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Chern mosaic and ideal flat bands in equal-twist trilayer graphene
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We study trilayer graphene arranged in a staircase stacking configuration with equal consecutive twist angle.
On top of the moiré crystalline pattern, a supermoiré long-wavelength modulation emerges that we treat
adiabatically. For each valley, we find that the two central bands are topological with Chern numbers C = ±1
forming a Chern mosaic at the supermoiré scale. The Chern domains are centered around the high-symmetry
stacking points ABA or BAB and they are separated by gapless lines connecting the AAA points where the
spectrum is fully connected. In the chiral limit and at a magic angle of θ ∼ 1.69◦, we prove that the central bands
are exactly flat with ideal quantum curvature at ABA and BAB. Furthermore, we decompose them analytically
as a superposition of an intrinsic color-entangled state with ±2 and a Landau level state with Chern number ∓1.
To connect with experimental configurations, we also explore the nonchiral limit with finite corrugation and find
that the topological Chern mosaic pattern is indeed robust and the central bands are still well separated from the
remote bands.
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Introduction. Stacking and twisting two layers of graphene
realizes an extraordinary platform [1] which, in the magic
angle region, gives rise to flat bands [2–7] hosting supercon-
ductivity [8–12], interaction-driven insulating states [13–22],
anomalous Hall effects [23–32], and fractional Chern insula-
tors [33–35]. The intimate connection between the flat bands
of twisted bilayer graphene (TBG) and the properties of Lan-
dau levels [36–51] played a key role for the understanding of
the interplay between correlation and topology in the afore-
mentioned correlated states. Following this guiding principle,
we characterized the properties of the flat bands in equal-twist
staircase trilayer graphene (eTTG) sketched in Fig. 1(a), find-
ing high-symmetry stacking ABA/BAB configurations with
total Chern number ±1 hosting an intrinsic color-entangled
state [52–55] with Chern number 2 and a Landau level like
state with Chern number −1.

Adding an additional graphene sheet to TBG rotated by a
small relative twist angle [twisted trilayer graphene (TTG)]
gives rise to the superposition of two moiré superlattices
[56,57]. With the exception of mirror-symmetric TTG [58–67]
and twisted monobilayer graphene [68–71], the two moiré
periodicities are incommensurate [72,73], leading to a qua-
sicrystalline structure that dominates the electronic behavior
at relevant energies [57]. The theoretical description of twisted
trilayer graphene runs into fundamental difficulties [72,73]
due to the quasiperiodic nature of the low-energy Hamilto-
nian, disallowing all the simplifications from Bloch’s theorem.
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Similar effects can also emerge in TBG aligned with hBN
[74,75].

The aim of this Letter is to study the emergent effect of the
superposition of the two moiré patterns in eTTG. The system
is the simplest example of a quasiperiodic moiré crystal [72]
where the angle θ12, between layer one (top) and two (middle),
and θ23, between layer two and three (bottom), are equal
θ12 = θ23 ≡ θ . In the magic angle region, where θ ≈ 1◦, the
two incommensurate periodicity can be decomposed in a fast
modulation q j on the moiré scale |q j | ∝ θ and a slow one
δq j with much larger periodicity |δq j | ∝ θ2 [73,76]. Within
a semiclassical adiabatic approximation [77–81], we define a
local Hamiltonian HeTTG(r) = HeTTG(r,φ) where φ depends
on the slowly varying supermoiré scale [73]. In this picture,
we obtain a Chern number versus φ real-space map Fig. 1(b)
that gives rise to a Chern mosaic of triangular regions with
±1 Chern number. Figure 1(c) shows the energy gap between
the flat bands and the remote ones which takes the maximum
value for ABA and BAB sites. Furthermore, the domain walls
separating the topological regions close the gap Egap to the
remote bands and form lines connecting the AAA centers.
The ABA and BAB stacking configurations, exhibiting the
largest energy gap Egap, are expected to be favored by lattice
relaxation [82,83]. Some of our findings can be generalized to
cases involving unequal twist angles [73,84].

There are three high-symmetry stacking configurations that
are especially significant and indicative of the Chern mosaic
pattern: AAA, ABA, and BAB. We explore them analytically
in the chiral limit to unveil the topological features of the mo-
saic. We thereby derive analytical expressions for the resulting
ideal flat bands emerging at a magic angle. The AAA stacking,
considered in the preprint [85], is characterized by a vanishing
Berry curvature and a fully connected spectrum protected
by C2zT [86]. At the magic angle θAAA ≈ 0.75◦ a fourfold
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FIG. 1. (a) Equal-twist angle trilayer graphene lattice in real
space. (b) Real-space Chern mosaic and (c) energy gap over the
supermoiré lattice computed for θ = 1.69◦ and wAA = 0.6wAB. Re-
gions around ABA (BAB) stackings host a pair of isolated nearly
flat bands with total Chern number +1 (−1). Topological transitions
occur at domain wall (magenta) lines where the gap Egap closes and
the spectrum is fully connected.

degenerate zero energy flat band sector emerges, connected
to a single Dirac cone. The ABA (BAB) stacking, on the
other hand, shows a flat band region detached from the remote
bands with total Chern number C = 1(−1). The origin of the
finite Chern number is readily traced out by the nature of the
flat bands at the magic angle θABA ≈ 1.69◦ which, remarkably,
is larger than the one in mirror-symmetric TTG [43]. We prove
that the flat band sector decomposes into a Chern +2(−2)
color-entangled zero mode [55,87,88] and a Chern −1(+1)
Landau level like state [36,38,39,48,49,51,89,90]. The result-
ing imbalance in Chern flux creates a Chern mosaic pattern
in real space, which could be detected by measuring the local
orbital magnetization in real space [27,28].

Chern Mosaic on the supermoiré scale. When the twist
angle is small, noncommensurability effects are character-
ized by a length scale well separated from the moiré scale,
|δq j |/|q j | ≈ 0.02 for θ = 1◦. As a result, the long wavelength
modulation can be treated parametrically, leading to the local
Hamiltonian for a single valley obtained in Ref. [73]:

HeTTG(r,φ) =

⎛
⎜⎝

vF k̂ · σ T (r,φ) 0

h.c. vF k̂ · σ T (r,−φ)

0 h.c. vF k̂ · σ

⎞
⎟⎠, (1)

where the other valley is obtained by time-reversal symme-
try. vF ≈ 106 m/s is the graphene velocity and the phases
φ = (φ1, φ2, φ3) defines the local stacking configuration

((a) ((b)

((c) ((d)

FIG. 2. (a) Mini moiré Brillouin zone (BZ). (b) Renormalized
velocity v∗ for AAA (red) and ABA (blue) regions as a function
of the dimensionless coupling α = wAB/vF kθ and wAA = 0 (chiral
limit). Dispersion relation for ABA stacking (c) and AAA stacking
(d) at the magic angle θAAA ≈ 0.75◦ and θABA ≈ 1.69◦, respectively.

[73,76]. Varying φ maps out the supermoiré unit cell in
Fig. 1(b), σ is the vector of Pauli matrices in the sublattice
space, and k̂ = −i∇r. The tunneling between different layers
is described by the moiré potential

T (r,φ) =
3∑

j=1

Tje
−ir·q j e−iφ j , (2)

where Tj+1 = wAAσ 0 + wAB[σ x cos 2π j/3 + σ y sin 2π j/3],
wAB = 110 meV, using complex notation q j+1 = iω j [86]
with ω = e2iπ/3 and j = 0, 1, 2, in units of kθ = θKD with a
KD Dirac cone of graphene. The moiré lattice is characterized
by the reciprocal lattice vectors b1/2 = q1 − q2/3 and primitive
vectors a1/2. The wavefunctions satisfy Bloch periodicity and
particle-hole symmetry denoted P [76]. At low-energy the
model (1) is characterized by three inequivalent Dirac cones
at K , K ′, and 	 of the mini Brillouin zone (BZ) shown in
Fig. 2(a). The central one at 	 is protected by P while K and
K ′ are gapped for generic φ [73].

We now obtain the spectrum of the Hamiltonian (1) and
study the topological properties of the nearly flat bands around
charge neutrality. Figure 1(b) shows the real-space mosaic
pattern obtained by computing the Chern number C(φ) for the
two central bands at the magic angle θABA = 1.69◦ for finite
corrugation wAA = 0.6wAB. The mosaic exhibits a triangular
periodic structure, which is generated by the lattice vectors
aMM

1/2 = 4πe∓iπ/3/3kMM
θ , where kMM

θ = θ2KD. The two central
bands are topological everywhere except along lines con-
necting the AAA centers, where the gap with the remote
bands closes as shown in Fig. 1(c) and the spectrum is
fully connected. Each topological region is centered around
rABA = (aMM

2 − aMM
1 )/3 and rBAB = −rABA, with opposite

Chern numbers of ±1. To uncover the nature of the topologi-
cal bands, we specifically focus on these two high-symmetry
stackings. Moreover, we consider the chiral limit, where the
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bands become exactly flat and an analytical solution can be
obtained.

ABA stacking: color-entangled flat band. The ABA region
is described by the local Hamiltonian HABA obtained from
Eq. (1) with φ = 2π/3(0, 1,−1). Here, the C3z symmetry is
recovered while C2x and C2zT are broken. The latter connects
ABA to BAB explaining the opposite Chern numbers of the
ABA and BAB regions. The combination of C2x and C2zT is a
symmetry for the model C2yT which, together with P and C3z,
protects three Dirac cones at 	, K, and K ′ [76]. We henceforth
consider the chiral limit wAA = 0 where an inspiring mathe-
matical structure emerges [36]. HABA then anticommutes with
the chiral operator 
z = 1 ⊗ σ z with 1 the identity in the layer
basis. Denoting with ψl and χl with l = 1, 2, 3 the wavefunc-
tion components polarized in the A and B sublattices, in the
basis 
 = (ψ1 ψ2 ψ3 χ1 χ2 χ3)T the Hamiltonian
HABA reads

HABA(r)

vF kθ

=
(

0 D1(r)

D†
1 (r) 0

)
, (3)

and we look for zero-mode solutions,

D1(r)χk(r) = 0, D†
1 (r)ψk(r) = 0, (4)

constrained to the Bloch-periodic boundary conditions de-
tailed in the SM [76]. In Eq. (3) we have introduced

D1(r) =

⎛
⎜⎜⎝

−i
√

2∂ Uω(r) 0

U0(−r) −i
√

2∂ U0(r)

0 Uω(−r) −i
√

2∂

⎞
⎟⎟⎠, (5)

with ∂ = (∂x − i∂y)/(
√

2kθ ), z = kθ (x + iy)/
√

2,
U0(r) = α

∑3
j=1 e−iq j ·r, Uω(r) = α

∑3
j=1 ω j−1e−iq j ·r, and

α = wAB/vF kθ . We focus on the first magic angle
θABA ≈ 1.69◦ where the renormalized velocity v∗ vanishes
[see the blue line in Fig. 2(b)]. Correspondingly, the two
bands around charge neutrality become perfectly flat, as
shown in Fig. 2(c). Interestingly, the single particle gap that
separates the flat bands from remote ones is Egap ≈ 130 meV,
quite large when compared with the typical value of the
Coulomb interaction screened by metallic gates [42]. The
C3z symmetry yields χ	1(0) = χ	3(0) = 0, while χ	2(0) is
usually nonzero. The magic angle θABA is exactly defined by
χ	2(0) = 0. As the spinor χ	 (0) then fully vanishes at θABA,
the B-polarized flat band has an analytical expression

χk(r) = η̄k(z̄)χ	 (r), (6)

where z̄ = z∗ and the antiholomorphic η̄k(z̄) = η∗
k (−z) is re-

lated to the meromorphic function

ηk(z) = eik1z/a1
ϑ1[z/a1 − k/b2, ω]

ϑ1[z/a1, ω]
, (7)

with the notation k1 = k · a1 and ϑ1[z, ω] the Jacobi theta
function [76], which vanishes at z = 0 and satisfies the
Bloch periodicity. The self-periodic part of the wavefunction
uk̄ (r) = e−ik·rχk(r) is k antiholomorphic corresponding to an
ideal flat band [39,48,91]. The Chern number of the band can
be readily read off from the k-space boundary conditions

uk̄+b̄ j
(r) = e−ib j ·reiφk,b j uk̄ (r), (8)

FIG. 3. Middle layer component |ψk2(r)| plotted in the BZ for
different r. From top left to bottom- right, the position r evolves
between r0 = (0.1, 0.3) (unit of 1/kθ ) and r0 + a1. |ψk2(r)| displays
CA = 2 indexed zeros in the BZ whose positions change with r.
Their pattern is invariant under a lattice translation but the two zeros
are nonetheless swapped, akin to a Thouless pump but in reciprocal
space.

where φk,b1 = −2π k̄/b̄2 + π − π b̄1/b̄2 and φk,b2 = π which
implies CB = −1 where the Chern number has been computed
employing [48,55]

C = φk0+b2,b1 + φk0,b2 − φk0,b1 − φk0+b1,b2

2π
. (9)

We turn to the exact solution for the A-polarized wavefunc-
tion ψ. C3z yields again ψ	1/3(0) = 0 at 	 and ψK/K ′2(0) = 0
at K (K ′), however ψ	2(0) does not vanish at the magic angle.
Nevertheless, we numerically find that ψK1(0) = −ψK3(0),
right at the magic angle θABA which, combined with particle-
hole symmetry P, proves that the two spinors are equal

ψK (0) = ψK ′ (0) (10)

at θABA. This remarkable identity allows us to exhibit an exact
analytical expression for the A-polarized flat band (up to a
k-dependent prefactor) [76]

ψk(r) = akηk−q1
(z)ψK (r) + a−kηk+q1

(z)ψK ′ (r), (11)

satisfying the Bloch periodicity, with the holomorphic func-
tion defined in Eq. (7) and ak = ϑ1[(k + q1)/b2, ω]. In
Eq. (11), we set the K and K ′ points at ±q1, respec-
tively. Thanks to the following property of the theta function
ϑ1[−z, ω] = −ϑ1[z, ω], it is readily checked that the poles
of ηk±q1

(z) at z = 0 cancel each other in Eq. (11), as a re-
sult of Eq. (10), and the wavefunction is finite everywhere.
We note that the corresponding unnormalized Bloch func-
tion uk (r) = e−ik·rψk(r) is k holomorphic and thus constitutes
an ideal flat band [39,48,91]. In addition, the momentum
space boundary condition yields φk,b1 = 4πk/b2 + 2πb1/b2

and φk,b2 = 0, resulting in a Chern number CA = 2 and a
total Chern number C = CA + CB = +1 associated with the
triangular regions centered around the ABA site in Fig. 1(b).
Remarkably, the Chern 2 band of Eq. (11) describes a color-
entangled wavefunction [55,92] and, upon translation of a
lattice vector r0 → r0 + a1, the k-space zeros of |ψk2(r)| get
swapped, see Fig. 3. The emergence of the Chern bands +2
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(a)(a) ((b)
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FIG. 4. (a) Trace of the non-Abelian Berry curvature for the A
sublattice 
z = +1 (due to C2zT we have tr�B = −tr�A). Numer-
ically, Trtr g = tr � is verified. (b) Spectrum obtained by moving
away from AAA stacking along the aMM

2 − aMM
1 direction. The

bands highlighted in red carry a Chern value +1 in agreement with
Fig. 1(b). (c) Fully connected spectra obtained along the domain wall
aMM

1 + aMM
2 direction. The spectra are computed at the magic angle

θAAA ≈ 0.75◦, in the chiral limit wAA = 0.

and −1 can be intuitively understood as a direct consequence
of the original three Dirac cones of each layer, similar to
twisted monobilayer graphene [71,93].

AAA stacking and domain wall lines. The local Hamiltonian
HAAA describing the AAA points is obtained by setting φ = 0
in Eq. (1). It satisfies all symmetries [86]: C2zT , C2x, C3z and
particle-hole symmetry P, protecting the Dirac cones at K , K ′,
and 	. C2zT furthermore enforces [86] a fully connected spec-
trum as an odd number of Dirac cones cannot form isolated
minibands [73,94–96]. In the chiral limit wAA = 0, HAAA,
in the basis 
 = (ψ1 ψ2 ψ3 χ1 χ2 χ3)T takes the
form

HAAA(r)

vF kθ

=
(

0 D2(r)

D†
2 (r) 0

)
, (12)

where the operator reads

D2(r) =

⎛
⎜⎜⎝

−i
√

2∂ Uω∗ (r) 0

Uω∗ (−r) −i
√

2∂ Uω∗ (r)

0 Uω∗ (−r) −i
√

2∂

⎞
⎟⎟⎠, (13)

and Uω∗ (r) = U ∗
ω (−r). At the magic angle taking place at

θAAA ≈ 0.75◦, see the red line in Fig. 2(b), the spectrum
shown in Fig. 2(d) is composed by a fourfold degenerate zero
mode subspace and a renormalized Dirac cone located at 	.
Interestingly, the wavefunction of the zero modes can be ex-
actly expressed in terms of meromorphic functions as shown
in Ref. [85]. We focus here on the topological properties of the
fourfold degenerate flat band sector. Away from the 	 point
the flat bands are isolated and the degeneracy can be partially
resolved by 
z which splits the fourfold degeneracy into two
doublets with 
z = ±1. For a given sublattice the topological
properties are characterized by the non-Abelian quantum geo-
metric tensor Qab

nm(k) = 〈Daunk|Dbumk〉 with Da the covariant
derivative [97]. The non-Abelian trace condition [35] reads as

(a) (b) (c)

FIG. 5. Results for wAA/wAB = 0.7 and twist angle θ = 1.69◦.
(a) Fully connected spectrum at AAA. (b) Band structure at ABA.
The two nearly flat bands (in red) split off clearly from the remote
bands. (c) Wilson loop W (k2) phase eigenvalues (red and blue dots)
for the two nearly flat bands as a function of k2 = k · a2/2π . Their
sum (gray dots) winds by 2π corresponding to the total Chern
number +1.

Trtr g = tr � where Tr traces over space directions, whereas
tr traces over the doublet subspace. Figure 4(a) shows the
Berry curvature tr �A; we check numerically that the trace
condition is satisfied everywhere at the exclusion of the 	

point where the Berry curvature is ill defined. C2zT imposes
that the two sublattice sectors yield opposite Berry curvature
tr�A = −tr�B. The points AAA are however singular. The
fourfold degeneracy is lifted by any small but finite φ and
the flat band sector with Chern number ±1 is recovered,
see Fig. 4(b). The Chern mosaic of Fig. 1(b) is thus largely
governed by the topology of the ABA and BAB points.

Finally, the different topological regions extended around
ABA and BAB meet along lines where the gap to the remote
bands vanishes, Fig. 1(c). These lines form a triangular lattice
originating from the AAA lattice sites as shown in Fig. 1(b).
We prove [76] that, along these lines, the C2x symmetry,
combined with C3z, yields a fully connected band structure
for Eq. (1), as seen in Fig. 4(c). Breaking these symmetries
can move the domain walls but not suppress them since the
distinct topological domains must be separated by gap-closing
contours.

Stability away from the chiral limit. Our predictions for-
mally derived in the chiral limit are stable and persist for
finite values of wAA. Figure 5(b) shows that, at finite wAA, the
low-energy bands in ABA regions acquire a finite dispersion.
However, the two flat bands highlighted in red in Fig. 5(b) are
still characterized by a total Chern number +1 as shown by the
winding 2π of the Wilson loop in Fig. 5(c). The Chern mosaic
pattern depicted in Fig. 1(b) is in fact relatively insensitive
to wAA and remains intact upon increasing wAA from zero to
wAA = wAB.

Conclusions. In summary, we have demonstrated that in
equal-twist angle trilayer graphene, the separation between
length scales gives rise to a supermoiré lattice modulation.
In this lattice, the local registry corresponds to twisting
around AAA to ABA stacking, and exhibits local-to-local
long-range variation. The local Hamiltonian which depends
parametrically on the supermoiré lattice coordinate displays
topologically distinct regions where the low-energy flat bands
have quantized and opposite Chern numbers. We showed
explicitly that the finite Chern number in ABA regions
originates from a zero-mode doublet composed of a Chern
+2 color-entangled wavefunction and a Chern −1 Landau
level-like state. The regions of opposite Chern values are
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separated by topologically protected gap-closing lines, thus
forming a mosaic Chern pattern. These lines of domain wall
connect the AAA sites and exhibit a fully connected spectrum
protected by C2x. Some of our findings can be generalized
to cases involving unequal twist angles, where a similar
decoupling of length scales occurs. The large energy gap
between flat and remote bands compared with the typical
Coulomb energy scale makes ABA stacking eTTG an ideal
playground for studying Fractional Chern insulators in higher
Chern number bands.
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[64] D. Călugăru, F. Xie, Z.-D. Song, B. Lian, N. Regnault, and B. A.
Bernevig, Twisted symmetric trilayer graphene: Single-particle
and many-body hamiltonians and hidden nonlocal symmetries
of trilayer moiré systems with and without displacement field,
Phys. Rev. B 103, 195411 (2021).

[65] F. Xie, N. Regnault, D. Călugăru, B. A. Bernevig, and B. Lian,
Twisted symmetric trilayer graphene. II. Projected hartree-fock
study, Phys. Rev. B 104, 115167 (2021).

[66] D. Guerci, P. Simon, and C. Mora, Higher-order Van Hove
singularity in magic-angle twisted trilayer graphene, Phys. Rev.
Res. 4, L012013 (2022).

[67] M. Christos, S. Sachdev, and M. S. Scheurer, Correlated in-
sulators, semimetals, and superconductivity in twisted trilayer
graphene, Phys. Rev. X 12, 021018 (2022).

[68] S. Chen, M. He, Y.-H. Zhang, V. Hsieh, Z. Fei, K. Watanabe,
T. Taniguchi, D. H. Cobden, X. Xu, C. R. Dean, and M.
Yankowitz, Electrically tunable correlated and topological
states in twisted monolayer–bilayer graphene, Nat. Phys. 17,
374 (2021).

[69] M. He, Y.-H. Zhang, Y. Li, Z. Fei, K. Watanabe, T. Taniguchi,
X. Xu, and M. Yankowitz, Competing correlated states and
abundant orbital magnetism in twisted monolayer-bilayer
graphene, Nat. Commun. 12, 4727 (2021).

[70] H. Polshyn, Y. Zhang, M. A. Kumar, T. Soejima, P. Ledwith, K.
Watanabe, T. Taniguchi, A. Vishwanath, M. P. Zaletel, and A. F.
Young, Topological charge density waves at half-integer filling
of a moiré superlattice, Nat. Phys. 18, 42 (2022).

[71] P. J. Ledwith, A. Vishwanath, and E. Khalaf, Family of
ideal Chern flatbands with arbitrary Chern number in chiral
twisted graphene multilayers, Phys. Rev. Lett. 128, 176404
(2022).

[72] Z. Zhu, S. Carr, D. Massatt, M. Luskin, and E. Kaxiras, Twisted
trilayer graphene: A precisely tunable platform for correlated
electrons, Phys. Rev. Lett. 125, 116404 (2020).

[73] Y. Mao, D. Guerci, and C. Mora, Supermoiré low-energy ef-
fective theory of twisted trilayer graphene, Phys. Rev. B 107,
125423 (2023).

[74] T. Cea, P. A. Pantaleón, and F. Guinea, Band structure of twisted
bilayer graphene on hexagonal boron nitride, Phys. Rev. B 102,
155136 (2020).

[75] J. Shi, J. Zhu, and A. H. MacDonald, Moiré commensurabil-
ity and the quantum anomalous Hall effect in twisted bilayer
graphene on hexagonal boron nitride, Phys. Rev. B 103, 075122
(2021).

[76] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.L022025 for provides an in-depth
examination of the adiabatic Hamiltonian, covering its sym-
metries and notation. Additionally, it discusses fundamental

properties of the Jacobi theta function and computes the deriva-
tive of the Wronskian.

[77] J. M. Luttinger and W. Kohn, Motion of electrons and holes in
perturbed periodic fields, Phys. Rev. 97, 869 (1955).

[78] G. Bastard, Superlattice band structure in the envelope-function
approximation, Phys. Rev. B 24, 5693 (1981).

[79] S. R. White and L. J. Sham, Electronic properties of flat-
band semiconductor heterostructures, Phys. Rev. Lett. 47, 879
(1981).

[80] G. Bastard, Theoretical investigations of superlattice band
structure in the envelope-function approximation, Phys. Rev. B
25, 7584 (1982).

[81] D. L. Smith and C. Mailhiot, Theory of semiconductor super-
lattice electronic structure, Rev. Mod. Phys. 62, 173 (1990).

[82] T. Devakul, P. J. Ledwith, L.-Q. Xia, A. Uri, S. C. de la
Barrera, P. Jarillo-Herrero, and L. Fu, Magic-angle helical tri-
layer graphene, Sci. Adv. 9, eadi6063 (2023).

[83] N. Nakatsuji, T. Kawakami, and M. Koshino, Multiscale lattice
relaxation in general twisted trilayer graphenes, Phys. Rev. X
13, 041007 (2023).

[84] F. K. Popov and G. Tarnopolsky, Magic angle butterfly in
twisted trilayer graphene, Phys. Rev. Res. 5, 043079 (2023).

[85] F. K. Popov and G. Tarnopolsky, Magic angles in equal-twist
trilayer graphene, arXiv:2303.15505.

[86] C. Mora, N. Regnault, and B. A. Bernevig, Flatbands and
perfect metal in trilayer moiré graphene, Phys. Rev. Lett. 123,
026402 (2019).

[87] P. J. Ledwith, A. Vishwanath, and D. E. Parker, Vortexability:
A unifying criterion for ideal fractional Chern insulators, Phys.
Rev. B 108, 205144 (2023).

[88] B. Mera and T. Ozawa, Uniqueness of Landau levels and their
analogs with higher Chern numbers, arXiv:2304.00866.

[89] J. Wang, J. Cano, A. J. Millis, Z. Liu, and B. Yang, Exact Lan-
dau level description of geometry and interaction in a flatband,
Phys. Rev. Lett. 127, 246403 (2021).

[90] A. Parhizkar and V. Galitski, A generic topological criterion for
flat bands in two dimensions, arXiv:2301.00824.

[91] B. Estienne, N. Regnault, and V. Crépel, Ideal Chern bands
are Landau levels in curved space, Phys. Rev. Res. 5, L032048
(2023).

[92] J. Dong, P. J. Ledwith, E. Khalaf, J. Y. Lee, and A. Vishwanath,
Many-body ground states from decomposition of ideal higher
Chern bands: Applications to chirally twisted graphene multi-
layers, Phys. Rev. Res. 5, 023166 (2023).

[93] J. Wang and Z. Liu, Hierarchy of ideal flatbands in chiral
twisted multilayer graphene models, Phys. Rev. Lett. 128,
176403 (2022).

[94] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig,
All magic angles in twisted bilayer graphene are topological,
Phys. Rev. Lett. 123, 036401 (2019).

[95] J. Ahn, S. Park, and B.-J. Yang, Failure of nielsen-ninomiya
theorem and fragile topology in two-dimensional systems with
space-time inversion symmetry: Application to twisted bilayer
graphene at magic angle, Phys. Rev. X 9, 021013 (2019).

[96] J. Cano, S. Fang, J. H. Pixley, and J. H. Wilson, Moiré superlat-
tice on the surface of a topological insulator, Phys. Rev. B 103,
155157 (2021).

[97] R. Resta, Geometry and topology in many-body physics (2020),
arXiv:2006.15567.

L022025-7

https://doi.org/10.1038/s41586-022-04715-z
https://doi.org/10.1038/s41567-022-01515-0
https://doi.org/10.1021/acs.nanolett.9b04979
https://doi.org/10.1103/PhysRevB.103.195411
https://doi.org/10.1103/PhysRevB.104.115167
https://doi.org/10.1103/PhysRevResearch.4.L012013
https://doi.org/10.1103/PhysRevX.12.021018
https://doi.org/10.1038/s41567-020-01062-6
https://doi.org/10.1038/s41467-021-25044-1
https://doi.org/10.1038/s41567-021-01418-6
https://doi.org/10.1103/PhysRevLett.128.176404
https://doi.org/10.1103/PhysRevLett.125.116404
https://doi.org/10.1103/PhysRevB.107.125423
https://doi.org/10.1103/PhysRevB.102.155136
https://doi.org/10.1103/PhysRevB.103.075122
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.L022025
https://doi.org/10.1103/PhysRev.97.869
https://doi.org/10.1103/PhysRevB.24.5693
https://doi.org/10.1103/PhysRevLett.47.879
https://doi.org/10.1103/PhysRevB.25.7584
https://doi.org/10.1103/RevModPhys.62.173
https://doi.org/10.1126/sciadv.adi6063
https://doi.org/10.1103/PhysRevX.13.041007
https://doi.org/10.1103/PhysRevResearch.5.043079
https://arxiv.org/abs/2303.15505
https://doi.org/10.1103/PhysRevLett.123.026402
https://doi.org/10.1103/PhysRevB.108.205144
https://arxiv.org/abs/2304.00866
https://doi.org/10.1103/PhysRevLett.127.246403
https://arxiv.org/abs/2301.00824
https://doi.org/10.1103/PhysRevResearch.5.L032048
https://doi.org/10.1103/PhysRevResearch.5.023166
https://doi.org/10.1103/PhysRevLett.128.176403
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevB.103.155157
https://arxiv.org/abs/2006.15567

