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Supercurrent noise in a phase-biased superconductor-normal ring in thermal equilibrium
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In superconductor-normal-superconductor (SNS) junctions, supercurrent is mediated via Andreev bound
states (ABSs) controlled by the phase difference between the two superconductors. Theory has long predicted
significant noise of such supercurrent in equilibrium, due to thermal excitation between the ABSs. Via the
fluctuation-dissipation theorem (FDT), this leads to a finite dissipative conductance that coexists with the
supercurrent but is hidden in dc measurement. Here, we directly measure the supercurrent noise at radio
frequency in a phase-biased SNS ring inductively coupled to a superconducting resonator. We also measure
the admittance of the same system whose real part is the dissipative conductance, and quantitatively verify the
FDT relation of the SNS ring. The dissipative conductance shows a 1/T temperature dependence, in contrast
to the Drude conductance of an unproximitized metal. Using linear response theory, we attribute this behavior
to the enhanced current correlations due to the electron-hole symmetry imposed by the proximity effect. Our
results reveal the commonly overlooked role of thermal fluctuations in superconducting hybrid systems and
other mesoscopic or quantum material systems with large orbital susceptibility.
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Introduction. For any conductor in equilibrium at finite
temperature T , thermal excitation of the charge carriers gen-
erates current noise proportional to its conductance. This
Johnson-Nyquist theorem, or more generally the fluctuation-
dissipation theorem (FDT) [1,2], only requires thermal
equilibrium and also applies to superconducting junctions.
The simplest example is a Josephson junction, where two su-
perconductors with the gap � are coupled by a tunnel barrier.
When frequency or temperature is much smaller than �, su-
percurrent flows without fluctuations since there are no subgap
states [3]. While Josephson junctions intuitively obey the FDT
where dissipation and noise are equally zero, the situation
is less obvious for superconductor-normal-superconductor
(SNS) junctions. There, the supercurrent is carried by the
Andreev bound states (ABSs) which lie inside � and vary
with the phase difference ϕ between the two superconductors.
In a long diffusive junction, the ABS spectrum displays an
induced “minigap” Eg � � (typically of the order of 10 mK
to 100 mK) which is maximal at phase zero and closes at
phase π [4,5]. As long predicted by theory [6–8], significant
supercurrent noise exists even at low temperature kBT � �,
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since kBT still exceeds Eg and abundant ABSs are thermally
activated across the minigap [Fig. 1(a)].

Such fluctuations are characterized by their noise power
spectrum SI ( f ), which is the Fourier transform of the time
correlation of supercurrent. The FDT further entails a nonzero
dissipative conductance G in equilibrium via the relation SI =
4kBT G, in contradiction with the dissipationless character of
superconductivity. The resolution of this apparent difficulty
calls for a reformulated definition of conductance. Conven-
tionally, G is defined as the ratio between current and voltage.
For an SNS junction, it is impossible to define such quantity
even with infinitesimal voltage bias due to the extreme non-
linearity of the system [7]. Also, any finite voltage drives the
junction out of equilibrium via the ac Josephson effect, break-
ing the premise of the FDT [7]. A more suitable approach is to
adopt a phase-biased SNS ring controlled by the dc magnetic
flux via ϕ = 2π�/�0 (�0 = h/2e). Besides this dc flux, a
small ac flux δ� � �0 at frequency f can be produced, for
example, by a superconducting resonator inductively coupled
to the ring. Therefore, the magnetic susceptibility χ = δI/δ�
can be measured, where δI is the ac current induced in the
ring. Crucially, δI is linear with δ� and the system can
be made arbitrarily close to equilibrium. Due to the finite
relaxation time of the thermally excited ABSs, δI and δ�

are generally not in phase, and χ is a complex quantity. The
linear admittance Y = jχ/2π f thus contains an imaginary
part Im(Y ) = −1/(2π f L) where L(�) = (∂Is/∂�)−1 is the
Josephson inductance of the supercurrent Is(�). Importantly,
it also contains a real part G(�) = Re(Y ) revealing a
dissipative conductance [9–11]. In the low-frequency limit,
Y is dominantly reactive, and the supercurrent shunts the
dissipative conductance and supercurrent noise. However,
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FIG. 1. Measurement principle: (a) (Upper) Fluctuations be-
tween ABSs across the minigap Eg. f (E ): Fermi-Dirac distribution.
(Lower) Supercurrent fluctuation Is(t ). (b) (Upper) Optical image
of the SNS ring (magenta dashed lines) with the embedded SNS
junction (red box). Scale bar: 5 µm. (Lower) Measurement setup.
The transmission lines are thermalized by a series of attenuators (not
shown). Blue: superconducting resonator modeled as RLC circuit
at ∼ 10 mK. Magenta dashed box: circuit model of the SNS ring.
Lc: coupling inductance. (c) Simplified circuit of (b). (d) Measured
SV ( f ) at ϕ = 0 (red), fitted to Eq. (2) (black dashed line). Black
continuous line: SV,th. (e) SV ( f ) around fr . (f) SV ( fr ) extracted from
(e) versus TMC . Dashed line: the extrapolated linear relation.

at finite frequency both G and SI are revealed. Measuring
the phase-dependent Y in an SNS ring thus provides both a
well-defined linear conductance and an experimental way to
access it.

In this work, we have directly measured the long-predicted
supercurrent noise of a phase-biased SNS ring. We have also
measured its dissipative conductance and quantitatively veri-
fied the FDT over the full range of phase between zero and
2π . The experiment identifies a 1/T temperature dependence
of the conductance, in stark contrast to the constant Drude
conductance of a normal metal. Using linear response theory,
we attribute such behavior to the enhanced current correlation
due to the electron-hole symmetry imposed by the proximity
effect.

Measurement principle. Figure 1(b) displays the schematic
of the setup, which can be configured to measure either

the noise spectrum or the admittance. The latter quantity is
probed via the transmission coefficient 	( f ) of the resonator,
where the input is connected to an rf source (port 1) with
small power, and the transmitted signal at the output is down
converted. For noise measurement, the input is grounded
via Z0 = 50 
 (port 2). The output voltage noise spectrum
g2SV ( f ) is recorded, filtered, and averaged [12]. The SNS
ring [Fig. 1(b)] contains a narrow section on the right as
the coupling inductance Lc to the resonator. The normal wire
is made of a Ti/Au bilayer (5 nm/100 nm) on an undoped
silicon substrate, with L = 1.5 µm and W = 100 nm. The su-
perconducting part is formed by 80 nm molybdenum rhenium
(MoRe). The dc magnetic flux � through the ring phase biases
the junction via ϕ = 2π�/�0. The resonator is coupled to
the input transmission line by a coupling capacitance Cc, and
a home-made HEMT amplifier is used at 4 K with the gain g
[13]. The small Cc (∼ 1 pF) and the large amplifier impedance
(>1 G 
) are chosen to preserve the resonator’s quality factor,
and g is limited to one to reduce the input capacitance [14].

The total system (SNS ring plus resonator) is modeled as
paralleled Gtot, Ltot, and Ctot [dashed box in Fig. 1(c)]. SI,th is
the total thermal noise. We note that in such a model larger G
corresponds to greater dissipation. The contribution from the
resonator and the ring can be separated [12]:

1

Ltot
(�) = 1

Lreso
+ κ

1

Lring
(�),

Gtot(�) = Greso + κGring(�),

SI,th(�) = 4kBT Greso + κSI,ring(�),

(1)

where 1/Lreso (Greso) is constant while 1/Lring (Gring) is phase -
dependent. The coupling coefficient κ = (Lc/Lreso)2 is a small
factor around 10−5. The current noise of the resonator is
4kBT Greso (obeying the FDT [15]), while such a relation is
not assumed for the noise of the SNS ring. Indeed, the central
goal of this article is to demonstrate that SI,ring and Gring, both
due to the ABS dynamics, are also linked by the FDT.

Gring(�) and 1/Lring(�) are obtained by the transmission
coefficient 	( f ) described later [11], whereas SI,th is extracted
from g2SV ( f ) at the amplifier output via the relations [12]

SV ( f ) = SV,th( f ) + SV,amp( f )

SV,th = SI,th

|Ytot|2 , SV,amp = SI,amp(Ytot )

|Ytot|2 , (2)

where Ytot = Gtot + 1/( j2π f Ltot ) + j2π f Ctot is the total ad-
mittance. SI,amp is the effective amplifier current noise defined
in [12]. From Eqs. (1) and (2), accurate extraction of SI,th

requires calibration of Lreso, Greso, and SI,amp. This is done by
measuring SV ( f ) at phase zero [Fig. 1(d)]. Since κ is small, we
neglect the ring contribution (at phase zero only) without af-
fecting the calibration accuracies. Figures 1(e) and 1(f) show
clear temperature dependence of SV ( f ) on resonance, with
the linear dependence at the highest temperatures. The data
below 50 mK deviate slightly from such relations, indicating
a different electronic temperature T from the mixing chamber
temperature TMC . Using the extrapolated linear relation, T are
calibrated in [12] whose values are noted in Fig. 1(e). We
then fit SV ( f ) by Eqs. (1) and (2) to extract the resonator and
the amplifier parameters. The quality of the fit in Fig. 1(d)
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FIG. 2. Phase-dependent supercurrent noise for the SNS ring:
(a) 1/Ltot and Gtot measured by transmission. The offset is due to
the small drift of the calibrated Yreso. (b) Measured SV ( f ) at ϕ = 0
(black) and π (red). (c) Extracted SI,th( f ) at ϕ = 0 (black) and π

(red). Dashed lines: the mean values. (d), (e) FDT of the total device,
comparing SI,th (squares) and 4kBT Gtot (solid lines). The error bars
are estimated by the long-duration drift [12]. The phase-dependent
part (κSI,ring) is thus a direct demonstration of the FDT for the SNS
ring (see text).

confirms the reliability of the calibration. By subtracting
SV,amp, SV,th contributes to roughly 20% of SV . The calibration
is repeated at phase zero for each temperature [12].

Experimental validation of FDT. We now turn to the main
result: independently measuring SI,ring from SV ( f ), and Gring

from 	( f ), and checking the FDT SI,ring(�) = 4kBT Gring(�).
First we measure Yring by [12]

κ

Lring
(�) = 2

Lreso

δ fr

fr
, κGring(�) = 1

2π frLreso
δ

(
1

Q

)
, (3)

where fr and Q are the resonance frequency and the quality
factor of 	( f ), respectively. As � is swept, we simultaneously
record δ fr and δ(1/Q) using a feedback loop which maintains
the resonator on resonance [11]. Adding them to the calibrated
Yreso yields Ytot(�) [Fig. 2(a)]. At low T , 1/Ltot is reduced
and Gtot is enhanced at phase π , whereas such an effect is
weakened at high T [16–18].

For the noise measurement, SV ( f ) is taken at a series of
phases from 0 to 2π . Figure 2(b) shows two examples at
phase 0 and π . Using the calibrated SI,amp and Ytot in Fig. 2(a),
SI,th( f ) is extracted according to Eq. (2) [Fig. 2(c)]. SI,th( f )
is frequency independent with a phase-dependent mean value
(dashed lines). To further reduce the uncertainty, around 100
data points within a bandwidth � f = 200 kHz are averaged

FIG. 3. Temperature and phase dependence of Yj : (a) 1/Lring

(dashed lines) and 1/Lj (continuous lines) after removing the
screening effect (see text). (b) Gring (dashed) and Gj (continuous).
(c) Current-phase relation Is(�) = ∫

d�/Lj (�) (see text). Only T
= 50 mK and 100 mK data are shown for clarity. See [12] for other
T data. (d) Ic(T ) extracted from (c) (squares) is fitted to the long
diffusive junction model [19] (dashed line), giving ET H/kB = 30 mK.
(e) Gj (T ) extracted from (b) (squares) is fitted to GN (1 + T ∗/T )
(dashed line) with GN = 96 mS and T ∗ = 180 mK. Both axes are
in logarithmic scales.

to calculate SI,th at a given phase. SI,th for all phases and
temperatures are summarized in Figs. 2(d) and 2(e), alongside
the transmission data 4kBT Gtot (solid lines). For the whole
data set, quantitative agreement between SI,th and 4kBT Gtot is
confirmed. Its phase-dependent part is thus a direct demon-
stration of the FDT for the SNS ring alone. The precision
of the measurement can be appreciated by our capability to
resolve a noise variation of 20 fA2/Hz. The drift over long
measurement time, discussed in [12], provides an upper value
of the uncertainty of 9 fA2/Hz [error bars in Figs. 2(d) and
2(e)] at low temperatures, less than half of the flux variation
of SI,th. The simultaneous satisfaction of the FDT for both the
resonator and the ring using the same temperature also indi-
cates that the ABSs are well-thermalized with the resonator.

Phase and temperature dependence of dissipation. We now
try to understand the phase and temperature dependence of the
dissipative conductance linked to the supercurrent noise via
the FDT. Due to the screening effect of the loop supercurrent,
the phase dependence of Yring [Figs. 3(a) and 3(b)] is, in gen-
eral, not equal to that of an isolate junction Yj [11]. In order to
facilitate comparison with theory developed for the junction,
we thus deduce Yj from Yring by 1/Lring = (1/Lj )/(1 − β ) and
Gring = Gj/(1 − β )2, where β(�) = Ll/Lj is the screening
coefficient and Ll = 250 pH is the loop inductance [11,12].
For 1/Lj [Fig. 3(a)], the screening effect at low temperature
is sizable while at high temperature it is negligible with the
reduced supercurrent. By integrating 1/Lj = ∂Is/∂� with �,
the current-phase relation Is(�) is obtained [Fig. 3(c)]. The
critical current Ic is then extracted and the Thouless energy
ET H is estimated to be 30 mK [12,19] [Fig. 3(d)]. Therefore,
kBT > ET H throughout the experiment. Gj , on the other hand,
is almost phase independent [Fig. 3(b)]. Such Gj should not
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FIG. 4. Theory to explain Gj (�, T ): (a) Density of state versus
flux. (b) Current correlation function C(ε+, ε−) (defined in [12])
at �/�0 = 0.5. (c) C(ε+, ε− = 0) (blue solid line) and DOS (red
dashed line) at �/�0 = 0.5. The peak of C at ε+ = 0 is essential
to Gj ∼ 1/T (see text). (d) The total conductance Gj (solid line)
and its two components GD (dashed line) and GND (dot dashed
line), normalized by Gc = Gj (0.5�0). GD is offset by Gc. hγ = Eg,
kBT = 4Eg, L/W = 8; the superconducting coherence length and the
mean-free path ξ, le ≈ L/10. �/Eg ≈ 10. See [12].

be confused with Greso since Greso alone does not produce
the strong phase dependence of δ(1/Q) [11,12]. Instead, it is
the screening effect that enables us to determine the absolute
value of Gj , which is otherwise difficult to be separated from
constant background Greso in Fig. 2(a) [11,12]. In Fig. 3(e),
Gj increases by lowering T , drastically different from the
temperature-independent Drude conductance. Gj (T ) can also
be fitted to the relation GN (1 + T ∗/T ) [7,10,11], giving T ∗ =
180 mK and GN = 96 mS close to the Drude conductance
of a similar control junction described in [12]. From [12],
kBT ∗/ET H is of the order of ten and T ∗ is consistent with ET H

independently estimated by Ic(T ).
To explain the weak phase and strong temperature depen-

dence of Gj , we calculate Gj using linear response theory
[11,20]. We take the zero-frequency limit since the resonance
frequency is much less than the inelastic scattering rate γ [12].
Following [11], we have Gj = GD + GND and

GD = − 1

2πγ

∑
n

|Jnn|2 ∂ fn

∂En
,

GND = −h̄
∑
n �=m

|Jnm|2 hγ

(En − Em)2 + (hγ )2

fn − fm

En − Em
,

(4)

where En(�) is the nth Andreev level, and fn = f (En) is the
Fermi-Dirac function. Jnm = ( jeh̄/m∗)〈n|∇|m〉 is the matrix
element of the current operator. En and Jnm are computed by
diagonalizing the Bogoliubov-de Gennes Hamiltonian of the
junction [12,21]. The density of states (DOS) calculated from
En(�) [Fig. 4(a)] shows the expected minigap Eg(�) [22]. We
first explain the weak Gj versus �. Since kBT, hγ � Eg in
the experiment [12], the factors in Eq. (4) involving f and γ

are approximately level independent and can be taken outside
the summations. Therefore, Gj = GD + GND ∼ ∑

(|Jnn|2 +

|Jnm|2) ≡ Tr(|J|2). Meanwhile, since the trace Tr(|J|2) does
not depend on the Aharonov-Bohm phase [11], Gj is weakly
phase-dependent. This qualitative argument is confirmed by
Fig. 4(d), where the calculated GD and GND indeed have op-
posite phase variations, resulting in a weakly phase-dependent
Gj . We note that the absolute value of Gj at any given phase
is nevertheless finite.

To explain the strong Gj versus T , we rewrite GND in the
continuous form [12]

GND = −h̄
∫∫

dε+ dε− C(ε+, ε−)F (ε+, ε−),

F (ε+, ε−) = hγ

(ε−)2 + (hγ )2

f (ε+ + ε−
2 ) − f (ε+ − ε−

2 )

ε− ,

(5)

where ε+ (or ε−) is the average (or the difference) of two
energy levels. C(ε+, ε−) is the current correlation function
convoluting the DOS and |Jnm|2 (for the full definition see
[12]). It is illustrative to briefly examine the case of an un-
proximitized metal. Here, GD ≡ 0 since Jnn = ∂En/∂ϕ ≡ 0.
For GND, since C(ε+, ε−) is constant in energy [12], Eq. (5)
thus is reduced to the constant Drude conductance [12]. The
situation is drastically different for the proximitized metal.
From Eq. (5), an energy-dependent C(ε+, ε−) is essential for
a temperature-dependent GND. At phase 0, the minigap fulfills
such a requirement, resulting in Gj ∼ 1/T [7,9]. In our case,
since Gj is weakly phase dependent, it is thus surprising
that such 1/T dependence is true even at phase π where
the minigap closes. To explain this, C(ε+, ε−) at phase π is
shown in Fig. 4(b), with line cuts along ε− = 0 [Fig. 4(c)].
Although the DOS is indeed almost constant, a sharp peak
in C appears at ε+ = 0 for a wide range of ε−, revealing
a strong current correlation between the ABSs far apart in
energy but with electron-hole symmetry [21]. Approximating
such peak as δ(ε+), Gj = GND(π ) ∝ ∫

dε− F (0, ε−). Since
kBT � hγ , we further have Gj ∼ ∂ f /∂ε′(ε′ = 0) ∼ 1/T as
observed. Gj ∼ 1/T caused by the sharp peak in C at ε+ = 0
thus reveals a fundamental difference between a proximitized
and an unproximitized metal, due to the electron-hole sym-
metry imposed by the superconductor. Finally, we note that
the possibly temperature-dependent γ (T ) [11] does not cause
the observed Gj (T ) in our parameter regime, as explained
in [12].

Conclusion. In conclusion, we have measured the super-
current noise and the linear admittance of a phase-biased
SNS ring and verified the FDT long-predicted for the SNS
junction. The junction conductance Gj is several times larger
than the Drude conductance and follows a 1/T dependence.
Using the linear response theory, Gj ∼ 1/T is a manifesta-
tion of the enhanced current correlation between the ABSs
with electron-hole symmetry imposed by superconductors.
While our results reveal the presence of the commonly
overlooked dissipation source in the superconducting hybrid
system, we further note that such a thermalization process
is not restricted to the superconducting system but plays an
important role in defining electrical conductance in generic
phase-coherent conductors [23]. The supercurrent noise may
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also be useful in detecting unconventional superconductivity
[24–26] and unraveling decoherence channels in novel qubits
[27,28]. Beyond superconductivity, our work is particularly
relevant to systems such as mesoscopic normal rings which
host persistent current [20,29], and more generally quan-
tum materials with large orbital susceptibility [30–32]. In
all these systems, as in the present experiment, the current
with vanishing resistance may still exhibit significant thermal
fluctuations.
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