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Analytical studies of network epidemiology almost exclusively focus on the extreme situations where the
timescales of network dynamics are well separated (longer or shorter) from that of epidemic propagation. In
realistic scenarios, however, these timescales could be similar, which has profound implications for epidemic
modeling (e.g., one can no longer reduce the dimensionality of epidemic models). Combining Monte Carlo
simulations and mean-field theory, we analyze the critical behavior of susceptible-infected-susceptible epidemics
in the vicinity of the critical threshold on the activity-driven model of temporal networks. We find that the
persistence of links in the network causes the threshold to decrease as the recovery rate increases. Dynamic
correlations (coming from being close to infected nodes increases the likelihood of infection) drive the threshold
in the opposite direction. These two counteracting effects make epidemic criticality in temporal networks a
remarkably complex phenomenon.
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Introduction. The quest for epidemic models that are both
realistic and analytically tractable is a fundamental challenge
to theoretical research. This is never as difficult as when one
cannot rely on ignoring a structure, by assuming it constant.
When building an analytical theory, how fast the network
changes and how fast the epidemic spreads are two dynamics
that one would like to reduce to one. From a medical point
of view, that might not work; an incipient outbreak might
sweep over the population in a matter of weeks, the same
timescale of updates to the friendship network [1,2]. This is
the motivation for temporal network epidemiology, where the
networks do not necessarily change slower or faster than the
disease propagation [3–5].

There are three main philosophies of how to go beyond
static network epidemiology to include the temporality of
edges. The first approach treats temporal contacts as possible
contagion events [6,7]. This approach often relies on em-
pirical data of the contacts and analyzes them by computer
simulations. The second approach, adaptive networks, models
the contacts without real-world data but includes assumptions
about how those contacts change given the state of the disease
[8,9]. In this Letter, we will take a third approach, which is
also purely model based, trying to emulate dynamic contact
structures that real epidemics spread on while being tractable
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for analytical calculations. Typically, these models, such as
blinking networks [10] and activity-driven networks [11,12],
assume an underlying static network over which they generate
active contacts.

The original activity-driven network model was proposed
by Perra et al. [11], as follows. (i) The network is initialized
to be completely disconnected and an activity ai = ηxi is
assigned to each node i based on the given activity distribution
F (x). (ii) At each discrete time t , each node i becomes active
with probability ai�t and randomly creates m undirected links
with other nodes. (iii) The epidemic dynamics take place
over the instantaneous network. (iv) At the next time step
t + �t , all the links are removed and the process resumes
from step (ii). The activity-driven network can be considered
as the simplest yet nontrivial framework in which to study
dynamical processes unfolding on temporal networks [13,14].
Only one variable F (x) is time invariant and represents the
degree distribution of an aggregated network [11–13,15,16].
Over the past decade, the epidemic dynamics on activity-
driven networks have extended in different directions [17–31],
including tackling real epidemiological models [21,29], the
effects of heterogeneity [17,22,30], and the introduction of
network features such as memory effects [19,24,25] and in-
dividual attractiveness distribution [23,31].

In static network epidemiology, the canonical mod-
els susceptible-infected-recovered and susceptible-infected-
susceptible (SIS) are effectively governed by one parameter
β/μ, the ratio of infection to recovery rate. Therefore, most
studies of activity-driven networks also focused on this ratio
[11,17,19,23,24,28–31]. This approach, effectively studying
the model in the limit of fast network dynamics, goes against
the idea of temporal networks as the modeling framework
for intermediate timescales. In this limit, the β/μ-based
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mean-field approach accurately describes the criticality of
compartmental models on activity-driven networks. However,
reality can have slower network dynamics, and then the mean-
field analysis will fail.

More precisely, the thresholds of both annealed (the limit
of rapidly changing) and static (the limit of slowly changing)
networks depend only on β/μ, but their actual critical values
(β/μ)c are different because of dynamical correlations in
the static networks [32], i.e., infected nodes tend to group
together. Since the activity-driven network can interpolate
between these extremes, by keeping one of β or μ fixed,
we can understand that tuning only the other must change
the threshold (contradicting the assumption that β/μ fully
describes the criticality of epidemics on the activity-driven
model).

In this paper we employ a continuous-time description
[20,33,34] of the coevolution of the network and SIS pro-
cess. We use simulations to see the effects of both network
correlations (reflecting the persistence of social contacts) and
dynamic correlations caused by the inertia of the disease prop-
agation. We complement these simulations with theoretical
calculations that include the above-mentioned network cor-
relations but ignore dynamic correlations. The comparison of
these two types of results allows us to see the effects of the
two types of correlations.

The rest of this paper is organized as follows. In Model we
present a continuous-time description of the coevolution of
temporal network and SIS dynamics. In Theoretical analysis
for the SIS model on an activity- driven network we propose a
theory that includes network correlations but ignores dynamic
correlations to analyze epidemic threshold. In Results and
discussion we present and analyze the main results of our
model. In Conclusion we summarize our results.

Model. We turn to a technical definition of the model, a
continuous-time description of the coevolution of the network
and SIS dynamics. For the evolution of the network, each in-
active (U ) individual i is activated with a rate ai = ηxi, where
xi is drawn from a probability distribution F (x). When an
individual gets activated, it randomly selects m individuals to
generate links to. Active (A) individuals become unactivated
with a rate b and then remove all links to themselves. Here the
use of U instead of I for inactive individuals is to avoid confu-
sion with the concept of the epidemic model. For the evolution
of disease, we employ the classical SIS model. Susceptible
(S) individuals become infected via contacts with infected (I)
individuals at rate β times the number of susceptible-infected
links. Infected individuals recover to susceptible with rate μ.

A continuous-time temporal network is a constantly chang-
ing network, similar to the evolution of dynamics, which does
not remain the same for a long time and does not suddenly
change drastically. The network is annealed when the network
correlation is missing, while the network is approximately
static for a large network correlation.

In this paper the simulation procedure is roughly divided
into two steps. The activity-driven network is first evolved to
equilibrium, corresponding to steps (i)–(iv). That means that
the number of active individuals and the average degree of
the network are stable. Then the initially infected individuals
are randomly selected, corresponding to step (v). The net-
work and dynamics coevolve to a dynamic equilibrium, that

is, the number of infected individuals reaches a stable level,
corresponding to steps (vi)–(viii). The detailed simulation
procedure is as follows (see Supplemental Material [35] for
a representative source code).

(i) Set τ = 0, the network starts with N disconnected and
inactive nodes.

(ii) At any time τ , we calculate each individual’s transition
rates λi(τ ). The rate for any inactive individual becoming ac-
tive is λi(τ ) = ai. The rate for any active individual becoming
inactive is λi(τ ) = b. Summing all of them yields the total
transition rate ω(τ ) = ∑

i λi(τ ).
(iii) Time is incremented by dτ = 1/ω(τ ). The individual

whose state is chosen to change at time τ + dτ is sam-
pled with a probability proportional to λi(τ ). The selected
individual changes their state. When the selected individual
is activated, they randomly select m individuals to generate
links. When the selected individual becomes inactive, they
delete all links to themself.

(iv) Repeat steps (ii) and (iii) until the number of active
individuals and the average degree of the network are stable.
The stability condition is set well above the convergence time
as assessed by visual inspection for each parameter value. This
approach is feasible since the activity-driven model does not
have large fluctuations in the network structure between runs.

(v) Set t = 0; then I0 = N/100 initially infected individu-
als are randomly selected.

(vi) At any time t , we calculate each individual’s transition
rates of the network state λi

1(t ) and those of the dynamic state
λi

2(t ). The rate for any inactive individual becoming active
is λi

1(t ) = ai. The rate for any active individual becoming
inactive is λi

1(t ) = b. The rate for any susceptible individual
becoming infected is λi

2(t ) = βkinf, where kinf is the number
of infected neighbors of the focal individual. The rate for any
infected individual recovering is λi

2(t ) = μ. Summing all of
them yields the total transition rate ω(t ) = ∑

i[λ
i
1(t ) + λi

2(t )].
(vii) Time is incremented by dt = 1/ω(t ). The individual

whose state is chosen to change at time t + dt is sam-
pled with a probability proportional to λi

1(t ) + λi
2(t ). For

the selected individual, one of their network and dynamic
states is changed, and the probability sampling is proportional
to λi

1(t )/[λi
1(t ) + λi

2(t )] and λi
2(t )/[λi

1(t ) + λi
2(t )]. When the

network state of the selected individual changes, the rules for
generating or disconnecting links are the same as those in
step (iii).

(viii) Repeat steps (vi) and (vii) until the number of in-
fected individuals is stable. For each set of parameter values
we choose, by visual inspection, the number of thermalization
steps to be at least three times longer than the typical time to
reach equilibrium or ρI is effectively zero.

The gap between the Monte Carlo simulations, which
naturally include network and dynamic correlations, and the
mean-field theory given in the next section, which includes
only network correlations, shows that the mean-field theory
is not enough. However, we do so in order to study network
correlations in theoretical isolation and to observe the effect
of dynamic correlations in comparison with simulation and
theoretical results.

Theoretical analysis for the SIS model on an activity-driven
network. We start by analyzing the network evolution, which
is independent of the SIS model. We define ρAa as the fraction

L022017-2



EPIDEMIC CRITICALITY IN TEMPORAL NETWORKS PHYSICAL REVIEW RESEARCH 6, L022017 (2024)

of active individuals with activity rate a and ρA = ∫
ρAa da

as the total fraction of active individuals. The dynamic equa-
tion of the fraction of active individuals of class a in the
network can be written as

dρAa

dt
= a(1 − ρAa ) − bρAa . (1)

The first term of Eq. (1) represents the spontaneous creation
of active individuals, while the second term represents the
spontaneous annihilation. When the evolution of the network
reaches its steady state, i.e., dρAa

dt = 0, we have

ρAa = a

a + b
, ρA =

〈
a

a + b

〉
, (2)

where 〈 a
a+b〉 = ∫

ηxF (x)
ηx+b dx. We define 〈kA,a〉 as the average

degrees of active individuals in class a. Considering that the
links created per unit time in a steady-state network system
should be equal to the disconnected ones, we have∫

maN (1 − ρAa )da =
∫

bNρAa〈kA,a〉da. (3)

Combining Eqs. (2) and (3), we obtain

〈kA〉 = 〈kA,a〉 = m, (4)

where 〈kA〉 is the average degrees of active individuals. Equa-
tion (4) also implies that the average degrees of inactive
individuals in different classes are the same and the average
degree of inactive individuals is represented by 〈kU 〉.

Similarly, the number of links between active and inac-
tive individuals is stable when the system reaches its steady
state. Since

∫
aN (1 − ρAa )da individuals are activated per

unit time, the number of new links to the inactive individ-
uals is m(1 − ρA)

∫
aN (1 − ρAa )da. On the one hand, links

are disconnected when the active node of the link deacti-
vates. On the other hand, when an inactive node in the link
is activated, the class of the link changes. Therefore, the
amount of link reduction between active and inactive indi-
viduals per unit time is 〈kU 〉 ∫

N (1 − ρAa )(a + b)da. Note
that the number of links between active and inactive indi-
viduals is equal to 〈kU 〉 ∫

N (1 − ρAa )da, because there are
no links between inactive and inactive individuals. According
to the relation m(1 − ρA)

∫
aN (1 − ρAa )da = 〈kU 〉 ∫

N (1 −
ρAa )(a + b)da, we have 〈kU 〉 = m〈 a

a+b〉(1 − 〈 a
a+b〉). By the

relation 〈k〉 = 〈kA〉ρA + 〈kU 〉(1 − ρA), the average degree of
the network is

〈k〉 = m

〈
a

a + b

〉(
1 +

〈
b

a + b

〉2
)

. (5)

Next we consider the coevolution of networks and epi-
demics. Since individuals are infected through links, the
evolution of the disease cannot be separated from the evo-
lution of the network. The individuals are classified as XY ,
where X ∈ {U, A} and Y ∈ {S, I}. We introduce the notation
ρXYa for the fraction of individuals with state XY and class
a; φXYa,X ′Y ′

a′ is the probability that an individual with state
XY and class a is connected to an individual with state X ′Y ′
and class a′. Note that φUSa,USa′ , φUIa,UIa′ , and φUSa,UIa′ would
be zero.

From the above, we can state the master equations as

dρUIa

dt
= β

∫
φUSa,AIa′ da′ − (a + μ)ρUIa + bρAIa , (6a)

dρAIa

dt
= β

∫
(φASa,AIa′ + φASa,UIa′ )da′ + aρUIa

− (b + μ)ρAIa . (6b)

The term β
∫

φXSa,X ′Ia′ da′ represents that susceptible individ-
uals are infected by an infected individual at rate β. The
term μρXIa represents that infected individuals recover spon-
taneously at rate μ. The term aρUYa represents that inactive
individuals are activated at rate a. The term bρAYa represents
that individuals change from active to inactive at rate b. Since
only active individuals can make connections and inactive
individuals cannot, we can approximate φXYa,X ′Y ′

a′ in Eq. (6)
in the form of ρXYa using the mean-field ansatz, i.e.,

φASa,AIa′ = 2〈kA〉ρASaρAIa′ , (7a)

φASa,UIa′ = 〈kA〉ρASaρUIa′ , (7b)

φUSa,AIa′ = 〈kA〉ρUSaρAIa′ . (7c)

Note that the approximation of Eq. (7) means that we ignore
dynamic correlations. By inserting Eq. (7) into Eq. (6) and
then integrating both sides of Eq. (6) with respect to a, we get

dρAI

dt
=

(
2βm

〈
a

a + b

〉
− b − μ

)
ρAI − 2βm(ρAI )2

+
(

βm

〈
a

a + b

〉
+ 〈a〉

)
ρUI − βmρUIρAI , (8a)

dρUI

dt
=

(
βm

〈
b

a + b

〉
+ b

)
ρAI − (〈a〉 + μ)ρUI

−βmρUIρAI , (8b)

where ρUI = ∫
ρUIa da and ρAI = ∫

ρAIa da. See Appendix A
for a detailed derivation.

Now we perform a linear stability analysis for Eq. (8)
around the fixed point ρAI = ρUI = 0, and after ignoring the
higher-order terms, the Jacobian matrix of Eq. (8) can be
written as

J =
(

2βm
〈

a
a+b

〉 − b − μ βm
〈

a
a+b

〉 + 〈a〉
βm

〈
b

a+b

〉 + b −〈a〉 − μ

)
. (9)

When the largest eigenvalue of the Jacobian matrix is null, we
can obtain the epidemic threshold(

β

μ

)
c

= G(
√

1 + H − 1), (10a)

G =
2μ + 〈a〉 + b + 〈a〉

〈 a
a+b 〉

2mμ
〈

b
a+b

〉 , (10b)

H = 4μ(μ + b + 〈a〉)
〈

b
a+b

〉
〈

a
a+b

〉(
2μ + 〈a〉 + b + 〈a〉

〈 a
a+b 〉

)2 . (10c)

When the probability distribution F (x) satisfies the δ distri-
bution, i.e., F (x) = δ(x − x0), G and H in Eq. (10) can be
simplified to G = (ηx0+b)(μ+ηx0+b)

bmμ
and H = bμ

ηx0(μ+ηx0+b) . It is
clear that the epidemic threshold of Eq. (10) is dependent
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on μ on the activity-driven network, which is an important
difference between annealed and static limits. Specifically, as
μ � a and μ � b, the activity-driven network degenerates
into the static network and the threshold of Eq. (10) can
be rewritten as ( β

μ
)c = 1

m〈 b
a+b 〉 (

√
1/〈 a

a+b〉 − 1). In addition, as

μ � a and μ � b, the activity-driven network will degen-
erate into the annealed network, for which the threshold of
Eq. (10) approximates ( β

μ
)c = 1

m(〈 a
a+b 〉+ 〈a〉

〈a〉+b )
by using Taylor

expansion.
Results and discussion. We focus on the effect of recovery

rate μ on epidemic spreading. In this paper we test epi-
demic spreading processes on activity-driven networks with
two different probability distributions F (x): the δ distribution
F (x) = δ(x − x0), which means that the active rate is identical
for all individuals, and the scale-free distribution F (x) ∝ x−γ .
Unless explicitly stated, from now on we set b = 1. For the
δ distribution, we set x0 = 0.1. For the scale-free distribution,
we set γ = 2.1 and x ∈ [10−3, 1].

A. Epidemic threshold and prevalence. Near the epidemic
threshold, the order parameter fluctuates greatly, leading to a
critical slowing. The latter means that the relaxation time of
the order parameter tends to infinity in the thermodynamic
limit. In general, the internal causes of divergence in relax-
ation time and divergence in thermodynamic susceptibility
are the same. To estimate the threshold of SIS model on
simulation, Ref. [36] proposed a method based on the re-
laxation time (on static networks) and Ref. [23] used this
method on activity-driven networks. The relaxation time L
is defined as the time that passes before the disease either
goes extinct or spreads to a finite fraction C of the network
(in our case C = 0.25), where C is the fraction of distinct
nodes ever infected during the simulation. When β/μ is much
less than its critical value (β/μ)c, the disease will quickly die
out. If β/μ � (β/μ)c, the disease rapidly reaches a steady
state. For β/μ ∼ (β/μ)c, we can observe a longer relax-
ation time due to critical slowing down. In this case, the
opposing mechanisms of infection and spontaneous recovery
almost balance out, making spreading dynamics slow. In the
thermodynamic limit, the average relaxation time diverges at
(β/μ)c both from below and from above. For finite systems,
we use the maximum value of L to estimate the epidemic
threshold.

The simulation results of Fig. 1 show an interesting non-
monotonic increase of the threshold with μ. Specifically,
the curves show both local maxima and minima, whereas
the analytical results are strictly decreasing. Meanwhile, the
threshold tends to different saturation values in the static
or the annealed limits. The simulation results will increase
with the increase of μ when the analytical results tend to
be saturated. It can be seen from the theoretical results that
network correlation causes the threshold to decrease with the
increase of μ, while the comparison between the theoretical
and simulation results shows that dynamic correlations have
the opposite effect.

We know that the average degree can regulate the strength
of the dynamic correlations. In Fig. 2(a) we cause the
threshold to monotonically increase with μ by significantly
reducing the average degree (which means that the dynamic
correlations are greatly enhanced). In contrast, Fig. 2(b)

FIG. 1. Epidemic threshold as a function of recovery rate μ. The
parameters are m = 3, b = 1, and (a) η = 1 and F (x) = δ(x − 0.1)
and (b) η = 28 and F (x) ∝ x−2.1 with x ∈ [10−3, 1]. The average
degrees in (a) and (b) is approximately equal to 0.5 obtained by
Eq. (5). Scatters are simulation results with an accuracy of 0.01.
Lines are the theoretical estimations obtained from Eq. (10) that
consider only the network correlations.

shows that the threshold decreases monotonically as μ

increases, as the average degree increases substantially. In
addition, we can see in Fig. 2(b) that the results from
Eq. (10) match well with those obtained from Monte Carlo
simulations.

Next we plot the epidemic prevalence ρI as a function of
β/μ for different μ in Fig. 3. The overall result is that the
prevalence will gradually increase with the increase of β/μ,
which is expected. For the analytic results in Fig. 3(b), we
can see that ρI appears as a crossing behavior as a function
of β/μ, which is a result of considering only the network
correlation and ignoring the dynamic correlations. The cross-
ing point occurs precisely at ρI = 0.5 and the corresponding
β/μ = [m〈a/(a + b)〉]−1, as detailed in Appendix B. For
the simulation results of Fig. 3(a), we see that different
curves no longer intersect precisely at one point, because
the effects of dynamic correlations are not the same for dif-
ferent μ. Comparing the curves with high μ in Figs. 3(a)
and 3(b), such as μ = 10, we can see that ρI has a large
drop for any β/μ, which means that dynamic correlations
play a key role for high μ. In addition, we can see in
Fig. 3 that our Eq. (8) can be used to predict the prevalence
for low μ.
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FIG. 2. Epidemic threshold as a function of recovery rate μ. The
parameters are b = 1 and (a) m = 3, η = 10, and F (x) ∝ x−2.1 with
x ∈ [10−3, 1] and (b) m = 30, η = 1, and F (x) = δ(x − 0.1). The
average degrees are approximately equal to (a) 0.23 and (b) 1.66.
The accuracy of simulation results is (a) 0.1 and (b) 0.01.

FIG. 3. Epidemic prevalence ρI as a function of β/μ for dif-
ferent recovery rate μ. The parameters are N = 105, m = 3, η = 1,
F (x) = δ(x − 0.1), and b = 1. (a) The scatter plot shows simulation
results from averages over 100 independent runs. (b) Lines are the
theoretical estimations obtained from Eq. (8).

B. Average degree of the temporal network. In Fig. 4 we plot
the time series of the fraction of active individuals, the average
degree of active individuals, and the average degree of the
network. The simulation results, which are denoted by light
gray lines, are ten independent realizations. The analytical
solutions of ρA, 〈kA〉, and 〈k〉 are denoted by the red, blue,
and purple lines, respectively. It is obvious from Fig. 4 that
there is excellent agreement between the analytical solutions
and the simulation results. Since we consider theoretically the
correlation of network evolution, this allows the fraction of
the average degree of active individuals to be accurately pre-
dicted, which provides the basic guarantee for the discussion
in Epidemic threshold and prevalence.

Conclusion. We have investigated the effects of network
correlation and dynamic correlations on SIS epidemics of
activity-driven networks. In particular, we analyzed the ef-
fect of network correlation in isolation by mean-field theory,
as well as the effect of dynamic correlations by compar-
ing theoretical and simulation results. As the recovery rate
μ increases, the threshold (β/μ)c decreases for the effect
of network correlation but increases for the effect of dy-
namic correlations. Because of this competitive relationship,
the curves of the threshold show three types of behavior,
which are monotonically increasing, monotonically decreas-
ing, and first increasing and then decreasing but increasing
again. Meanwhile, the effect of network correlation means
that the prevalence produces a crossing behavior and the effect
of dynamic correlations substantially reduces the prevalence.
Finally, our theory can predict the threshold when the average
degree 〈k〉 is high and predict the prevalence for fast recovery
compared to network dynamics.

As a final remark, we hope our study will provide an oppor-
tunity for other analytical studies of the full two-dimensional
parameter space of the SIS model on temporal networks. For
example, it is always bimodal for the instantaneous degree
distribution of the current activity-driven network, and it is not
clear whether other network structures will exhibit completely
different properties. Specifically, we can change the instanta-
neous degree distribution by changing the parameter m from
a fixed value to a corresponding function. Meanwhile, we can
consider applying our ideas to broader dynamics on tempo-
ral networks, such as synchronization dynamics [37–39] and
directed percolation [40,41].
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Appendix A: Derivation of Eq. (8). By inserting Eq. (7) into
Eq. (6) we have

dρUIa

dt
= βm

∫
ρUSaρAIa′ da′ − (a + μ)ρUIa + bρAIa ,

dρAIa

dt
= βm

∫
(2ρASaρAIa′ + ρASaρUIa′ )da′ + aρUIa

− (b + μ)ρAIa . (A1)
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FIG. 4. Time series for the fraction of active individuals, the average degree of active individuals, and the average degree of the whole
network. The light gray lines are simulation results of ten independent runs. The thick red, blue, and purple lines are obtained from Eqs. (2), (4),
and (5), respectively. The parameters are N = 105, b = 1, and (a) m = 3, η = 1, and F (x) = δ(x − 0.1); (b) m = 3, η = 28, and F (x) ∝ x−2.1

with x ∈ [10−3, 1]; (c) m = 10, η = 1, and F (x) = δ(x − 0.1); and (d) m = 3, η = 10, and F (x) ∝ x−2.1 with x ∈ [10−3, 1].

Combining with ρUSa = 1 − ρAa − ρUIa , ρASa = ρAa − ρAIa ,
and Eq. (2), Eq. (A1) is written as

dρUIa

dt
= βm

(
b

a + b
− ρUIa

) ∫
ρAIa′ da′ − (a + μ)ρUIa

+ bρAIa ,

dρAIa

dt
= βm

(
a

a + b
− ρAIa

)∫
(2ρAIa′ + ρUIa′ )da′

+ aρUIa − (b + μ)ρAIa . (A2)

We define ρUI and ρAI as the fractions of individu-
als in the inactive-infected state and the active-infected
state, respectively, i.e., ρUI = ∫

ρUIa da and ρAI = ∫
ρAIa da.

By integrating both sides of Eq. (A2) with respect
to a we get

dρUI

dt
= βm

〈
b

a + b

〉
ρAI − βmρUIρAI −

∫
aρUIa da

+μρUI + bρAI ,

dρAI

dt
= βm

(〈
a

a + b

〉
− ρAI

)
(2ρAI + ρUI )

+
∫

aρUIa da − (b + μ)ρAI . (A3)

According to Eqs. (4) and (5), we know that the de-
gree distribution of any class a is the same bimodal
distribution. Since we have ignored dynamic correlations

[see Eq. (7)], ρUIa in steady state is independent of a,
that is,

ρUI = ρUIa . (A4)

Finally, by inserting Eq. (A4) into Eq. (A3), we can obtain
Eq. (8).

Appendix B: Theoretical Solution for the Special Prevalence
ρI = 0.5. We define ρIa (ρSa ) as the fraction of individuals
in the infected (susceptible) state and class a. According to
Eq. (A1), we have

dρIa

dt
= −μρIa + βm

∫
(ρSaρAIa′ + ρASaρIa′ )da′. (B1)

We define ρI and ρS as the numbers of individuals in the
infected state and in the susceptible state, respectively, i.e.,
ρI = ∫

ρIa da and ρS = ∫
ρSa da. By integrating both sides of

Eq. (B1) with respect to a we get

dρI

dt
= −μρI + βm(ρSρAI + ρASρI ). (B2)

Considering the special steady state ρI = ρS = 0.5, we have

β

μ
= 1

mρA
= 1

m
〈

a
a+b

〉 . (B3)
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