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The tensor network representation of a state in higher dimensions, say a projected entangled-pair state (PEPS),
is typically obtained indirectly through variational optimization or imaginary-time Hamiltonian evolution. Here,
we propose a divide-and-conquer approach to directly construct a PEPS representation for free-fermion states
admitting descriptions in terms of filling exponentially localized Wannier functions. Our approach relies on
first obtaining a tree tensor network description of the state in local subregions. Next, a stacking procedure is
used to combine the local trees into a PEPS. Lastly, the local tensors are compressed to obtain a more efficient
description. We demonstrate our construction for states in one and two dimensions, including the ground state
of an obstructed atomic insulator on the square lattice.
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Introduction. Tensor network (TN) representations, like
the matrix product state (MPS), provide highly efficient de-
scriptions of quantum many-body states. An MPS is always
disconnected when any of its bonds is cut. Physically, this
implies the virtual Hilbert space attached to any bond in the
network could be given a simple interpretation in terms of the
bipartite entanglement of the state [1,2]. This interpretation
is valid whenever the tensor network is free of loops, and it
has two major consequences. First, a loop-free TN state is
constructible, in the sense that one could directly construct the
TN representation of any given state, up to an error threshold,
by successive bipartitions of the system [1–4]. Second, a loop-
free TN state is also computable, in that there exist canonical
forms which enable the numerically exact contraction of TN
diagrams arising from, for instance, the computation of phys-
ical observables [1,2,5].

Though powerful, the MPS ansatz is natural only for one-
dimensional (1D) systems (or as a quasi-1D modeling of
higher-dimensional systems). Applying the ansatz in higher
dimensions through either a 1D ordering of all the sites [6–8]
or through its extension to a tree TN state [9–11], which re-
mains loop-free, would unavoidably assign certain physically
neighboring sites to far-apart nodes on the network. Such
TNs are generally incompatible with the physical locality of
the state and therefore cannot efficiently encode part of the
short-range entanglement in the system.
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The projected entangled pair state (PEPS) is another nat-
ural generalization of MPS to higher dimensions in which
physical locality is retained at the cost of introducing loops
[2]. As a result, a PEPS is generally neither constructible
nor computable: variational optimization or imaginary-time
Hamiltonian evolution is needed for finding the PEPS rep-
resentation of a state, and approximations are invoked in
evaluating physical observables through TN contractions [12].

The recent proposal on isometric TN states [13,14] has
provided a fruitful avenue for attacking the computability
problem of PEPS. Here, we seek to address the comple-
mentary problem concerning constructibility, namely, can one
obtain a PEPS representation directly from a given state? This
question had been answered in the affirmative for the ground
states of special models, like those corresponding to stabilizer
codes [15–17]. However, for more general problems, indirect
approaches like optimization or imaginary-time evolution re-
main the only tenable options so far. This is true even for
free-fermion states, as is reflected in the recent bodies of work
concerning fermionic Gaussian TN states [18–23].

In this work, we demonstrate the PEPS constructibility of
the ground state of a free-fermion obstructed atomic insulator
in two dimensions [24] Our approach follows a divide-and-
conquer strategy and consists of three steps, in the order of
“tree, stack, and compress.” First, we derive the tree TN rep-
resentations for the local descriptions of the state over small
open disks. Next, we stack the tree TN states to cover the
full 2D space. Importantly, the patches overlap and so the
resulting TN takes a PEPS form. Lastly, we compress the local
tensors to obtain an efficient representation. This is achieved
by applying MPS techniques to the partial contractions of the
TN state along 1D subregions.

We remark that, as a proof of principle, we consider
here the ground states of translation-invariant free-fermion
Hamiltonians. This allows us to shortcut some of the
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FIG. 1. The overall procedure of the “tree, stack and compress”. (a) Exponentially decaying WFs centered at the centers of plaquettes of
the square lattice, while atomic sites are the vertices. (b) The tree decomposition of a single WF, where the center of the WF is indicated by a
blue dot. The green circle encloses the truncated region for the WF. The dashed lines indicate the square lattice, while the solid lines are legs
of the tensors. The legs pointing out-of-page are the physical legs, whereas those in-plane are virtual legs/bonds of local tensors. Blue legs
connect the diamond in the center to the neighboring sites, and black legs connect among the square tensors. (c) PEPS obtained by stacking the
trees over the whole lattice using translation symmetry. Note that both blue (between square and diamond tensors) and black (among square
tensors) are present along the diagonal direction. (d) The local tensors all over the lattice after the compression.

analysis through band-theory techniques like Wannierization.
Our approach can be readily generalized to any free-fermion
state admitting a (possibly approximate) localized description
in terms of filled Wannier functions (WFs). In our current
formulation, however, the “stacking” step makes explicit use
of the Gaussian nature of the local tensors; generalizing this
step to an interacting state is likely nontrivial. Nevertheless,
the free-fermion TN representation we constructed could still
serve as a natural starting point for constructing an interact-
ing fermionic TN state through, for instance, the Gutzwiller
projection [25–28].

Setup. We begin by explaining how our “tree, stack, and
compress” steps are carried out for a free-fermion state. We
consider a free-fermion Hamiltonian Ĥ = ∑

i j hi j ĉ
†
i ĉ j , where

ĉ†
i and ĉi are, respectively, the free-fermion creation and anni-

hilation operators. The subscript i denotes possible degrees of
freedom, like physical sites, orbitals, etc. The ground state |�〉
of Ĥ , as is the case for any fermionic Gaussian state, is fully
determined by its two-point correlation functions [29,30].

With the number conservation symmetry in our context,
we only need to focus on the correlation matrix Ci j =
〈�|ĉiĉ

†
j |�〉. We further specialize to the case that Ĥ is trans-

lationally invariant and |�〉 can be obtained by the filling of a
full set of WFs, which corresponds to an atomic insulator. The
WFs can be viewed as a particularly suitable choice of Fourier
transform of the filled Bloch states such that they become
exponentially localized in the real space [31]. For an atomic
insulator, the WFs can be chosen such that they further respect
all the internal and spatial symmetries of the system.

Tree decomposition. Our first step is to obtain a tree TN
description for the ground state over a small local subregion.
This can be achieved by first focusing on a single WF, which
represents a locally defined fermion mode that is occupied in
the ground state. Given the exponential localization, the WF
can be well-approximated by a truncation to a disk of some
radius rtrunc which is on the order of its localization length.
This is illustrated in Fig. 1(a), where the WF centered at the
blue dot is picked, and the truncation is indicated by the green
circle.

To obtain a TN representation of the truncated WF, we
define a tree which specifies how the sites in the region are

to be connected in the TN. For instance, as demonstrated in
Fig. 1(b), we can grow a tree with fourfold rotation symmetry
on the square lattice.

As a tree is loop-free, we can convert the wave function
into a tree TN form by successively applying Schmidt de-
compositions. More concretely, we view the center site of the
tree, which coincides with the center of the WF, as its root.
Note that the center need not be occupied by a physical site,
and so there may not be a physical leg attached to the center
(Fig. 1). Any other sites can be given a height according to its
distance from the root. We say two sites belong to the same
level if they are equidistant from the root. Starting from the
highest level, we perform Schmidt decomposition to obtain
the local tensors defined on the sites in the level. Schmidt
decompositions within the same level are independent.

For free-fermion states, Schmidt decomposition can be
done at the level of correlation matrices, since the reduced
density matrix of a subregion is still Gaussian and so it shares
the same eigenbasis with the restricted correlation matrix.
More explicitly, consider a bipartition of the system into A
and B. We can diagonalize the restricted correlation matrices
of C as[

CAA CAB

C†
AB CBB

]
=

[
UA

UB

][
�AA �AB

�AB �BB

][
U †

A

U †
B

]
, (1)

where CAA, CAB, and CBB are the corresponding submatrices
of C. �AA and UA are, respectively, the eigenvalues and di-
agonalizing unitary of the restricted correlation matrix CAA;
similarly for �BB and UB. �AB would generally depend on
the arbitrary phases in UA and UB [32], but it can be brought
into a real diagonal form with non-negative entries through a
suitable basis choices [33].

After Schmidt decomposition, one expects to obtain two
free-fermion tensors TA and TB which can be contracted to
reproduce the original state |�〉. The meaning of a free-
fermion tensor, however, is unclear as there will generally be
multiple legs with varying number of fermion modes attached
to them. For bosonic systems, like qubits, a tensor can always
be reinterpreted as a state through a mere reshaping of the
legs; for fermions, care must be taken to ensure such reshaping
is done in a consistent manner [34]. In our formulation, this is
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achieved by purifying all the unitary operators into fermionic
Gaussian states defined on a doubled space [35]. In [33], we
show how the data contained in Eq. (1) can be packaged
into two free-fermion states |TA〉 and |TB〉, which reproduce
|�〉 upon contraction. This way, all the local tensors can be
interpreted as free-fermion states. As such, in the following
we use “local tensors” interchangeably with the correlation
matrix of its corresponding free-fermion state.

Upon performing all the contractions of the local tensors,
as represented by the edges on the tree in Fig. 1(b), we re-
construct the single-particle state given by filling the original
(truncated) WF in the current local subregion.

Stacking. To reconstruct the full state |�〉, we would need
to combine the locally defined tree TN states obtained from
the individual WFs. Intuitively, we simply need to consider
the collection of all the tree TN states, which in our context
are related to each other through translation symmetry, and
show that these states can be recombined into a single PEPS
[Fig. 1(c)]. This step, referred to as the “stacking” procedure,
can be achieved as follows. Suppose the local tensor Ci,α at
site α decomposed from the ith tree is represented as

Ci,α =
[

�i,α
pp �i,α

pv

�i,α
pv

†
�i,α

vv

]
(2)

where the correlation matrix is organized with respect to the
physical legs and bonds. Here, i indexes the set of truncated
WFs which have support on the site α, and the subscripts p vs
v indicate whether the fermion modes are associated with the
physical or the virtual legs.

The stacking of the local tensors Ci,α for the site α could
be expressed as

C̃α =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑m
i=1 �i,α

pp �1,α
pv �2,α

pv · · · �m,α
pv

�1,α
pv

†
�1,α

vv 0 · · · 0

�2,α
pv

† 0 �2,α
vv

. . .
...

...
...

. . .
. . . 0

�m,α
pv

† 0 · · · 0 �m,α
vv

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3)

where we suppose that there are m trees that contribute to the
site α.

Here, the virtual spaces from different trees are inde-
pendent and so the corresponding parts of their correlation
matrices are simply combined as a direct sum. However, all
the trees share the same physical Hilbert space at site α and so

their contributions add up. As defined, C̃α is not a proper cor-
relation matrix in general, as the summing procedure defined
above does not correspond to any well-defined operations on
the Hilbert spaces concerned. Nevertheless, a proper correla-
tion matrix Cα can be obtained by the deformation procedure
described in [33]. Intuitively, the failure of C̃α to be a proper
correlation matrix stems from the fact that the restrictions of
the different trees to the physical Hilbert space of site α lead
to modes which are not orthogonal to each other. The defor-
mation process can then be simply interpreted as a suitable
orthonormalization step.

We thus obtain a free-fermion PEPS defined by the collec-
tion of deformed local tensors. Upon contracting all the virtual
legs, we obtain an approximation of the ground state |�〉.

Compression. The approximate PEPS representation ob-
tained from stacking, however, is far from optimal. In
combining the individual trees, we treated their virtual Hilbert
spaces as independent. This leads to a superficially high bond
dimension which grows as we increase the truncation radius
rtrunc used in approximating the WFs [33]. As a last step,
therefore, we perform a compression of the local tensors.

The idea is that we could first contract the local ten-
sors in one direction to form a free-fermion state defined
on an open 1D chain. We can then perform another MPS
decomposition of the state while retaining only the most sig-
nificant virtual modes, which correspond to a truncation to
the bond dimension. More concretely, the virtual modes are
retained according to their contribution to the von Neumann
entanglement entropy: S = −(

∑
i ωi ln ωi + (1 − ωi ) ln(1 −

ωi )) [29,36–39], where ωi corresponds to ith diagonal entry
for matrix �AA or �BB in Eq. (1). To reduce the bond di-
mension, we drop virtual modes that contribute the least to
the entanglement entropy, i.e., we drop the mode i if ωi < ε

or ωi > 1 − ε for a prescribed small threshold ε. Physically,
these dropped virtual modes correspond to degrees of freedom
that are well-localized within one side of the entanglement
cut, i.e., they do not mediate entanglement across the cut and
can therefore be dropped.

After successive Schmidt decomposition, local tensors
deeply embedded in a long enough 1D chain should regain
bulk properties. Therefore, we choose the local tensor in
the middle as the updated Cα . Repeating the above process
along all possible directions for multiple times, the final fully-
compressed Cα is obtained, see Fig. 2.

FIG. 2. Compression procedure. The thickness of the legs indicates the size of the bond space. Red dashed lines indicate the successive
Schmidt decomposition performed along the red arrow. The hollow arrow points to the final result of each compression step, which is the middle
piece among all the decomposed local tensors. The ordering of compression direction is first along (a) horizontal direction, then (b) vertical
direction and lastly along the two diagonal directions (c) and (d).
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TABLE I. Results for 1D SSH model and 2D OAI model before and after compression. Note that a larger system size is used for the 2D
compressed result. The compression thresholds for the 1D and 2D models are respectively ε = 10−6 and 10−4.

1D SSH 2D OAI

original compressed original compressed
System Size 100 100 50 × 50 100 × 100

rtrunc 16 3
b b = 31 b = 7 bv,h = 12; bd = 3 bv,h = 5; bd = 3
maxi, j (|CT N − Cexact|i j ) 6.56 × 10−4 1.45 × 10−4 3.16 × 10−3 4.44 × 10−3

(eT N − eexact )/δEgap 3.90 × 10−4% 6.36 × 10−4% 0.17% 0.32%

Examples. We now move on to demonstrating our con-
struction to two obstructed atomic insulator (OAI) systems as
a proof of principle. OAI is a special class of atomic insulators
for which the centers of the WFs cannot be chosen to coincide
with any atomic sites in the system [40].

The 1D Su-Schrieffer-Heeger (SSH) model, one of the
most well-known model for a topological insulator, can also
be viewed as an OAI if only inversion but not chiral symmetry
is retained.

The Hamiltonian for the SSH model is Ĥ = ∑
x

(t − s)ĉ†
O1,x

ĉO2,x + (t + s)ĉ†
O2,x

ĉO1,x+1 + H.c., where t is the
uniform hopping parameter, and s is a staggering between
intra- and intercell hoppings. O1 and O2 are two different
orbitals in a unit cell. In the numerics, we choose t = −1,
s = 0.1.

As a second example, we construct an OAI model on the
2D square lattice protected by the four-fold rotation sym-
metry C4. We assign three fermion modes, corresponding,
respectively, to s, dx2−y2 and px + ipy atomic orbitals, to
each of the sites. Our model is constructed by lowering the
energy of a set of nonorthogonal “quasiorbitals” f̂ † which
transform differently from all of the atomic orbitals in the sys-
tem [40–42]. This leads to a band insulator for which the WFs
of the filled band are equivalent, symmetry-wise, to the qua-

FIG. 3. Correlation function 〈ĉx,l ĉ
†
0,O1

〉 for a 100-site SSH model.
Only data inside the range (−20, 20) is shown as the values are
practically zero outside of this range. The blue and red colors rep-
resent the two orbitals O1 and O2, respectively. The dashed lines
represent exact values while the markers represent the compressed
ones obtained from the constructed TN. The inset is the log scale
plot of the same range while the vertical axis being log10 |〈ĉx,l ĉ

†
0,O1

〉|.

siorbitals we started from. More concretely, the Hamiltonian
is Ĥ = −∑

�R η f̂ †
�R f̂ �R, where the mode f̂ †

�R is localized to the

center of the plaquette in unit cell �R, and transforms trivially
under the C4 rotation symmetry. An atomic insulator obtained
by filling s-like WFs localized to the centers of the plaquettes
is topologically distant from the innate atomic insulators in
the Hilbert space, and so this Hamiltonian serves as an OAI
model [33]. In the numerical calculation, we set η = 2.

The main results are tabulated in Table I. The number of
fermion modes attached to a virtual leg is denoted by b. For the
2D model (Fig. 1), we distinguish the vertical/horizontal bond
bv,h and the diagonal bond bd for each square tensor. Before
and after compression, we compare the difference between the
correlation reproduced from PEPS CTN and the exact through
the entry-wise maximum difference maxi, j (|CTN − Cexact|i j ).
Small values of this difference, on the order of 10−3, were
found, and so the exact and TN results are indiscernible in
Figs. 3 and 4. We also compare the relative difference of
ground state energy density, defined as (eTN − eexact )/δEgap

where eTN and eexact are ground state energy density per unit
cell obtained from TN representation and exact calculations
respectively. δEgap is the minimal gap over the first Brillouin
zone.

FIG. 4. Real part of correlation function R(〈ĉ�r,l ĉ
†
�r0,s〉) on a

100 × 100 square lattice, where �r0 = (0, 0). Data for �r along direc-
tion [11] within the range (−10, 10) and (10, 10) is demonstrated.
R(〈ĉ�r,l ĉ

†
�r0,s〉) is practically 0 for �r outside the region. The red, green,

and blue colors represent the s, dx2−y2 and p+ = px + ipy orbitals,
respectively. The dashed lines are for exact values and the markers
show the reconstructed results obtained from our TN. The inset is
the log scale plot within the same range while the vertical axis is for
log10 |R(〈ĉ�r,l ĉ

†
�r0,s〉)|.
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Discussion. In this work, we present a general scheme for
constructing PEPS for free-fermion states arising from the
filling of exponentially localized WFs. As a proof of principle,
we demonstrate our approach for models in one and two
dimensions.

Although translation invariance was used to simplify the
computation, our approach can be generalized to a strictly
real-space formulation for more general systems with incom-
mensurate order or disorder. Interaction effects could also be
incorporated by combining the free-fermion TN state with, for
instance, Gutzwiller projectors [25–27]. In closing, we remark

that, in the restricted context of free-fermion states, there
might be tantalizing connections between our construction
and a tensor-network-based solution to the quantum marginal
problem [43–49]: data confined to small local subregions are
first handled by tree TN states, which are then patched into
the full pure state through the stacking step. It is an interesting
question to consider how our approach might be generalized
to attack the corresponding many-body problem.
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