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We study two non-Markovian gene-expression models in which protein production is a stochastic process
with a fat-tailed nonexponential waiting time distribution (WTD). For both models, we find two distinct scaling
regimes separated by an exponentially long time, proportional to the mean first passage time (MFPT) to a ground
state (with zero proteins) of the dynamics, from which the system can only exit via a nonexponential reaction.
At times shorter than the MFPT the dynamics are stationary and ergodic, entailing similarity across different
realizations of the same process, with an increased Fano factor of the protein distribution, even when the WTD
has a finite cutoff. Notably, at times longer than the MFPT the dynamics are nonstationary and nonergodic,
entailing significant variability across different realizations. The MFPT to the ground state is shown to directly
affect the average population sizes and we postulate that the transition to nonergodicity is universal in such
non-Markovian models.
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Introduction. Gene expression is an inherently stochastic
process, playing a key role in the function of prokaryotes
and eukaryotes [1–5]. Stochastic gene expression in geneti-
cally identical cells in identical environments is governed by
mRNA and protein noise, and is suggested to be an impor-
tant source of phenotype variability [6–8], and an important
trait that can optimize the balance of fidelity and diversity in
eukaryotic gene expression [9].

Multiple studies have treated stochastic gene expression
using either chemical master equations or Langevin equa-
tions in various models [4,10–17]. However, most existing
models are Markovian with exponentially distributed inter-
reaction times [11]. Although this is a valid assumption in
many realistic cases [18], it is becoming apparent that many
natural processes exhibit long delays or nonexponential intrin-
sic waiting times [19–21]. Molecular memory can be created,
e.g., due to incomplete mixing of small reaction steps involved
in the synthesis of macromolecules, such as mRNA or pro-
teins [22–26]. Moreover, even in simple geometries, reaction
dynamics are characterized by an enormous spread of relevant
timescales [27–29], such that reaction and diffusion control
are intricately coupled, in contrast to models based on (global)
mean first passage and reaction times [30–33]. Such defo-
cused reaction times are relevant for intracellular regulation
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for low-concentration reactants. In particular, processes gov-
erned by power-law waiting times were shown to determine
the motion of protein channels in membranes of living cells,
displaying diffusion-controlled anomalous dynamics [34].

To study processes with fat-tailed (e.g., power-law) waiting
time distributions (WTDs) between steps, displaying aging
behavior and ergodicity breaking [34–43], one often uses the
continuous-time random walk (CTRW) framework [38,44].
Recently, a chemical CTRW master equation was suggested
to analyze non-Markovian birth-death dynamics [17,21,45–
47]. Yet, a systematic study on gene expression with intrinsic
reactions possessing a fat-tailed WTD (with a finite or infinite
mean) has not yet been carried out.

Here, we apply the CTRW formalism to gene expres-
sion models with intrinsic fat-tailed WTD depending on the
system’s current state, and identify a general class of mod-
els transitioning between ergodic and nonergodic phases at
nontrivial long times, when the WTD’s mean diverges. In
addition, stationarity and ergodicity are shown to strongly
depend on the system’s internal noise.

We consider a two-state model in which a promoter
randomly transitions between transcriptionally active and in-
active states; see Fig. 1. In contrast to previous models, we
assume that the time it takes the promoter to activate is power-
law distributed, mimicking delays due to the DNA binding to
specific and limited elements in the cell. This may be justi-
fied by realizing that activating the promoter often requires
binding to sparse elements in the cell [31,48,49]. Thus, the
activation WTD is related to the mean time it takes a random
walker to hit a target, which follows a power-law distribution
[11,50].
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FIG. 1. A two-state gene expression model with a promoter,
transcription, and translation. The activation process has a fat-
tailed WTD denoted by ψ0(τ ). All other processes have exponential
WTDs, and their average rates are specified.

To gain insight into the two-state model depicted in Fig. 1,
we first study a simpler model of a self-regulating gene (SRG)
with linear rates. Here, the WTD between protein production
events is assumed to be fat tailed, as protein production re-
quires the DNA state to be active. We show that even this
simple model is sufficient to give rise to nontrivial dynam-
ics, including the existence of a long-lived metastable state
followed by protein decay. To this end, we compute the typi-
cal time to transition from metastability to power-law decay,
the mean protein number, and its copy-number distribution.
The latter displays super-Poissonian behavior, with a Fano
factor greater than 1 (see below), even for truncated WTDs,
which are experimentally relevant [51]. Finally, we study
the full two-state model (see Fig. 1) and show that the two
models are qualitatively identical. Our theory is verified via
numerical simulations based on a modified Monte Carlo (MC)
algorithm, recently developed for non-Markovian stochastic
systems [52–54].

Self regulating gene. We consider a protein-only model for
the number of proteins n defined by the reactions n → n + 1
and n → n − 1, respectively representing protein production,
e.g., due to translation, and protein degradation, e.g., due to
cell division. Most studies assume that these reactions are
exponential, memoryless point processes [11]. Yet, in realistic
scenarios, the times between consecutive reactions are not
necessarily exponentially distributed [19] and the process may
be described by a WTD of the next event. We thus define
ψ−(τ ) as the WTD for one of n proteins to degrade between
t and t + τ (n → n − 1), and ψ+(τ ) as the WTD for protein
production (n → n + 1). These are given by

ψ−(n, τ ) = ne−nτ , ψ+(τ ) = K/[1 + Kτ/α]1+α. (1)

Here, degradation is assumed to be a Poisson process linear
in the population size, which gives rise to an exponential
WTD of ψ−(τ ) [11] with normalized rate 1. In contrast, as
discussed above, production may depend on a larger number
of intracellular products, present in small numbers [3,12] or
may take place in a sparse environment, leading to fat-tailed
delays. Thus, production events are no longer exponentially
distributed but sampled from a fat-tailed distribution. For con-
creteness, we consider the power-law WTD in (1). Here, K is
the carrying capacity and α is the power-law exponent.

To derive the birth-death master equation we define the
probability φ+(n, t ) [φ−(n, t )] for a single protein produc-
tion (degradation) event to occur at time t provided that no
degradation (production) event occurred until time t , when the

system has n proteins, which reads

φi(n, t ) = ψi(t )
∫ ∞

t
ψ j (τ )dτ (2)

for i, j ∈ {+,−} and i �= j. Using the CTRW formalism de-
veloped in Ref. [45] we write the following chemical master
equation for the probability Pn(t ) of having n proteins at time
t , given Eq. (2):

dPn

dt
=(

E1
n − 1

)
nPn(t ) + (

E−1
n − 1

)∫ t

0
M(n, t −t ′)Pn(t ′)dt ′,

(3)
where E j

k f (k) = f (k + j) are step operators. The kernel
M(n, t ) is defined in terms of its Laplace transform [45]

M̃(n, s) = sφ̃+(n, s)/[1 − φ̃+(n, s) − φ̃−(n, s)], (4)

where φ̃i are the Laplace transforms of φi and s is the Laplace
variable. The term (E1

n −1)nPn(t ) in Eq. (3) is due to the
exponential degradation of n products, while the integral term
comes from the nonexponential production terms with mem-
ory kernel M(n, t ). Note that, in the case of an exponential
WTD [i.e., if ψ+(τ ) = Ke−Kτ ], one obtains φ̃− = n/(s + K +
n) and φ̃+ = K/(s + K + n). Substituting these into Eq. (4)
yields M̃(n, s) = n and M(n, t ) = nδ(t ). Thus, Eq. (3) reduces
to the well-known chemical master equation for exponential
WTDs [11].

For a power-law WTD, the memory kernel is obtained by
substituting Eqs. (1) and (2) into Eq. (4):

M̃(n, s) = KEα+1[α(n + s)/K]/Eα[α(n + s)/K], (5)

where Em(z) ≡ ∫ ∞
1 e−zt t−mdt is the exponential integral.

Being interested in the long-time dynamics, t � 1, we ap-
proximate the memory kernel at s 	 1, where states with
n > 0 and n = 0 (ground state) display a markedly different
behavior. For n > 0 and α > 0, Eq. (5) can be approxi-
mated as M̃(n > 0, s 	 1) = Km(x) + O(s), with x ≡ n/K
being the protein density, and m(x) ≡ Eα+1(αx)/Eα (αx). The
leading-order inverse Laplace transform reads M(n > 0, t ) 

δ(t )Km(x) (here and henceforth 
 denotes approximately
equal); i.e., short-term memory for n > 0, as degradation can
always occur. In contrast, we find for n = 0 and s 	 1

M̃(0, s)=K×
{ (α−1)

α
{1 + O[ αs

K , ( αs
K )α−1]}, α > 1,

(αs/K )1−α

α�(1−α) {1 + O[( αs
K )1−α]}, α < 1.

(6)

Here, for α > 1 the leading-order term is independent of s. In
contrast, for α < 1 there is a power-law dependence, since at
n = 0 the only reaction that can occur is production, which
gives rise to increasingly long times of inactivity. Note that,
the subleading term in Eq. (6) differs between α > 2 and 1 <

α < 2, which affects the rate of convergence to stationarity,
but not stationarity itself. The inverse Laplace transform of
(6) reads

M(0, t ) 
 K ×
{

(α−1)
α

, α > 1,

(α−1)Kα sin(πα)
ααπt2−α , α < 1.

(7)

For α > 1, the dynamics is unaffected by the state n = 0, as its
probability, P0, is exponentially small for K � 1. On the other
hand, for α < 1 the dynamics display long-range correlation
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FIG. 2. SRG model. (a) Probabilities Pn(t ) for various n (see
legend) and 1 − P0(t ) based on MC simulations for K = 25 and
α = 0.36, all showing similar scaling at long times. (b) The Fano
factor versus α for different τcutoff (see legend), for K = 500.
(c) The mean protein number versus time for different values of α

(0.2–0.46); the curves can be approximately collapsed by properly
rescaling n̄ and t ; see text. The dashed line is an eye guide with
a slope of −1. The inset displays the averages without rescaling.
Here n̄ is averaged over 105 simulations and the carrying capacity
is K = 25. (d) The EB parameter versus time for different α values,
K = 500, and 	 = 100; see text.

even at infinitely long times. This is a clear signature of non-
ergodicity. To show this, we derive an equation for the mean
protein number n̄ by multiplying Eq. (3) by n and summing
over all n:

∂n

∂t
= −n(t ) +

∫ t

0
M(n, t − t ′)dt ′, (8)

where M(n, t − t ′) ≡ ∑∞
n=0 M(n, t − t ′)Pn(t ′). This equa-

tion cannot be solved explicitly, and below we deal with
it asymptotically. For α > 1 we show below that, at
t � 1, M(n, t ) → M(n) ≡ Km(x) and m(x) 
 m(x), suggest-
ing that the dynamics are ergodic. On the other hand, for
α < 1, a single state retains memory leading to ergodicity
breaking and aging [38,45]. We conjecture that at suffi-
ciently long times (see below), P0(t ) grows due to long
periods of inactivity at n = 0, whereas Pn>0(t ) rapidly de-
cay. In Fig. 2(a) we show that, for t � 1, 1 − P0(t ) ∼
t−(1−α) and Pn>0(t ) ∼ t−(1−α) (here and henceforth ∼ de-
notes identical asymptotic scaling). The averaged memory
kernel is then dominated by the state n = 0 such that, for
1 	 t − t ′ 	 t , M(n, t − t ′) 
 ∑∞

n=1 M(n)Pn(t ′) + M(0, t −
t ′)P0(t ′) ∼ M(0, t − t ′) ∼ (t − t ′)−(2−α), where we used Eq.
(7), and assumed that P0(t ′) 
 1. Substituting this into Eq. (8),
one obtains the long-time asymptotic of the dynamics for any
α < 1: n ∼ t−(1−α) at t → ∞.

At what times is this scaling reached? As the scaling
is caused by the state n = 0, the dynamics are effectively
stationary as long as this state has not been visited. Only
upon visiting n = 0 do we expect long-memory effects and

nonstationarity. Thus, the typical time to asymptotic decay,
τtyp, is roughly proportional to τ0, the mean first passage time
(MFPT) to reach n = 0. At times t 	 τtyp the dynamics is
expected to be stationary, allowing us to analytically find the
long-lived metastable state prior to the asymptotic decay as
well as the MFPT to n = 0.

Stationary dynamics. For α > 1 and t � 1, and for α < 1
and 1 	 t 	 τtyp, the dynamics are stationary. To find n̄(t )
and the MFPT to state n = 0, we write a stationary master
equation [dPn(t )/dt = 0] by Laplace transforming Eq. (3),
multiplying by s, and using the final value theorem of the
Laplace transform, lims→0 sP̃n(s) = Pn [17]. This yields

0 = (n + 1)Pn+1 − nPn + M(n − 1)Pn−1 − M(n)Pn, (9)

where Pn is the steady state solution for the probability of
having n proteins at time t , and M(n) = Km(x); see the def-
inition below Eq. (5). Equation (9) can be solved recursively
to give Pn = (1/n!)P0

∏n−1
k=0 M(k), where P0 is the probability

of being in the ground state, found by normalization. For
K � 1, this can be recast (up to a prefactor) into a semiclassi-
cal form as Pn ∼ e−KS(n/K ) ≡ e−KS(x), with the action S(x) =∫ x

x̄ ln[x′/m(x′)]dx′ [55–57], where x̄ ≡ n̄/K . The integral here
can be solved numerically for any n, and the MFPT to the
ground state n = 0 is given by τ0 ∼ eKS(0) [55–57].

In addition to the steady-state dynamics, in Fig. 2(b) we
show that the Fano factor, defined as the variance of the
protein number divided by its average (σ 2/μ), increases with
decreasing α. As in all experiments the power-law WTD is
expected to have an exponential cutoff at some finite τcutoff

(see, e.g., [51]), we plot in Fig. 2(b) the Fano factor for
different values of τcutoff; see Appendix A. Here the Fano
factor is obtained from MC simulations and does not depend
on the carrying capacity. Notably, the distribution tends to
a Poissonian (σ 2/μ = 1) either at α � 1 or for very short
cutoff times, τcutoff � 1/K . The existence of reactions with
fat-tailed WTDs can thus serve as a possible explanation of
experimental observations of super-Poissonian distributions
(with σ 2/μ > 1) in gene expression [58,59].

In Fig. 2(c) we test our analytical results using simulations
for a wide range of α < 1 values. To collapse the curves,
and to show the asymptotic behavior of n̄ ∼ t−(1−α), we plot
(n/n̄ss)1/(1−α) versus normalized time t/τ0, where n̄ss is the
numerical solution of Eq. (8), τ0 = eKS(0), and S(0) is found
numerically. The collapse indicates that all curves start de-
caying at roughly the same normalized time. Yet, the curves
clearly do not perfectly overlap at long times, due to an
intermediate regime in Fig. 2(c), caused by an α-dependent
prefactor, not accounted for by our theory; we have checked
that the width decreases as K increases. Finally, Fig. 2(d)
shows further evidence of the crossover between ergodic and
nonergodic dynamics at α-dependent times, using the ergodic-
ity breaking (EB) parameter [38]. The latter is the variance of
the time-averaged squared displacement of the protein num-
ber, δ2(	)=1/(t −	)

∫ t−	

0 [n(t ′+	)−n(t ′)]2dt ′, divided by
its mean, and is used as a measure for the level of variability
across different trajectories of a given ensemble (see Ap-
pendix B for additional details). The EB parameter is plotted
in Fig. 2(d) versus the total simulation time, with EB 	1
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and EB = O(1) being signatures of ergodic and nonergodic
dynamics, respectively [38,60,61].

Two-state promoter model. Similar effects occur in a more
complex two-state gene expression model, which explicitly
accounts for mRNA noise, where transitions between a tran-
scriptionally active and inactive promoter are independent of
the protein number [4,14]; see Fig. 1. As stated above, acti-
vation often requires binding to limited elements in the cell,
which may give rise to a nonexponential, fat-tailed WTD [see
Eq. (1)]:

ψ0(τ ) = κ/[1 + κτ/α]1+α, (10)

where κ is a scale parameter. In contrast to activation, deac-
tivation is expected to occur at an exponential rate [11]. For
simplicity, we assume that the typical switching timescales
from the active to inactive state and vice versa are equal,
and thus, we set the rate for deactivation to be also κ . The
rest of the reactions (see Fig. 1), transcription of mRNA and
translation of proteins, and degradation of mRNA and pro-
teins, are modeled as first-order, exponential processes with
rates a, bγ , γ , and 1, respectively, where time is measured in
units of inverse protein decay rate. The associated WTDs for
these five reactions (except binding) are ψ j (τ ) = λ j exp(λ jτ ),
with {λ j}5

j=1 = {�κ, �a, n, γ m, bγ m}, where m and n are the
mRNA and protein numbers respectively, and � = {0, 1} is the
promoter’s state (0 inactive, 1 active).

As transcription can occur only when the promoter is active
and translation is mRNA dependent, this model is qualita-
tively similar to the SRG model where we modeled the waiting
times directly in the protein production. In Appendix C we
derive the master equation for this set of reactions, and obtain
quantitatively similar results to the SRG model. Here, for
α > 1, all states including the ground state at n = m = � = 0
do not exhibit memory at t � 1, and the dynamics are sta-
tionary for all t � 1. In addition, for α < 1 and times 1 	
t 	 τtyp, i.e., longer than the relaxation time but shorter than
the typical time τtyp to sample the ground state, the dynamics
are still effectively stationary. In these cases the equations for
the mean protein and mRNA numbers, n̄ and m̄, read

˙̄m = aM (0)
n̄,m̄

/(
M (0)

n̄,m̄ + κ
) − γ m̄, ˙̄n = γ bm̄ − n̄, (11)

where M (0)
n,m is the leading order of the memory kernel for any

state but the ground state; see Appendix C.
In contrast, for α < 1 and t > τtyp the system eventually

reaches the ground state n = m = � = 0 and the dynamics is
no longer stationary. Here, n̄ ∼ m̄ ∼ t−1+α (see Appendix D),
similarly to the SRG model. Yet, to determine the time to
reach the ground state in the two-state model, one has to
distinguish between two cases: moderate to fast switches
κ � 1 and slow switches κ 	 1. For κ � 1 we find the same
effect as in the SRG model, i.e., the typical time to decay is
proportional to the MFPT to the ground state. Here, τ0 � 1
is governed by the long-lived metastable dynamics and is
typically exponential with the mean protein number. Notably,
τ0 can be computed using MC simulations [see Fig. 3(a)]; it
asymptotically decreases as κ → ∞. In contrast, for κ 	 1
the typical time to reach the ground state is no longer governed
by the metastable dynamics, since the promoter can be inac-
tive for significantly longer periods than the typical relaxation

FIG. 3. Two-state model. (a) The MFPT versus κ for α = 0.4.
(b) The mean protein number n̄, averaged over 103 simulations,
versus κ at different times (legends) for α = 0.8. The dashed line is a
steady-state solution of Eq. (11) for κ � 1. The theoretical prediction
for κ < 1 is nonstationary and quickly decays. (c) Normalized mean
protein copy number n̄/n̄ss, averaged over 105 simulations, versus
normalized time (see text) for α = 0.3. The inset shows the non-
normalized averages. The rest of the parameters are b = 1.2 and in
(a) and (c) a = 100 and γ = 10 while in (b) a = 1000 and γ = 100.

time of O(1); see Fig. 3(a). This leads to the dynamics reach-
ing the zero state after τtyp = O(κ−1), resulting in a relatively
quick decay n̄ ∼ t−1+α .

In Fig. 3(b) we compare numerical solutions of Eq. (11)
to simulations, showing stationary dynamics at times
1 	 t 	 τtyp for κ � 1, and nonstationary dynamics when
κ < 1 for any t . In Fig. 3(c) our results agree well with simula-
tions for both 1 	 t 	 τtyp and t � τtyp. Here, as in Fig. 2(c)
we normalize n̄ by its steady state value found by numerically
solving the steady state of Eq. (11), and we normalize time
by the MFPT to reach n = 0, independently obtained from
simulations (compare to inset). The collapse occurs at t � τtyp

for all values of κ , and at t 	 τtyp for κ � 1.
In summary, we have studied two gene-expression models

with delayed protein production due to fat-tailed WTDs. For
distributions with diverging mean (α < 1) the mean protein
number starts to decay after a typical time, which scales as
the MFPT to a ground state. Here, the dynamics are ergodic
at short times but become nonergodic and display aging as
the ground state is sampled, from which the system can only
exit via a nonexponential reaction. We also showed that long-
range memory may increase the Fano factor (variance over the
mean of the protein distribution) as α decreases, which also
holds for a truncated WTD. This effect may be experimentally
measurable, provided that the power-law exponent can be
adjusted (e.g., by modifying the molecule’s binding affinity
to the binding site).

Although we have focused on gene expression, fat-tailed
WTDs may be key in various other fields. For instance, in
predator-prey models in movement ecology, diffusion-limited
predation or nonergodic foraging may be indicative of power-
law waiting times [42]. Furthermore, long waiting times also
appear in epidemic dynamics, where a large variability in
infection and/or recovery periods may lead to markedly dif-
ferent dynamics [62]. Our findings may provide valuable
insight into these and other dynamical models where long
waiting times appear.
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FIG. 4. Protein number in the two-state model for α = 0.3, a = 100, b = 1.2, and γ = 10. The blue solid line is the mean protein number,
averaged over 105 simulations. In red there are 50 lines, where each represents a trajectory averaged over a varying number of simulations,
ranging from no averaging (leftmost panel) to averaging over 50 simulations (rightmost panel).

Acknowledgments. O.V. and M.A. were supported by the
Israel Science Foundation Grant No. 531/20. We also ac-
knowledge funding for the open access fees by the German
Research Foundation (DFG, Project No. 491466077).

Appendix A: Truncated Power Law. In experimental sys-
tems measured power laws are often truncated. In the main
text, Fig. 2(b), we plotted the Fano factor for truncated power
laws. The WTD that replaces the one in Eq. (1) is defined as
follows:

ψ+(τ ) = e−τ/τcutoff

(1 + Kτ/α)α

(
1

τcutoff
+ K

1 + Kτ/α

)
. (A1)

As shown in Fig. 2(b), as long as τcutoff >1/K (the typical
degradation timescale), the Fano factor increases as α de-
creases.

Appendix B: Ergodicity Breaking. Ergodicity breaking is
formally defined as a disparity between the mean squared
displacement (MSD) and time-averaged mean squared dis-
placement (TAMSD). The MSD is defined as the squared
displacement of the protein number with respect to a reference
number, averaged over an ensemble of independent simula-
tions. The TAMSD is given by averaging over the squared
displacement of the protein number performed in a time lag
	 [37,38],

δ2(	) = 1

t − 	

∫ t−	

0
[n(t ′ + 	) − n(t ′)]2dt ′, (B1)

where in this expression an overline denotes time averag-
ing. Note that the same disparity occurs also between other
ensemble-averaged and time-averaged observables, and not
only the TAMSD [36]. For a Brownian process and 	 	 t
one obtains δ2(	) ∼ 	 ∼ 〈x2(	)〉. In contrast, if the TAMSD
and MSD scale differently, the underlying process is, by defi-
nition, nonergodic; that is, the ensemble averaging is different
from the time averaging [44]. In many cases, and especially
for nonergodic dynamics, it is convenient to compute the
so-called ensemble-averaged TAMSD, defined as

〈
δ2(	)

〉
= (1/N )

N∑
i=1

δ2(	), (B2)

where angular brackets denote ensemble averaging over N
simulations (i.e., independent realizations of the protein num-
ber). Here, averaging is necessary due to the irreproducible
nature of the process (i.e., large diversity across simulations).
In Fig. 4 we show an example of the large diversity between
simulations when the process becomes nonergodic. In the

leftmost panel we plot 50 random simulations compared to
the mean protein number, while in the other four panels each
of the 50 lines denotes an average over 5, 10, 20, and 50 simu-
lations. One can see that the variability around the nonergodic
phase is larger and more immune to averages over a small
number of simulations.

To derive the ergodicity breaking (EB) parameter we de-
fine the variability of the TAMSD (the spread of individual
TAMSDs around their average) in terms of the dimensionless

parameter ξ = δ2(	)/〈δ2(	)〉. For many processes, at long
measurement times the distribution of ξ satisfies [60]

φ(ξ ) = �1/α (1 + α)

αξ 1+1/α
lα

(
�1/α (1 + α)

ξ 1/α

)
. (B3)

Here, lα is the one-sided Lévy stable distribution with the
Laplace transform L{lα (t )} = exp(−uα ), while �(·) is the
gamma function. For Brownian diffusion, α → 1, φ(ξ ) ∼
δ(ξ − 1), i.e., a sharply peaked distribution around 1. How-
ever, for general α < 1 the distribution is wide and skewed.
A common measure of ergodicity breaking, which we use in
the main text, is the so-called EB parameter, defined for long
simulation times t as

EB = 〈ξ 2〉 − 〈ξ 〉2. (B4)

In prototypical systems, e.g., CTRW with a power-law WTD,
this parameter varies between EB = 0 for an ergodic system
to EB > 0 for a nonergodic system, where for α → 0 we
expect the EB parameter to be O(1) [38].

Appendix C: Derivation of the Master Equation for the Two-
State Model. To derive the CME for the set of reactions in
the two-state promoter model, we repeat the steps detailed for
the SRG model based on [45], noting that now we have six
rates and not only two (see main text). We start by writing the
probability density for reaction i to occur at time t while no
other reaction j �= i occurs until t :

φi(n, m, �, t ) = ψi(n, m, �, t )
5∏

j=0, j �=i

∫ ∞

t
ψ j (n, m, �, τ )dτ.

(C1)
A chemical master equation for the probability of having n
proteins and m mRNAs at time t when the DNA is in state �,
P(�)

n,m(t ), is then given by

∂P(�)
n,m

∂t
= (−1)�

[
κP(1)

n,m(t )−
∫ t

0
Mn,m(t − τ )P(0)

n,m(τ )dτ

]

+AP(�)
n,m(t ). (C2)
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The memory kernel Mn,m(t ) is defined in terms of its Laplace
transform

M̃n,m(s) = sφ̃0(n, m, 0, s)

1 − ∑5
j=0 φ̃ j (n, m, 0, s)

, (C3)

and the operator A is defined in terms of the step opera-
tors E j

k f (k) = f (k + j) by A = (E1
n − 1)n + γ (E1

m − 1)m +
γ bm(E−1

n − 1) + a�(E−1
m − 1) [14]. Note that the memory

kernel associated with any of the exponential rates {λ j}5
j=1

can also be calculated in a similar way to Eq. (C3) and re-
duces to Mj (t ) = λ jδ(t ), giving the form of the operator A in
Refs. [11,45]. Explicit calculation of the memory kernel in the
Laplace variable, Eq. (C3), yields after some algebra

M̃n,m(s) = (s + λtot )αEα+1
(

α(s+λtot )
κ

)
e− α(s+λtot )

κ − αEα+1
(

α(s+λtot )
κ

) , (C4)

where λtot = n + γ m + γ bm; note that, the additional reac-
tions of deactivation and transcription do not contribute when
the promoter is in the inactive state. Here, the exponential
integral function, Eα (x), is defined in the main text.

The memory kernel can be simplified in the limit s → 0
(t → ∞). An immediate result for all states with λtot > 0 is

M̃n,m(s) = M (0)
n,m + O(s), (C5)

M (0)
n,m ≡ λtotαEα+1

(
αλtot

κ

)
e− αλtot

κ − αEα+1
(

αλtot
κ

) , λtot > 0,

which is independent of s in the leading order. Applying
the inverse Laplace transform to Eq. (C5) yields Mn,m,�(t ) 

M (0)

n,mδ(t ) for λtot > 0. As long as the dynamics are not in the
state n = m = � = 0 we have λtot > 0 and this approximation
holds. However, for n = m = � = 0 the only possible reaction
is the DNA switching to the active state and we have λtot = 0.
Here the form of the memory kernel at long times is strongly
dependent on α:

M̃0,0(s) = sαEα+1
(

αs
κ

)
e− αs

κ − αEα+1
(

αs
κ

) (C6)

=
{(

α
κ

)−α s1−α

�(1−α) + O(s2−2α ), α < 1,
(α−1)κ

α
+ O(sα ), α > 1.

Thus, for α > 1 all states do not exhibit memory at t � 1,
suggesting stationary dynamics at long times, similarly to the
exponential WTD case [4,14,15]. Moreover, even for α < 1
and times 1 	 t 	 τtyp, i.e., longer than the relaxation time
but shorter than the typical time τtyp to sample the ground
state λtot = 0, the dynamics are expected to be stationary. In
addition, when the mean protein number is large the value of
the memory kernel for λtot = 0 will be negligible. For all of
these cases, the steady-state equation for P�

n,m is given by

0 = (−1)�
[
κP(1)

n,m − Mn,mP(0)
n,m

] + AP(�)
n,m, (C7)

where the derivation is similar to the one shown above for the
SRG. A similar set of equations for a stationary problem was
analyzed in Ref. [14], and it was shown that the stationary
mean-field dynamics of (C7) follow

0 = ˙̄m = aM (0)
n̄,m̄/[M (0)

n̄,m̄ + κ] − γ m̄, 0 = ˙̄n = γ bm̄ − n̄.

(C8)

As Eqs. (C8) are transcendental equations for n̄ and m̄, in
general they can only be solved numerically.

Appendix D: Effective Two-State Model. To show the scal-
ing of the mean number of proteins and mRNA with time,
at sufficiently long times, we construct an effective model in
which the switches are decoupled from the other cell com-
ponents. In this effective model the probabilities of the DNA
to be in the active and inactive states, P = ∑

n

∑
m P(1)

n,m and
Q = ∑

n

∑
m P(0)

n,m, respectively, are given by

∂P

∂t
= −κP(t ) +

∫ t

0
ψ0(t − τ )κP(τ )dτ, (D1)

∂Q

∂t
= κP(t ) −

∫ t

0
ψ0(t − τ )κP(τ )dτ. (D2)

The initial condition is P(0) = 1, and the probabilities obey
P(t ) + Q(t ) = 1 for any t . These equations are based on the
non-Markovian kinetic rate equations developed in [48], see
also [49] for further details. Equations (D1) and (D2) can be
Laplace transformed:

sP̃(s) − 1 = −κP̃(s) + κP̃(s)ψ̃0(s),

sQ̃(s) = κP̃(s) − κP̃(s)ψ̃0(s). (D3)

Solving for P̃ and Q̃ we find

P̃(s) = 1

κ[1 − ψ̃0(s)] + s
, Q̃(s) = κ[1 − ψ̃0(s)]

s{κ[1 − ψ̃0(s)] + s} .

(D4)

Assuming t � κ−1, i.e., that the total time is much larger than
the time of any switch, we then have s 	 κ and

ψ̃0(s) =
{

1 − αs
κ (α−1) + O(sα ), α > 1,

1 − �(1 − α)
(

αs
κ

)α + O(s), α < 1.
(D5)

For α < 1, we substitute Eq. (D5) into Eq. (D4) and perform
the inverse Laplace transform. This yields

P 
 sin(πα)

πα

(
κt

α

)−(1−α)

, Q = 1 − P. (D6)

Here, the probability P is slowly decaying with time. To find
the average mRNA and protein numbers we assume that due
to the slow DNA dynamics the equations for the mRNA and
proteins depend only on P:

dm̄/dt = −γ m̄(t ) + aP, dn̄/dt = γ bm̄(t ) − n̄. (D7)

Substituting Eq. (D6) into Eqs. (D7), solving for m̄ and n̄, and
finally approximating the result for t � 1, we find

n̄(t ) 
 γ bm̄(t ) 
 abP. (D8)

Note that this result can also be obtained by assuming that the
derivatives with respect to time on the left-hand side of both
Eqs. (D7) are small with respect to the right-hand side. This
directly leads to Eqs. (D8).

We note that for α > 1 we can also substitute Eq. (D5)
into Eq. (D4) and perform the inverse Laplace transform.
This yields P 
 (1 − α)/(1 − 2α), i.e., the probability ap-
proaches a constant at long times. For α � 1 this reduces to
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P 
 1/2 as expected; however, for α → 1+ the probability is
significantly reduced such that limα→1+ P = 0. Although this

seems counterintuitive, this result is only valid in the limit of
s 	 κ (α − 1) or t � [κ (α − 1)]−1; see Eq. (D5).
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