractals
suggests a fundamental difference between these two kinds.
The local fractal does not depend on c, whereas the global
fractal requires large c to appear. While the local fractal may
stem from mixed word-frequency distributions in topic mod-
els, as observed by Doxas et al. [7] and mentioned above, the
global fractal is due to long memory and was anticipated in
the literature [4–6]. Although self-similarity and long memory
have often been studied separately and were even conjec-
tured as different aspects of a scale-invariant process [27],
they show interesting coordination for natural language. More

results on a larger dataset are provided in the Supplemental
Material [19].

To further investigate the properties of natural language,
we conducted a larger-scale analysis of long texts, which
were divided into two groups: books in multiple languages
and English articles in multiple genres, as detailed in the
Supplemental Material [19]. The first group included 144
single-author books from Project Gutenberg and Aozora
Bunko, comprising 80 in English, 32 in Chinese, 16 in Ger-
man, and 16 in Japanese. The second group included 342
long English texts from different sources. We obtained all the
results in this large-scale analysis by applying the dimension-
reduction method given in formula (7).

Figures 4(a) and 4(b) show the large-scale results on the
books for the correlation dimension ν̂ with respect to (a)
different languages and (b) various model sizes. The former
results (a) were produced using the GPT2 model of size xl
(denoting “extra large”), with ≈109 parameters. For the latter
results (b), we tested models of different sizes from small
(≈106 parameters) to 34B (3.4×1010). For the sizes up to
xl, we used the GPT2 model; for 6B and 34B, we used the
Yi model [14], which offers the SOTA capability in English
among all publicly available LLMs. For all tested model sizes,
the average correlation dimension remains constant. Outliers
occur more frequently for the two Yi models (6B and 34B),
which was possibly due to those models’ use of a lower
numerical precision (16-bit floating-point numbers).

Hence, for all languages, an average correlation dimen-
sion of around ν̂ = 6.5 is observed: 6.39 ± 0.40 for English,
6.81 ± 0.58 for Chinese, 7.30 ± 0.41 for Japanese, and
5.84 ± 0.70 for German (± indicates the standard deviation).
These results suggest the possible existence of a common
dimension for natural language, with a lower bound of 6.5
under our settings.

Figure 4(c) shows the correlation dimension (vertical axis)
for English texts in four genres: books, academic papers
[28], the Stanford Encyclopedia of Philosophy (SEP) [29],
and Wikipedia webpages. For each text, the horizontal axis
indicates the coefficient of determination, R2, for the correla-
tion integral curve’s linear fit. A larger R2 value (maximum
one) implies more significant self-similarity in a text. The
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FIG. 4. Correlation dimensions of (a) all books grouped by language, as estimated using GPT2-xl; (b) English books as estimated using
GPT with different model sizes (GPT2 from small to xl and the Yi model for 6b and 34b); (c) English texts from various sources with the
R2 scores (horizontal axis) of their linear fits to the correlation integral curves; (d) shuffled English books evaluated with GPT2-xl; and (e)
English books evaluated with weight-randomized GPT2-xl.

right side of (c) shows the distribution of the dimension values
grouped by genre.

As seen in the figure, most texts have a correlation di-
mension around six, especially those estimated with high R2

scores. The SEP texts (blue) have the most concentrated range
of dimensions, at 6.57 ± 0.32 with R2 > 0.99 for over 90%
of the texts. In contrast, the academic papers (black) show the
most scattered distribution of the correlation dimension. This
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is deemed natural, as the SEP texts have the highest qual-
ity, whereas the academic papers include irregular notations
such as chemical and mathematical formulas, which obscure
a text’s self-similarity.

The universal correlation dimension value, ν ≈ 6.5, can be
understood through the lens of the “information dimension”
[30], which coincides with ν under ergodic conditions [17].
The information dimension reflects how information, or the
log count of unique contexts, scales with the statistical man-
ifold’s resolution. Contexts are deemed the same if their pt

values are indistinguishably close within a certain threshold.
Essentially, doubling the resolution would reveal about 26.5 ≈
90 times more distinct contexts that were previously consid-
ered identical. Therefore, ν quantifies the average “redun-
dancy” in the diversity of texts conveying similar messages.

We also compared several theoretical random processes.
As analyzed using a GPT2-xl model and shown in Fig. 4(d),
shuffled word sequences exhibited an average correlation di-
mension of 13.0, indicating inherent self-similarity despite the
shuffling. As seen in Fig. 4(e), randomization of the GPT2-xl
model’s weights significantly increased the correlation dimen-
sions to an average of 80. This result suggests purely random
outputs, unlike text shuffling, which retains some linguistic
structures, like a bag-of-words approach.

Analyses of additional random processes, as detailed in
the Supplemental Material [19], showed that a uniform
white-noise process on the statistical manifold S yielded a
correlation dimension over 100. Symmetric Dirichlet dis-
tributions in high-entropy regions consistently produced
dimensions above ten. Conversely, Barabási-Albert (BA) net-
works [31], which are special cases of a Simon process,
demonstrated a correlation dimension of 2.00 ± 0.003, and a
fractal variant [32] produced 2 ∼ 3.5. In terms of complexity
via the correlation dimension, this places natural language
above BA networks but below white noise.

In the Supplemental Material [19], we further investigate
the relationship between the statistical manifold and con-
ventional Euclidean spaces with respect to the correlation
dimension. For BA models, the dimension remains the same
whether measured in a Euclidean space or the manifold, thus
emphasizing the comparability. However, language data re-
veals a different story: Euclidean metrics yield compromised
linearity in comparison to Fisher-Rao metrics, thus under-
scoring that the Fisher-Rao distance more accurately captures
language’s inherent self-similarity.

Recently, LLMs have also been developed for processing
data beyond natural language, and one successful example is
for acoustic waves compressed into discrete sequences [33].
To demonstrate the applicability of our analysis, we used the
GTZAN dataset [34], which comprises 1000 recorded music
pieces categorized in ten genres. Briefly, we observed clear
self-similarity in the compressed music data. The correla-
tion dimension was found to depend on the genre: classical
music showed the smallest dimension at 5.44 ± 1.13, much
smaller than the dimensions for metal music at 7.27 ± 0.96
and rock music at 7.42 ± 0.87. None of the music genres
showed a correlation dimension as large as that of white noise,
as mentioned previously, even though the analysis was based
on recorded data. The details of this analysis are given in the
Supplemental Material [19].

In closing, we recognize this study’s limitation of viewing
text as a dynamical system akin to the GPT model, which
overlooks the potential of representing words as leaf nodes in
a syntactic tree, as suggested by generative and context-free
grammars (CFGs) [35]. Although promising, that complex
linguistic framework exceeds our current scope, and we ex-
pect to explore it in the future.

Acknowledgment. This work was supported by JST CREST
Grant No. JPMJCR2114, and JSPS KAKENHI Grant No.
JP20K20492.

[1] P. Grassberger and I. Procaccia, Characterization of strange
attractors, Phys. Rev. Lett. 50, 346 (1983).

[2] A. R. Osborne and A. Provenzale, Finite correlation dimension
for stochastic systems with power-law spectra, Physica D 35,
357 (1989).

[3] L. Lacasa and J. Gómez-Gardenes, Correlation dimension of
complex networks, Phys. Rev. Lett. 110, 168703 (2013).

[4] W. Li, Mutual information functions of natural language texts
(Citeseer, 1989)

[5] E. G. Altmann, G. Cristadoro, and M. D. Esposti, On the origin
of long-range correlations in texts, Proc. Natl. Acad. Sci. USA
109, 11582 (2012).

[6] K. Tanaka-Ishii and A. Bunde, Long-range memory in literary
texts: On the universal clustering of the rare words, PLoS ONE
11, e0164658 (2016).

[7] I. Doxas, S. Dennis, and W. L. Oliver, The dimensionality of
discourse, Proc. Natl. Acad. Sci. USA 107, 4866 (2010).

[8] T. Kobayashi and K. Tanaka-Ishii, Taylor’s law for human
linguistic sequences, in Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistic (2018),
p. 1138.

[9] K. Tanaka-Ishii and T. Kobayashi, Taylor’s law for linguistic se-
quences and random walk models, J. Phys. Commun. 2, 115024
(2018).

[10] M. Ausloos, Measuring complexity with multifractals in
texts. Translation effects, Chaos, Solitons Fractals 45, 1349
(2012).

[11] A. Radford, J. Wu, R. Child et al., Language models are unsu-
pervised multitask learners, OpenAI blog 1, 9 (2019).

[12] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,
F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman et al.,
GPT-4 technical report, arXiv:2303.08774.

[13] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale
et al., Llama 2: Open foundation and fine-tuned chat models,
arXiv:2307.09288.

[14] The Yi model, (2024), visited in January 2024, https://
huggingface.co/01-ai/Yi-34B.

[15] C. R. Rao, Information and the accuracy attainable in the esti-
mation of statistical parameters, in Breakthroughs in Statistics:
Foundations and Basic Theory (Springer, New York, 1992),
pp. 235–247.

L022028-6

https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1016/0167-2789(89)90075-4
https://doi.org/10.1103/PhysRevLett.110.168703
https://doi.org/10.1073/pnas.1117723109
https://doi.org/10.1371/journal.pone.0164658
https://doi.org/10.1073/pnas.0908315107
https://doi.org/10.1088/2399-6528/aaefb2
https://doi.org/10.1016/j.chaos.2012.06.016
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2307.09288
https://huggingface.co/01-ai/Yi-34B


CORRELATION DIMENSION OF NATURAL LANGUAGE IN … PHYSICAL REVIEW RESEARCH 6, L022028 (2024)

[16] S.-I. Amari, Differential-Geometrical Methods in Statistics,
Vol. 28 (Springer, New York, 2012).

[17] Y. B. Pesin, On rigorous mathematical definitions of correlation
dimension and generalized spectrum for dimensions, J. Stat.
Phys. 71, 529 (1993).

[18] D. A. Russell, J. D. Hanson, and E. Ott, Dimension of strange
attractors, Phys. Rev. Lett. 45, 1175 (1980).

[19] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.L022028 for theoretical analysis
of our method and extensive evaluation results.

[20] E. G. Altmann, J. B. Pierrehumbert, and A. E. Motter, Beyond
word frequency: Bursts, lulls, and scaling in the temporal dis-
tributions of words, PLoS ONE 4, e7678 (2009).

[21] H.-O. Peitgen, H. Jürgens, D. Saupe, and M. J. Feigenbaum,
Chaos and Fractals: New Frontiers of Science, Vol. 7 (Springer,
New York, 1992).

[22] J. M. Marstrand, Some fundamental geometrical properties of
plane sets of fractional dimensions, Proc. London Math. Soc.
s3-4, 257 (1954).

[23] K. Falconer, Fractal Geometry: Mathematical Foundations and
Applications (John Wiley & Sons, England, 2004).

[24] Z. Balogh and A. Iseli, Dimensions of projections of sets on
riemannian surfaces of constant curvature, Proc. Am. Math.
Soc. 144, 2939 (2016).

[25] https://www.gutenberg.org/ebooks/996.
[26] D. M. Blei, A. Y. Ng, and M. I. Jordan, Latent dirichlet alloca-

tion, J. Mach. Learn. Res. 3, 993 (2003).
[27] P. Abry, P. Flandrin, M. S. Taqqu, and D. Veitch, Self-similarity

and long-range dependence through the wavelet lens, Theor.
Applic. Long-Range Depend. 1, 527 (2003).

[28] D. Kershaw and R. Koeling, Elsevier OA CC-BY corpus,
arXiv:2008.00774.

[29] https://plato.stanford.edu/.
[30] J. D. Farmer, Information dimension and the proba-

bilistic structure of chaos, Z. Naturforsch. A 37, 1304
(1982).

[31] A.-L. Barabási and R. Albert, Emergence of scaling in random
networks, Science 286, 509 (1999).

[32] R. Rak and E. Rak, The fractional preferential attachment scale-
free network model, Entropy 22, 509 (2020).

[33] J. Copet et al., Simple and controllable music generation, in Ad-
vances in Neural Information Processing Systems (New Orleans,
Louisiana, 2023).

[34] G. Tzanetakis and P. Cook, Musical genre classification of
audio signals, IEEE Trans. Speech Audio Process. 10, 293
(2002).

[35] N. Chomsky, Aspects of the Theory of Syntax, Vol. 11 (MIT
Press, Cambridge, MA, 2014).

L022028-7

https://doi.org/10.1007/BF01058436
https://doi.org/10.1103/PhysRevLett.45.1175
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.L022028
https://doi.org/10.1371/journal.pone.0007678
https://doi.org/10.1112/plms/s3-4.1.257
https://doi.org/10.1090/proc/12934
https://www.gutenberg.org/ebooks/996
https://arxiv.org/abs/2008.00774
https://plato.stanford.edu/
https://doi.org/10.1515/zna-1982-1117
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.3390/e22050509
https://doi.org/10.1109/TSA.2002.800560

