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Information scrambling refers to the unitary dynamics that quickly spreads and encodes localized quantum
information over an entire many-body system and makes the information accessible from any small subsystem.
While information scrambling is the key to understanding complex quantum many-body dynamics and is well-
understood in random unitary models, it has been hardly explored in Hamiltonian systems. In this Letter, we
investigate the information recovery in various time-independent Hamiltonian systems, including chaotic spin
chains and Sachdev-Ye-Kitaev models. We show that information recovery is possible in certain, but not all,
chaotic models, which highlights the difference between information recovery and quantum chaos based on
the energy spectrum or the out-of-time-ordered correlators. We also show that information recovery probes
transitions caused by the change of information-theoretic features of the dynamics.
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Introduction. A central challenge in modern physics is to
characterize the dynamics in far-from-equilibrium quantum
systems. The Hayden-Preskill protocol [1] offers an opera-
tional approach toward this goal and has been attracting much
attention [2–29]. The protocol addresses if the information
initially localized in a small subsystem can be recovered from
other subsystems after unitary time evolution. If the unitary
dynamics is sufficiently random, the information is rapidly
encoded into the whole system, and information can be re-
covered from any small subsystem [1]. This phenomenon is
can be thought of an information-theoretic manifestation of
complex quantum dynamics and is called the Hayden-Preskill
recovery. The unitary dynamics that leads to the Hayden-
Preskill recovery is referred to as information scrambling [1].

The Hayden-Preskill recovery is of interdisciplinary in-
terest: it is inspired by the information paradox of black
holes [30–32], is formulated in the quantum information
language, and is investigated by the technique of random
matrix theory (RMT) [33,34]. Many related properties, such
as entanglement generation [2,4], operator mutual informa-
tion (OMI) [19,35–37], and out-of-time-ordered correlators
(OTOCs) [26,38,39], have been intensely studied.

Despite this progress, information recovery in Hamilto-
nian systems has been rarely explored [40]. It is widely
believed that the Hayden-Preskill recovery is possible in quan-
tum chaotic systems, but the original analysis strongly relies
on the random unitary assumption, which is unlikely to be
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satisfied even approximately by time-independent Hamil-
tonian dynamics [8,41]. Furthermore, quantum chaos is
commonly characterized by eigenenergy statistics, which is a
static property, but information recovery is about the dynami-
cal properties. Thus, the relation between quantum chaos and
information recovery is not a priori trivial.

In this Letter, we investigate in detail the information
recovery in various Hamiltonian systems. We first provide
a class of Hamiltonians that do not lead to information
scrambling. This includes chaotic spin-1/2 chains, such as
the Heisenberg model with random magnetic field and the
mixed field Ising model. Notably, they saturate OTOCs for
local observables but do not achieve the Hayden-Preskill
recovery, demonstrating the difference between the satu-
ration of OTOCs for local observables and information
scrambling.

We then confirm information scrambling in the Sachdev-
Ye-Kitaev (SYK) Hamiltonian [11,12,42,43], which is a
canonical holographic dual to quantum gravity [13,14,44–46].
The SYK model is known to have scrambling features in
many senses, such as saturation of OTOCs [11,12] for local
observables, the maximum quantum Lyapunov exponent [47],
and an RMT-like energy statistics [44,48,49]. Our result adds
another scrambling feature to the model, that is, it achieves
the Hayden-Preskill recovery. We also show that sparse vari-
ants [50] achieve the information recovery as well, possibly
helping experimental realizations of the protocol.

We finally address the question whether the information
recovery can reveal novel quantum many-body phenomena.
Using a variant of SYK models, we affirmatively answer to
this question: the information recovery can capture a transi-
tion that was previously unknown. The transition is caused
by a drastic change of information-theoretic structures of the
Hamiltonian dynamics. This is of interest as it characterizes
complex quantum many-body dynamics from the quantum
information viewpoint.
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FIG. 1. A diagram of the Hayden-Preskill protocol. Time flows
from bottom to top. Horizontal lines imply that the qubits connected
by the line may be entangled. The initial states on AR and BB′ are
given by a maximally entangled state of k ebits, i.e., k EPR pairs, that
keeps track of quantum information in A, and a purified state |ξ (β )〉
of a thermal state on B at the inverse temperature β, respectively. The
system S := AB undergoes Hamiltonian dynamics by ĤS , and then,
is split into two subsystems, C of � qubits and D of N − � qubits.
By applying a quantum channel D onto B′C, one aims to decode the
quantum information in A, that is, to recover the k EPR pairs between
Â and R. This protocol has a natural interpretation in the context of
information paradox [1]. See also a tutorial [51].

The Hayden-Preskill protocol. Given quantum many-body
system S of N qubits, we encode quantum information into a
local subsystem A ⊆ S of k qubits (k � N). We then let the
system S undergo the Hamiltonian time-evolution UĤ (t ) :=
e−iĤt for some time t , where Ĥ is the Hamiltonian in S. After
the time-evolution, the information is tried to be recovered
from an �-qubit subsystem C ⊆ S. Throughout our analysis,
we assume C ⊆ B := S \ A as far as � � N − k. The question
is how large � should be for a successful recovery.

The answer depends on the initial state in B as well as
available resources in the recovery process. Here, we as-
sume that the initial state in B is a thermal state ξB(β )
at inverse temperature β. Based on its eigendecomposition
ξB(β ) = ∑

j p j (β )|ψ j〉〈ψ j |B, we introduce a purified state

|ξ (β )〉BB′
:= ∑

j

√
p j (β ) |ψ j〉B ⊗ |ψ j〉B′

on the system BB′.
When the subsystem B′ is traced out, the marginal state on
B is the original thermal state ξB(β ). We consider the scenario
in which the subsystem B′ can be used in the recovery process.
This has a natural interpretation in the black hole information
paradox [1] and is of considerable interest. See Fig. 1.

The recovery of quantum information is formally de-
fined by introducing a virtual reference system R that keeps
track of the quantum information. Denoting k Einstein-
Podolsky-Rosen (EPR) pairs between A and R by |�〉AR,
we set the initial state on the system SB′R = ABB′R to
|�(t = 0, β )〉SB′R = |�〉AR ⊗ |ξ (β )〉BB′

. The subsystem S un-
dergoes the Hamiltonian time evolution by ĤS , resulting in
the state |�(t, β )〉SB′R = (IB′R ⊗ e−iĤSt ) |�(t, β )〉SB′R at time
t . Let �CB′R(t, β ) be the marginal state on CB′R, which is
given by taking the partial trace over D of |�(t, β )〉SB′R. In the
following, we indicate the subsystem over which the partial
trace is taken by omitting the subsystem from the superscript.

Following the standard convention [1], the recovery error
is defined by

�Ĥ (t, β ) := 1
2 min

D

∥∥|�〉〈�|AR − DCB′→A(�CB′R(t, β ))
∥∥

1.

(1)
Here, the minimum is taken over all possible quantum opera-
tions D, namely, all completely positive and trace-preserving
(CPTP) maps, from CB′ to A, and ‖ρ‖1 = Tr

√
ρ†ρ is the trace

norm. Due to the Holevo-Helstrom theorem [52], the trace
norm between two quantum states characterizes how well they
can be distinguished and is suitable to quantify the recovery
error. We normalize �Ĥ (t, β ) so that 0 � �Ĥ (t, β ) � 1. See
S1 [53].

Computing �Ĥ (t, β ) is in general intractable due to the
minimization over the CPTP maps. The decoupling condition
provides a necessary and sufficient condition for the recovery
in terms of the state �DR(t, β ) [54–56]. Using the condition,
a calculable, and typically good, upper bound on �Ĥ (t, β ) is
obtained:

�Ĥ (t, β ) � �̄Ĥ (t, β ) := min{1,
√

2
Ĥ (t, β )}, (2)

where 
Ĥ (t, β ) := ‖�DR(t, β ) − �D(t, β ) ⊗ πR‖1/2, and
πR = IR/2k is the completely mixed state on R. See also S1
[53]. Note that the quantity 
Ĥ (t, β ) is closely related to the
mutual information between R and D, which is equivalent
to the OMI [19], but the OMI leads to a worse bound than
Eq. (2).

The recovery error �Ĥ (t, β ) is also related to OTOCs. If
one can compute OTOCs for all observables on the k-qubit
subsystem A and the �-qubit subsystem C, or all the 4k+�

operators that form an operator basis on AC, the recovery error
could be evaluated [57,58]. However, this is computationally
intractable as OTOCs for at least 4k+� operators are needed.
Note that the existing studies of OTOCs in Hamiltonian sys-
tems are mostly about the cases with k = � = 1, and hence,
do not provide much insight into the recovery error.

Random unitary model and information scrambling. The
Hayden-Preskill protocol was understood well in a random
unitary model, where the time evolution e−iĤSt is replaced with
a Haar random unitary. The model does not have a parameter
corresponding to time t , and its recovery error �Haar (β ) satis-
fies, with high probability,

�Haar (β ) � �̄Haar (β ) := min{1, 2
1
2 (�Haar,th (β )−�)}, (3)

where �Haar,th(β ) := 1
2 (N + k − H (β )), and H (β ) =

− log[Tr[(ξB(β ))
2
]] is the Renyi-2 entropy [1,24,56].

From Eq. (3), �Haar (β ) � 1 if � 
 �Haar,th(β ). In partic-
ular, �Haar,th(0) = k. Hence, if the system B is initially at
infinite temperature, the k-qubit quantum information in A is
recoverable with exponential precision from any subsystem of
size larger than k, which is independent of N . This phenomena
is referred to as the Hayden-Preskill recovery. Following the
original proposal [1], we refer to the dynamics achieving the
Hayden-Preskill recovery as information scrambling.

Hamiltonians without information scrambling. Due to the
facts that the information scrambling occurs in the random
unitary model and that quantum chaos can be characterized
by RMT, information scrambling has been commonly stud-
ied in relation with quantum chaos. However, information
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FIG. 2. Semilogarithmic plot of the late-time values of �̄ for
ĤXXZ, ĤIsing, and ĤSYK4 . To compare, the values for the Haar random
unitary are also plotted. k = 1 for all models, and N = 12 (Nq = 12)
is chosen for the XXZ and Ising (SYK4) models. The dimension
of the Haar random unitary is 212. Note that the conservation of
the z component of spins (parity) is considered for the Heisenberg
spin chain (SYK model). The values of (g, h) are those discussed in
[61]. The averages for t = (1, 2, . . . . , 10) × 106 are plotted as the
late-time value. For random-field average, 16 samples are taken.

scrambling is not necessarily related to the quantum chaos
in terms of the RMT-like energy statistics. For instance, we
can analytically show that the dynamics of any commuting
Hamiltonians is not information scrambling (see S2 [53]),
while they can have RMT-like features [59,60] in the energy
spectrum.

More illuminating instances are the spin-1/2 chains such
as the Heisenberg with random magnetic field, ĤXXZ =
1
4

∑N−1
j=1 (XjXj+1 + YjYj+1 + JzZ jZ j+1) + 1

2

∑N
j=1 h jZ j ,

where hj are independently sampled from a uniform
distribution in [−W,W ], and the mixed-field Ising with
constant magnetic field, ĤIsing = −∑N−1

j=1 (ZjZ j+1) −
g
∑N

j=1 Xj − h
∑N

j=1 Zj . Here, Xj,Yj , and Zj denote the
Pauli matrices on site j. In contrast to the fact that both have
integrable-chaotic transitions by varying parameters [61–82],
our numerical analysis reveals that the recovery errors are
not as small as the random unitary model for any values of
parameters at any time t .

This is demonstrated in Fig. 2, where the late-time values
of �̄Ĥ (t, β = 0) are plotted for these Hamiltonians. Hereafter,
we set k to 1 in all numerics throughout the paper for the sake
of computational tractability. It is observed that, by increasing
�, �̄Ĥ decays inverse-polynomially or more slowly. We also
provide in S3 and S4 [53] evidence that these values do not
depend on the system size N . This implies that, although Fig. 2
is for N = 12 and � � N − 1 = 11, we can infer �̄Ĥ for larger
N and � by extrapolation. By doing so, we may observe that
�̄Ĥ for W � 1 may possibly stay nearly constant in the large-
N limit unless � ≈ N .

We can also investigate lower bounds on the recovery er-
rors based on the mutual information, which we denote by
�Ĥ (see S1B [53] for the derivation). The bound is not tight,
but we show in Fig. 3 that the lower bounds for ĤXXZ and

FIG. 3. Semilogarithmic plot of the late-time values of � for
ĤXXZ, ĤIsing (N = 12), and ĤSYK4 (Nq = 12). For the Hamiltonians
with random field, averages over 16 samples are taken.

ĤIsing scale similarly to those of the upper bounds. That is,
they decay inverse polynomially or more slowly as � increases
and possibly stay almost constant if W � 1 unless � ≈ N .

As both upper and lower bounds scale similarly, we reason-
ably conclude �Ĥ = �(1/poly(�)) in the large-N limit. This
is in sharp contrast to the exponential decay of the recovery
error in the random unitary model and implies that the dy-
namics of these Hamiltonians is not information scrambling
in any parameter region.

More closely looking at Figs. 2 and 3, �Ĥ is likely to
be dependent on the parameters of the Hamiltonians. It is
known that ĤXXZ shows integrable-chaotic-MBL transitions
as W increases and that the system is chaotic for W ≈ 0.5
[66,70]. However, this chaotic transition does not seem to have
strong consequence to information scrambling as both upper
and lower bounds on �Ĥ for W = 0.5 are only slightly smaller
than that in the integrable case with W = 0. For ĤIsing, while
the parameter (g, h) = (1.08, 0.3) leads to the most chaotic
feature in the entanglement structure [61], both upper and
lower bounds on �Ĥ for that value can be worse than other
parameters. This also indicates that information scrambling
differs from quantum chaos and may not be able to be inferred
from static features of Hamiltonians.

The fact that information scrambling is not observed in
these systems does not contradict to the saturation of OTOCs
for local, typically single-qubit, observables at late time when
the parameters are appropriately set [83–88]. Our numerical
results rather indicate that OTOCs for multiqubit observables
are not saturated in such cases [57,58], which may be of
independent interest.

Original and sparse SYK Hamiltonians. From these re-
sults, it is likely that more drastic Hamiltonians are needed
to achieve the information scrambling. We next consider the
SYK model, SYK4, of 2Nq Majorana fermions:

ĤSYK4 =
∑

1�a1<a2<a3<a4�2Nq

Ja1a2a3a4ψ̂a1ψ̂a2ψ̂a3ψ̂a4 , (4)
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FIG. 4. Semilogarithmic plot of the value of �̄ĤSYK4
(t, β = 0)

against t for Nq = 13, and 2 � � < Nq − k. Average over 64 sam-
ples is taken. For � = 1, �̄ĤSYK4

(t, β = 0) is ∼1 for all t . The

dashed lines represent �̄′
Haar (β = 0) = 2

1
2 (1−�) given in Eq. (3) for

� = 2, 3, . . . , Nq − 2. For smaller values of Nq and finite β, see S5
[53].

with ψ̂ j being Majorana fermion operators. The couplings
Ja1a2a3a4 are independently chosen at random from the Gaus-

sian with average zero and σ 2 = (2Nq

4

)−1
. Since the parity

symmetry of SYK4 leads to deviations in the information re-
covery [9,10,24,89], we focus on the even-parity sector and set
N = Nq − 1. The recovery error of the corresponding random
unitary model is given by �̄′

Haar (β ) = min{1, 2(�Haar,th (β )−�)− 1
4 }.

See S5 [53] for details. We have also checked that the effect
by the periodicity, characterized by Nq mod 4, is negligible.

In Fig. 4, we numerically plot the upper bound on the
recovery error, �̄SYK4 (t, β = 0), against time t for various �.
It clearly shows that �̄SYK4 quickly approaches �̄′

Haar. This
is also the case for β > 0. We estimate that �̄SYK4 converges
to �̄′

Haar before time t = O(
√

Nq ), which qualitatively sup-
ports the fast scrambling conjecture [2–4]. Hence, the SYK4

dynamics, while differing from Haar random, has an excel-
lent agreement with the prediction by RMT and achieves the
Hayden-Preskill recovery. See also Figs. 3 and 2.

The situation remains the same even for a sparse simplifi-
cation of SYK4, spSYK4. In spSYK4, the number of nonzero
random coupling constant is fixed to Kcpl. It recovers SYK4

when Kcpl = (2Nq

4

)
, but Kcpl = O(Nq ) is known to suffice to

have chaotic features and to reproduce holographic properties
[90,91].

In Fig. 5, we plot the upper bound on the recovery er-
ror for a further simplified sparse SYK model (±spSYK4),
in which a half of the nonzero couplings is set to 1/

√
Kcpl

and the other half to −1/
√

Kcpl [92]. We observe that, when
Kcpl � 30 = O(Nq), this simplification does not change the
upper bound on the recovery error from that of the Haar value.
Hence, ±spSYK4 with Kcpl = O(Nq ) suffices to reproduce
information-theoretic properties of SYK4 as well as its chaotic
features. As this number of nonzero couplings is substantially
smaller than the original SYK4, which has Kcpl = O(Nq

4), this
would help experimental realizations of the Hayden-Preskill
protocol in many-body systems. See S6 [53] for details.

FIG. 5. The late-time value of �̄±spSYK4
(t, β = 0) against � is

plotted for various numbers Kcpl of nonzero coupling constant. We
set Nq to 13, and the number of samples is 64. The average for
t = (1, 2, . . . , 10) × 106 is plotted as the late-time value in all
figures.

Probing transitions by the Hayden-Preskill protocol. Yet
another SYK model attracting much attention is the SYK4+2

model [93]. The Hamiltonian is

ĤSYK4+2 (θ ) = cos θ ĤSYK4 + sin θ ĤSYK2 , (5)

where ĤSYK2 = i
∑

1�b1<b2�2Nq
Kb1b2ψ̂b1ψ̂b2 , and θ ∈ [0, π/2]

is a mixing parameter. The coupling constants {Kb1b2} sat-
isfy Kb2b1 = −Kb1b2 and are normalized for the variance of
eigenenergies of ĤSYK4+2 (θ ) to be unity.

The SYK4+2 model has a peculiar energy-shell structure
in the sense of the local density of states in Fock space,
which shows drastic changes by varying θ . Accordingly,
the range of θ ∈ [0, π/2] is divided into four regimes I, II,
III, and IV [94,95]. In I, only one energy-shell is domi-
nant in the whole Hilbert space, and it is quantum chaotic.
As θ increases the size of the energy-shell becomes di-
minished, and O(poly(Nq )) energyfshells appear in II and
III. The energy statistics remains RMT-like in these two
regimes. Characterizing physics in II and III has been under
intense investigations [96]. In IV, the number of energy-shell
approaches O(exp(Nq )), and Fock-space localization is ob-
served.

Based on the Hayden-Preskill protocol in SYK4+2, each
regime can be operationally characterized. In Fig. 6, we plot
the late time values of the upper bound �̄SYK4+2 (t, β = 0) of
the recovery error against tan θ , in which two characteristic
values of θ , tan θ1 ≈ 0.5 and tan θ2 ≈ 20, are observed. The
first plateau (θ ∈ [0, θ1)) corresponds to the regime I. As
�̄SYK4+2 ≈ �̄′

Haar in this regime, the system is information
scrambling. The second one (θ ∈ (θ1, θ2]) correspond to II and
III, where �̄SYK4+2 is substantially larger than �̄′

Haar, which
seems to be the case even in the large Nq limit (see S7 [53]).
The third plateau, θ ∈ (θ2, π/2], corresponds to IV, where the
system is almost SYK2.

For sufficiently small and large θ , the behavior of �̄SYK4+2

can be naturally understood. For small θ , the model is
approximately SYK4. As we have observed above, the

L022021-4



HAYDEN-PRESKILL RECOVERY IN HAMILTONIAN … PHYSICAL REVIEW RESEARCH 6, L022021 (2024)

FIG. 6. The late-time value of �̄SYK4+2 (t, β = 0) plotted for var-
ious � against the value of δ. Nq is set to 13. The number of samplings
is 64. The lines connecting the data points are guide to the eye. The
horizontal dashed lines indicate �̄′

Haar for various �.

dynamics of SYK4 quickly achieves the Hayden-Preskill re-
covery. Hence, this should also be the case in the regime I. In
contrast, for sufficiently large θ , the model is almost SYK2

and the Fock-space localization occurs. Thus, information
recovery should not be possible, resulting in the absence of
information scrambling in the regime IV. In contrast, �̄SYK4+2

is smoothly changing for the intermediate values of θ , which
is seemingly in tension with the division of the regimes II and
III in terms of the energy-shell structure.

To understand the intermediate plateau, we shall recall
that, in II and III, transitions from one energy shell to the
other are strongly suppressed, which effectively results in the
division of the whole Hilbert space into O(poly(Nq)) energy
shells [94]. Additionally, it is known that the dynamics in each
energy shell seems to be approximately Haar random within
the subspace [95]. The intermediate plateau of �̄SYK4+2 can
be explained from these common features in II and III. Since
the whole Hilbert space is effectively divided into smaller
ones, within which the dynamics remains still Haar random,
the unitary dynamics in II and III induces partial decoupling
[97] rather than decoupling. In this case, the recovery error is
given in the form of 2�′

th−� + �rem [24]. Here, �′
th ≈ �Haar,th +

O(
√

k) and �rem quantifies the amount of information that
cannot be recovered unless � ≈ Nq. As we set k = 1 in our

numerics, �′
th is hardly observed in our analysis. In contrast,

�rem is clearly observed as an intermediate plateau. It is
known that �rem is inverse proportional to the standard de-
viation of energy in D. As the standard deviation of energy
in B shall be O(

√
Nq ), that in D is at least O(

√
Nq ). Hence,

we can qualitatively estimate that �rem = O(1/
√

Nq ), which
remains nearly constant unless � ≈ Nq.

From this perspective, we can understand the two transi-
tions as reflections of the changes of decoupling properties. In
I, the combined regime over II and III, and IV, the SYK4+2

dynamics leads to full, partial, and no decoupling, respec-
tively. Accordingly, each regime has qualitatively different
behaviors in the information recovery. The emerging differ-
ence between II and III in the energy-shell picture should be
an artifact due to the fact that the energy shell is viewed in the
Fock basis, which is not necessarily physically intrinsic to the
system.

Summary and discussions. In this Letter, we have studied
the information recovery in various Hamiltonian systems and
have shown that information scrambling in the sense of in-
formation recovery does not always coincide with quantum
chaos. Spin chains are unlikely to be information scrambling,
while they are quantum chaotic in energy spectrum and sat-
urate OTOCs for local observables. In contrast, the (sparse)
SYK models are information scrambling and have the latter
two properties. We have also demonstrated a potential use
of the information recovery protocol to find new transitions
caused by a information-theoretic mechanics.

It is unknown if any local spin models can be information
scrambling since the family of SYK models, the only models
that are information scrambling in our analysis, does not have
spatially local interactions. It will be also of interest to fur-
ther explore the direction of characterizing various quantum
phases in the information-theoretic manner.
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