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Topological design enables robustness to be engineered into a system. However, a general challenge remains
to experimentally characterize topological properties. In this work, we demonstrate a technique for directly
observing a winding-number invariant using a single measurement. By propagating light with a sufficiently
broad spectrum along a topological photonic crystal fiber, we calculate the winding number invariant from
the output intensity pattern. We quantify the capabilities of this single-shot method, which works even for
surprisingly narrow and asymmetric spectral distributions. We demonstrate our approach using topological fiber,
but our method is generalizable to other platforms. Our method is experimentally straightforward: we use only a
broadband input excitation and a single output to measure the topological invariant.
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Introduction. Topological band theory connects a system’s
physical properties, such as wave guidance of light and sound,
to robust integer invariants [1–3]. Topological waveguides use
this connection to tie experimental observables to an envi-
ronmentally independent topological band gap. The topology
then endows the observable properties with enhanced robust-
ness to changes in geometry, such as imperfections introduced
during fabrication [4]. These advances promise to protect
photonic [5–8], acoustic [9–11], and delicate quantum states
[12–17] from physical disorder. The resulting designs and re-
alizations of resilient topological systems [4–21] are based on
a variety of materials, geometries, and topological invariants.
However, an outstanding challenge across these implementa-
tions is that they are difficult to characterize experimentally.

Finite systems characterized by nontrivial topological in-
variants can feature edge-localized states that are predicted
by bulk-boundary correspondence [22–24]. Whenever an in-
variant changes, a topological band gap locally closes and
reopens. This closing of a band gap gives rise to a localized
boundary mode that lives on the system’s edge, regardless
of shape or deformation. Although observing bulk-boundary
modes suggests the presence of topology, this observation is
insufficient for topological classification. For example, dif-
ferent topological invariants induce edge modes robust to
different types of disorder, and correctly identifying the in-
variant helps to classify the degree of robustness [25]. In
addition, edge modes are not exclusive to topological systems
[26–28]. Imperfection-localized modes can occur at defects
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near the boundary of nontopological systems. As a final exam-
ple, topological edge modes always have an associated width,
called the penetration depth, that describes how far the mode
reaches into the bulk [29]. In the case of a large penetration
depth and small system size, the distinction of topological
edge modes from bulk modes becomes blurred. These exam-
ples demonstrate the need for an accessible way to character-
ize topology by directly measuring the topological invariant.

Classifying topology within 2 + 1D waveguide systems
is especially difficult because one cannot straight-forwardly
observe topological bands of supported eigenmodes. In con-
densed matter systems or in 2D photonic crystals, topological
band gaps are characterized using frequency-resolved mea-
surements. However, in the case of an optical waveguide, the
topology is connected to modal propagation constants which
cannot be readily observed. Although we cannot measure the
full band structure, we show how to distinguish topological
states through differences in light propagation in the bulk of
topological materials.

In the case of topological winding numbers, one can turn to
direct observations of the invariant [13,30–35]. Reference [36]
shows that for atomic wires with quenched dynamics, the inte-
grated absorption images can distinguish between topological
and trivial systems in the bulk. Analogously, Refs. [13,33–35]
demonstrate direct measurements of photonic winding num-
bers where intensity is measured as a function of propagation
length. In Ref. [13], the experimental difficulty of this method
is highlighted, requiring the fabrication of many waveguide
arrays of various lengths. In contrast, we develop, perform,
and evaluate an experimental method to measure the topolog-
ical winding number from a single sample using a single-shot
measurement. The speed and simplicity of our method enables
real-time measurement of topology, which could be crucial for
understanding how a system’s topology changes with rapid
deformation or distortion.

We demonstrate our method using a topological photonic
crystal fiber containing 12 coupled light-guiding cores, shown
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FIG. 1. Schematic of the single-shot measurement. (a) Cross sec-
tion of the 12-core topological photonic crystal fiber based on the
SSH chain (left). The different air hole sizes (see right zoom) give
rise to alternating weak-strong intercore couplings. (b) A narrow
spectrum of light is coupled into a bulk core (left). The resultant
intensity profile (right) is used to calculate a weighted intensity
difference Id , which is then wavelength averaged to measure the
system’s topological invariant. (c) Our method uses a broadband
spectrum, allowing the invariant to be calculated in a single shot.

in Fig. 1(a) [37]. The schematic above the microscope image
shows gray circles as fiber cores and black lines as alternating
coupling strengths, corresponding to the topological model of
a Su-Schrieffer-Heeger (SSH) chain [38]. To experimentally
measure the invariant in this fiber, we excite a single bulk core
using a broad spectrum of light. At the output of the fiber, each
wavelength gives a weighted intensity difference between the
two SSH chain sublattices [see Fig. 1(b)]. When averaging
over the broad spectrum, the weighted intensity difference
can be shown to give a winding number measurement. There-
fore, this single-shot experiment characterizes the topology by
having the fiber perform the averaging for us, as shown in
Fig. 1(c).

Given the generality of our method, this technique can
be translated to any platform exhibiting a photonic SSH
invariant, from on-chip laser-written waveguides to bulk op-
tics. Additionally, it can be broadened to measure winding
numbers in 2D SSH chains [39], or SSH4 chains [35].
Conceptually, our method can be applied to any wave-guiding
medium, enabling direct, single-shot observation of topolog-
ical invariants in acoustic, mechanical, or condensed matter
implementations. This offers an alternative to measuring
topology as a function of discrete momenta, which has seen

success in etched semiconductor structures [40]. With all of
these domain specific applications in mind, we envision a
future toolkit comprised of advanced characterization tech-
niques such as ours, which will be used in the evaluation of
topologically enhanced devices.

Theory. Light propagation in fiber is governed by the scalar
wave equation:

∇2
⊥ψ (x, y) + k2

0n2ψ (x, y) = β2ψ (x, y), (1)

where ∇2
⊥ ≡ ∂2

x + ∂2
y is the transverse Laplacian and k0 =

2π/λ is the free-space wavenumber, n is the refractive index
of the glass, ψ is the electric field Ex or Ey, and β is the
propagation constant (the z component of the wave vector).
To find the supermodes of a weakly coupled multicore fiber,
we use the eigenvalue equation Cu = �βu, where �β is
the change in propagation constant for a supermode relative
to the propagation constant of a single core (where entries
in matrix C depend on A-B couplings C1 within a unit cell
and couplings C2 between unit cells). By inducing alternating
coupling strengths within and between unit cells, a topological
Su-Schrieffer-Heeger (SSH) chain is created [37]. This chain
supports edge modes that are robust to symmetry-preserving
disorder and is characterized by a topological winding num-
ber. In this system, the winding number describes how the
phase difference within a unit cell varies as a function of the
phase difference between unit cells. If the path taken by the
phase variation encloses the origin, the winding number is one
and the system will feature topological edge states. Otherwise
the fiber is considered topologically trivial.

Reference [37] introduced a topological fiber which we
now use to demonstrate our single-shot measurement tech-
nique. To measure the winding number, ν, we inject a
broadband spectrum into a single core of our topological
multicore fiber and observe the output profile across all cores.
To find ν, we first define the weighted intensity difference
Id = ∑

m m(IAm − IBm), also known as the mean chiral dis-
placement [35], or photon population difference center [13],
to be the output intensity difference between the two cores
(IAm and IBm) within one unit cell, weighted by the unit cell
labeled m and summed over all unit cells to give a single value
at a given wavelength λ. As shown in Fig. 1(c), Eq. (2), and
detailed in the Supplemental Material (SM), the measurement
of Id across a broad range of wavelengths λ gives us a direct
measurement of ν: ν = 2〈Id (λ)〉λ,∫ λb

λa

Id(z)g(λ)dλ = ν

2
+ 1

4π

∫ 2π

0

∫ λb

λa

g(λ) cos(2|ζ |z) dλ
dφ

dθ
dθ,

(2)

where ζ = C1 + C2eiθ , φ = arg ζ (θ ), g(λ) is the wavelength
distribution in the illuminating spectrum.

In Eq. (2), we show that averaging the weighted intensity
difference over a distribution specified by g(λ) returns the
winding number if the oscillatory term is zero. The coupling
strengths C1,2 are well approximated as linear over our regime
of interest, so we can express |ζ (λ)| = f (θ ) + h(θ )λ and
write the whole oscillatory term as a product of nondimen-
sionalized complex exponentials:

1

8π

∫ 2π

0
τ (θ )ei2 f (θ )z

∫ Pb

Pa

G

(
P

σ ′

)
eiPdP

dφ

dθ
dθ + c.c. (3)
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FIG. 2. (a) Heuristic explanation of the connection between the output intensity profile and the topological invariant. A broad spectrum
excites a single core and the output intensity profiles are considered for two extreme cases, C1 = 0 and C2 = 0. For the topologically trivial case
C2 = 0, light stays within a single unit cell and the average intensity difference is zero. For the nontrivial case C1 = 0, light cannot couple to
the other core within the same unit cell. On average, half the light intensity ends up in the neighboring unit cell, making the weighted intensity
difference 2〈Id〉λ = 1. (b) Schematic explanation of our experiment. The intensity distributions per unit wavelength for both the narrowest
spectrum (purple) and the widest spectrum (dashed teal) are shown in the plot. The intensity distributions are used to excite core six of the
topological fiber before the output is imaged onto a camera. The two intensity plots shown correspond to the two spectra shown in the plot.
(c) Experimental data showing the effects of changing the spectral width on the winding-number measurement (ν). The black crosses are
experimental averages of three measurements, with the error bars being their standard deviation. The observed winding numbers stay around
the expected value of one, but the uncertainty associated with the measurements (gray shaded region) grows as the root mean square (RMS)
spectral width decreases. The green diamonds and red triangles show the theoretical predictions of our measurement when the experimental
spectra are propagated. The diamonds correspond to the system’s topological state with the same couplings as in our experiment, while for the
triangles, the C1 and C2 couplings are flipped, leaving the system in a topologically trivial phase.

To nondimensionalize, we make the substitutions P =
2h(θ )λz, τ (θ ) = 1/(2h(θ )z), and dλ = τ (θ )dP. We also
scale the normalized weighting function g(λ) by a charac-
teristic width σ , G(λ/σ ) = G(P/σ ′), defining a new function
G(P/σ ′), where σ ′ = 2σh(θ )z. If the oscillations in eiP occur
over a shorter period than the changes in the spectral distri-
bution G(P/σ ′), the stationary phase approximation applies
and

∫ Pb

Pa
G( P

σ ′ )eiPdP → 0. As the integral approaches zero, the
oscillatory term becomes small compared to the integrated
weighted intensity difference [left-hand side Eq. (2)], causing
the last term in Eq. (2) to vanish. The only remaining con-
tribution to the winding number in Eq. (2) comes from the
integrated weighted intensity difference ν = 2〈Id (λ)〉λ.

Heuristically, this correspondence between light intensity
and topology is shown in Fig. 2(a) and can be understood by
considering two topologically obstructed cases: (i) C1 = 0 and
(ii) C2 = 0. (i) When C1 = 0, half of the light couples into the
unit cell neighboring the injection site, leading to IA1 − IB1 =
1/2 (on average) and ν = 1. (ii) By contrast, for C2 = 0, all
of the light is split evenly within the (same) unit cell of the
injection site, leading to IAm − IBm = 0 (on average, for all m)
and ν = 0.

Results and discussion. Experimentally, we demonstrate
our method by illuminating core six (see Fig. 1) with a variety
of broadband spectra. We use a supercontinuum generating
fiber and a wavelength filter built into a folded 4-f line, to
control the bandwidth of the light source. Following the 4-
f line, we couple light from the broadband source into an

endlessly single mode photonic crystal fibre which is butt
coupled to our topological photonic crystal fiber. The out-
put face is imaged onto a camera as shown in Fig. 2(b).
In Fig. 2(c), we plot the average observed winding num-
ber as a function of the root mean square (RMS) width
of the illuminating spectra [defined as

√∑
i(λi − λ̃)2P(λi ),

where P(λi ) is the normalized intensity at a given wave-
length λi and λ̃ is the distribution’s mean wavelength]. Two
extreme examples of input spectra are shown in Fig. 2(b):
the purple line corresponds to the narrowest and least uni-
form spectrum, whereas the dotted teal and black line shows
the broadest spectrum. We show that for these spectra, the
calculated winding number remains close to the expected
value of ν = 1. The speed of our measurement makes re-
peated observations straightforward, enabling experimental
uncertainty to be quantified. We plot the average winding
number and the standard deviation in Fig. 2(c). We find good
agreement between the observed winding number and our
system’s topological classification. However, this agreement
obscures a crucial source of uncertainty, introduced via the
unweighted intensity difference and is shown as the shaded
gray and red regions in Fig. 2(c).

To understand the origin of this uncertainty, we must
consider the labeling of unit cells in the weighted intensity
difference calculation. As shown in the SM, the system’s
winding number is equal to twice the observed weighted in-
tensity difference when the injection unit cell, m�, is labeled
by m� = 0. This is a direct consequence of the more general
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FIG. 3. (a) Four example distributions of the input spectrum. We vary the root mean square (RMS) width of the input spectrum from
27.8 nm (turquoise) to 5.8 nm (dark green) by reducing the standard deviation of the distribution. (b) shows the calculated winding number (ν)
for each of these input spectra as a function of the RMS width of the distribution. (c) Response of the weighted intensity difference to changing
wavelength (red) and changing distance (blue) in the topologically nontrivial case. Both plots show twice the weighted intensity difference
oscillating around one, the expected value of the winding number that characterizes the system. (d) Winding numbers calculated by averaging
the wavelength and distance curves plotted in (c). (e) Product of the distribution density and 2Id [which approaches the winding number as
shown in Eq. (2)], for the distributions shown in (a). We show graphically that the mean of this function becomes closer to the winding number,
ν = 1 as the RMS width of the exciting spectrum increases.

relation: ν = 2Id − 2m�
∑

m(IAm − IBm). This relation states
that the measured value of the weighted intensity difference
(Id ) is shifted by 2m� times the unweighted intensity differ-
ence, which is defined as the difference in intensity between A
and B cores, summed over all unit cells. In the case of a perfect
fiber and flat spectrum, the unweighted intensity difference
should be zero, as there would be no preference for light to
be in either the A or B sites. However, in the experiment,
the unweighted intensity difference can be nonzero due to
imperfections in the fiber structure.

While the choice m� = 0 is sufficient for the measurement
to result in ν = 1 across all our input spectra, we want to
observe the same winding number regardless of unit cell label.
We consider labeling the unit cell with an alternative estab-
lished convention: labeling the unit cell at the inner edge to be
m = 1 and counting outwards so that m� = 3 [13,37]. We use
the difference between the two labeling conventions m� = 3
and m� = 0 to highlight the labeling related uncertainty. We
linearly fit the range of uncertainties to estimate the overall
uncertainty as the gray shaded region in Fig. 2(c). While our
measurement returns a nonzero winding number for all spec-
tral widths, the uncertainty prohibits the value from being well
defined for spectral widths below 24 nm. To understand why
this method, which is initially derived considering a perfectly
flat spectrum, can still measure the invariant in the presence of
imperfect and narrow spectra, we turn to the analytic theory
underpinning this technique.

In Fig. 3, we use analytic theory and numerical simulations
to understand the limits of our single-shot measurement. Fig-
ure 3(a) shows four spectral distributions that are used as the
input for our analytic model. We use a distribution which is

zero at wavelengths outside the region of 600 nm to 700 nm
and which is otherwise a Gaussian with standard deviations
σ of 64.6 nm, 28.9 nm, 12.9 nm, and 5.8 nm as inputs to
our model fiber with a 23.7 cm fiber length to mirror our
experiment. Figure 3(b) shows the measured winding number
for each input distribution. As expected from the experiment,
the observed winding number is calculated to be ν ≈ 1 for the
three widest distributions, before falling off as the spectrum
narrows. This drop-off begins around σ = 12.9 nm and as the
RMS spectral width reaches σ = 5.8 nm, the measurement no
longer returns a value close to one, and our measurement tech-
nique breaks down. To understand this breakdown, we plot
twice the wavelength-dependent weighted intensity difference
[2Id (λ), which should average to ν] in Fig. 3(c). The red curve
shows how this weighted intensity difference oscillates around
the winding number, with an average peak-to-peak distance
of p = 16 nm. If the input spectrum becomes narrower than
this width, that is σ < p, the wavelength average will be
unevenly weighting parts of 2Id (λ). Therefore, for narrow
spectra, the single-shot technique will not measure the wind-
ing number. Thus, our method requires a broadband spectrum,
with σ > p, where p can be computed numerically a priori
for a given experimental platform. In particular, p depends
on the wavelength-dependent coupling strength between the
neighboring cores; hence the parameters of the single-shot
measurement can be optimized for a given system.

The requirement of a sufficiently broad spectrum makes
sense both within the context of our technique, and when
considering previous work observing topological invariants.
In the context of quenched atomic dynamics, the topological
invariant arises out of the long-time average of the measured
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absorption [36,40]. The long-time average in atomic dynamics
translates to a long-distance average for measurements of
the topological invariant in waveguides [13,34,35]. For our
system, light couples between cores as a function of dis-
tance, changing the output intensity profile as it propagates.
Equivalently, we can change the final intensity profile for a
given length by changing the coupling strengths. This is ex-
perimentally straightforward because the coupling strength is
linearly dependent on wavelength (over our range of interest),
so we can observe changes equivalent to propagating different
distances by changing the wavelength of the light. While we
demonstrate our method using centimeters of fiber, by scaling
the coupling strengths appropriately, one could make a direct
observation of a topological invariant over an arbitrary length.

Using numerics, we compare the single-shot measurement
to other characterization techniques. In Fig. 3(c), the blue
curve shows the variation 2Id (�L) of (twice) the weighted
intensity difference as a function of fiber length. This curve
oscillates around its winding-number average for one given
input wavelength, λ = 650 nm. To experimentally observe the
winding number using this previous method, it would be nec-
essary to compare propagation in the same fiber, but cut to
different lengths [13], or instead to image the scattering of
light perpendicular to the direction of propagation over the
entire length of the device [41]. In contrast with Ref. [41],
our single-shot method only requires access to the input and
output of the waveguide in order to measure the topological
invariant. In Figs. 3(c) and 3(d), we confirm numerically
that the length and wavelength-based measurements both re-

turn 2Id curves that oscillate around the topological invariant
ν, successfully benchmarking our single-shot measurement
against previous approaches.

In conclusion, we have demonstrated a single-shot mea-
surement technique for calculating the winding number of a
topological system. Despite an initial assumption of a flat,
broadband excitation spectrum, we find that our method dis-
tinguishes topological states using initial excitation spectra
that are narrow and asymmetric. Using numerical simula-
tions and analytic theory, we find the spectral robustness of
our method is well explained using the stationary phase ap-
proximation. To characterize the topology of a given system,
we can use our results to define an optimal combination of
measurement parameters, such as spectral width, waveguide
length, and coupling strength. We envision our method to
be highly generalizable to topological systems beyond the
fiber-optic platform in this work.

Raw experimental data are available on Zenodo under an
MIT license (Ref. [42]). Complete derivations of the equations
quoted in the main text can be found in the SM (Ref. [43]).
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