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Nonreciprocal charge transport is attracting much attention as a novel probe and functionality of noncen-
trosymmetric superconductors. In this work we show that both the longitudinal and the transverse nonlinear
paraconductivity are hugely enhanced in helical superconductors under moderate and high magnetic fields,
which can be observed by second-harmonic resistance measurements. The discussion is based on the generalized
formulation of nonlinear paraconductivity in combination with the microscopically determined Ginzburg-Landau
coefficients. The enhanced nonreciprocal transport would be observable even with the cyclotron motion of
fluctuating Cooper pairs, which is elucidated with a Kubo-type formula of the nonlinear paraconductivity.
Nonreciprocal charge transport in the fluctuation regime is thereby established as a promising probe of helical
superconductivity regardless of the sample dimensionality. Implications for the other finite-momentum super-
conducting states are briefly discussed.
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Introduction. Nonreciprocal charge transport (NCT) is
attracting much attention as the novel functionality of non-
centrosymmetric materials [1–35]. An example is a diodelike
material property known as magnetochiral anisotropy (MCA),
which refers to directional resistance, or rectification, linear in
the magnetic field and has been observed in a variety of mate-
rials [3–9]. Unidirectional transport even with zero and finite
resistance has also been realized, namely, the superconducting
diode effect (SDE) [10–22]. The nonlinear Hall effect (NHE)
is another hot topic [24–29], by which a finite transverse
resistance can be produced in time-reversal symmetric mate-
rials. These findings pave the way for next-generation devices
[9,17,18,30,31]. Furthermore, NCT would serve as a versatile
electrical probe of inversion-symmetry breaking, applicable
even under extreme conditions including high pressure and
magnetic fields. Thus, NCT phenomena are hallmarks of mod-
ern condensed-matter physics.

The development of NCT techniques may shed light on the
fascinating phenomena of noncentrosymmetric superconduc-
tors that are hardly captured via conventional experiments.
Among other things, helical superconductivity [36–47] is a
long-sought finite-momentum superconducting state, regard-
less of its predicted ubiquity in magnetic fields. The pair
potential of helical superconductivity has a plane-wave ex-
pression known as the Fulde-Ferrell type [48] without the
modulation of amplitude. This makes its experimental iden-
tification more difficult than the Larkin-Ovchinnikov and
pair-density-wave states [49–52], whose detection has been
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reported via spatially resolved techniques in various su-
perconductors [53–62] including FeSe [57], Sr2RuO4 [58],
Bi2Sr2CaCu2O8+δ [59,60], CsV3Sb5 [61], and UTe2 [62].
Recent theoretical studies [20,22,63] have revealed that the
characteristic crossover phenomenon of helical superconduc-
tivity can be signaled by the sign reversal of the SDE, offering
a promising probe free of Josephson junctions in contrast to
the known methods [41,64]. Further investigation of NCT
would provide us with keys to understanding exotic supercon-
ducting states in noncentrosymmetric systems.

The disadvantage of the SDE as a probe of helical super-
conductivity is to require small-width samples to suppress
vortex motion and approach the depairing limit of the crit-
ical current [65]. It has also been pointed out that the SDE
is sensitive to the conditions around sample edges [66,67].
Thus, careful microfabrication would be required to study
the intrinsic SDE in candidate helical superconductors such
as heavy-fermion superlattices [68,69] and thin films of Pb
[70] and SrTiO3 [71]. Toward easier access to helical super-
conductivity, we turn renewed attention to the nonreciprocal
paraconductivity, i.e., NCT by fluctuating Cooper pairs, which
is little affected by the edge environments. In pioneering
works [6,32,33], nonreciprocal paraconductivity was studied
focusing on MCA and was shown to be significantly larger
than MCA of normal electrons [6]. The theoretical studies not
only succeeded in explaining the experiment in MoS2 [6], but
also pointed out that spin-singlet and -triplet mixing of Cooper
pairs can be detected [32,33]. However, their formulation is
not applicable in the presence of finite-momentum Cooper
pairs and/or nonlinear effects of the magnetic field, leaving
helical superconductors out of its scope.

In this Letter, we generalize the previous formulation of
nonreciprocal paraconductivity and show that the rectifica-
tion and NHE in the fluctuation regime are hugely enhanced
in helical superconductors in moderate and strong magnetic
fields. We also show that the enhanced NCT would still
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be observable even in the presence of the cyclotron motion
of Cooper pairs. Our formulation is applicable to Fulde-
Ferrell-type superconducting states in general, while thin-film
Larkin-Ovchinnikov superconductors may also be explored
by applying symmetry-breaking perturbations. Our results
showcase an interesting example of NCT that originates from
the intrinsic nature of exotic Cooper pairs.

Notation for NCT. We begin by introducing the notation for
rectification and the NHE, which is described by the nonlinear
conductivity ji = σ

i j
1 Ej + σ

i jk
2 EjEk or the nonlinear resistiv-

ity Ei = ρ i j j j = ρ
i j
1 j j + ρ

i jk
2 j j jk . Here linear and nonlinear

resistivities satisfy ρ1 = σ−1
1 and

ρ
i jk
2 = −[

σ−1
1

]
ia
σ abc

2

[
σ−1

1

]
b j

[
σ−1

1

]
ck

. (1)

The nonlinear resistivity can be observed via the longitudi-
nal and Hall second-harmonic resistance [5]. The nonlinear
resistivity ρxxx

2 gives rise to nonreciprocity in the longitudinal
resistivity ρxx in the electric current jx,

ρxx = ρxx
1 (1 + ηxxx jx ), ηxxx ≡ ρxxx

2 /ρxx
1 . (2)

The longitudinal nonreciprocity ηxxx is a natural generaliza-
tion of the γ value for MCA [1,2] and is used as a quantitative
measure of rectification in this paper: According to Eq. (2), its
inverse 1/ηxxx gives a typical current density for nonreciproc-
ity to be visible. We also introduce

ηxyy ≡ ρ
xyy
2 /ρxx

1 (3)

to compare the NHE with rectification and call it Hall nonre-
ciprocity, although the linear Hall effect vanishes in the model
studied later.

Near the transition temperature Tc of superconductors, the
conductivity tends to diverge due to the fluctuation of Cooper
pairs, which interpolates the finite and vanishing resistance in
normal and superconducting states [72]. The linear and non-
linear conductivities σ1 and σ2 can be decomposed into those
in the normal state and the excess contribution by fluctuation
which are specified by the subscripts n and s, respectively:
σ1 = σ1n + σ1s and σ2 = σ2n + σ2s. Our purpose is to obtain
the paraconductivity contributions σ1s and σ2s and thereby
evaluate the nonlinear resistivities ρxxx and ρxyy in the fluc-
tuation regime of superconductors.

Time-dependent Ginzburg-Landau theory. Let us consider
a d-dimensional superconductor slightly above Tc, with d =
2 unless specified otherwise. Following Refs. [6,32,33], we
study the fluctuation of Cooper pairs by using the phenomeno-
logical time-dependent Ginzburg-Landau (GL) equation in the
momentum space [73],

�0
∂ψq(t )

∂t
= −αqψq(t ) + ζq(t ), (4a)

〈ζ ∗
q (t )ζq′ (t ′)〉 = 2�0T

V
δ(t − t ′)δq,q′ , (4b)

with the GL functional F [ψ] = V
∑

q αq|ψq|2. The random
force ζq(t ) is assumed to be the white noise as in the sec-
ond line and reproduces 〈|ψq|2〉 = T/V αq in equilibrium. The
effect of the electric field E is introduced by αq → αq−2A(t ),
with A(t ) = −Et . The excess current density by fluctuating

Cooper pairs is evaluated with the formula [6,73,74]

js = lim
t→∞ −

∑
q

∂Aαq−2A(t ) 〈|ψq(t )|2〉

= 4T

�0

∫
dd q

(2π )d
∂qαq

∫ 0

−∞
dt1 exp

(
− 2

�0

∫ 0

t1

dt ′αq−2A(t ′ )

)
,

(5)

which results from a process where Cooper pairs are formed
by fluctuations and then accelerated by the electric field until
they vanish after a finite lifetime.

Within the GL picture, the superconducting transition is
triggered by the softening of the mode q = q0, which mini-
mizes αq. This occurs at q0 	= 0 in helical superconductivity,
in contrast to q0 = 0 in conventional superconductors. Note
that the modes around q0 dominantly contribute to transport
properties in the vicinity of Tc. Thus, we can expand the GL
coefficient in terms of δq = q − q0,

αq = αq0
+ α

i j
2 δqiδq j + α

i jk
3 δqiδq jδqk + O(δq4)

≡ N0

⎛
⎝ε +

∑
i

ξ 2
i δq2

i + ξ̄ 3
∑
i jk

Ai jkδqiδq jδqk

⎞
⎠. (6)

We defined the reduced temperature ε ≡ (T − Tc)/T , the GL
coherence length ξi and its geometric mean ξ̄ ≡ (

∏d
i=1 ξi )1/d ,

and the dimensionless third-rank tensor Ai jk , while the overall
coefficient N0 ≡ T ∂

∂T αq0
is related to the density of states.

Importantly, cubic anharmonicity Ai jk is allowed with q0 	= 0
and/or without both inversion and time-reversal symmetries.

Nonlinear paraconductivity. The GL formula of the fluc-
tuation conductivity can be obtained by plugging Eq. (6) into
Eq. (5) and expanding it by the electric field E. We neglect the
orbital magnetic field for the time being, while the effect of the
Zeeman field can be taken into account. The linear fluctuation
conductivity is then given by Lzσ

i j
1s = τ0T

2πε

ξ 2
i

ξxξy
δi j to the leading

order of the reduced temperature ε, with the sample thickness
Lz and the GL relaxation time τ0 ≡ �0/N0 > 0 [72,73,75]. In
the absence of anisotropy, this reproduces Lzσ1s = 1/16ε for
τ0 = π/8T [72].

The nonlinear paraconductivity is similarly obtained [73],

Lzσ
i jk
2s = τ 2

0 T
√

ξxξy

4πε2
Ai jk, (7)

to the leading order of the reduced temperature ε. The NCT
is of O(ε−2), as reported previously [6,32,33]. Notably, it
is the anharmonicity parameter Ai jk that gives rise to NCT
[6,33], since q0 can be traced out from Eq. (5) by shifting the
momentum. Note that σ

i jk
2s allows not only rectification but

also the NHE. Nonlinear paraconductivities for system dimen-

sions d = 1 and 3 are also obtained as LyLzσ
xxx
2s = 3τ 2

0 T ξ 2
x

8ε5/2 Axxx

and σ
i jk
2s = τ 2

0 T
16πε3/2 Ai jk , respectively, where LyLz is the wire

cross section. We emphasize that the obtained formulas al-
low us to discuss the nonlinear effect of the Zeeman field h
and, if any, coexisting time-reversal-breaking orders, in con-
trast to the previous formulas showing O(h) NCT in specific
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TABLE I. Typical forms of gA(n̂) = gA(δq)/δq3 and ∂

∂θ
gA(n̂)

for various types of antisymmetric SOC. Here we define δq = δq n̂
and unit vectors n̂ = (cos θ, sin θ, 0) and ẑ = (0, 0, 1).

Type of SOC gA(n̂) ∂

∂θ
gA(n̂)

Rashba ẑ × n̂ −n̂
chiral n̂ ẑ × n̂
Ising sin 3θ ẑ 3 cos 3θ ẑ
Dresselhaus sin 2θ ẑ × n̂ 2 cos 2θ ẑ × n̂ − sin 2θ n̂

two-dimensional models [6,32,33]. This point is crucial to
describe fluctuating finite-momentum Cooper pairs.

To illustrate the formula (7), we discuss NCT linear in the
Zeeman field h before studying the nonlinear effects of h.
In this case, the anharmonicity parameter Ai jk is O(h) and
can be rewritten in the form of the cubic spin-orbit coupling
(SOC) [63]

Ai jkδqiδq jδqk ≡ h · gA(δq). (8)

The effect of h on the other coefficients is O(h2) and thus
is negligible in the low-field region. For the purpose of
symmetry considerations, the effective SOC gA(δq) can be
identified with the antisymmetric SOC of the system around
the � point in the Brillouin zone [63]. Typical forms of the
effective SOC in Rashba, chiral, Ising, and Dresselhaus sys-
tems are illustrated with a unit vector n̂ in Table I. When
the electric field with strength E is applied in an in-plane
direction Ê , the O(E2) excess current density δ2 js in this di-
rection is Ê · δ2 js ∝ Ai jk ÊiÊ j Êk from Eq. (7), i.e., Ê · δ2 js ∝
h · gA(Ê ). The field-angle dependence of rectification is de-
termined by the effective SOC gA(Ê ) (Table I). Similarly,
the transverse excess current density is given by (ẑ × Ê ) ·
δ2 js ∝ h · ∂

∂θ
gA(Ê ) [73]. Here the θ derivative acts on Ê =

(cos θ, sin θ, 0) and thus

(ẑ × Ê ) · δ2 js ∝ Ê · h, (9)

e.g., in Rashba systems (Table I). This indicates that the NHE
occurs for the magnetic field parallel to the electric field in
contrast to the rectification that occurs in the perpendicular
configuration. The results obtained here give the general-
ized and convenient description of the known results for the
Rashba [32,33,73] and Ising systems [6,33].

It should be noted that the nonlinear resistivity ρ2 rather
than conductivity σ2 is directly observed in experiments. It
turns out that not only the linear resistivity ρ1 but also the
nonlinear resistivity ρ2 vanishes as it approaches the tran-
sition temperature ε → 0 in the present framework, due to
approximately σ−3

1 in Eq. (1). Nevertheless, the nonlinear
resistivity ρ2 can be hugely enhanced in the fluctuation regime
before it finally vanishes, reflecting the divergence of the
nonlinear conductivity σ2. To estimate the nonlinear longi-
tudinal and Hall resistivities ρxxx

2 and ρ
xyy
2 in the fluctuation

regime, we define the reduced temperature ε∗ indicating the
linear-resistance drop by 25% of the normal-state value [73].
We denote the nonlinear resistivities evaluated at ε = ε∗ by
ρxxx

2∗ and ρ
xyy
2∗ .

In contrast to the nonlinear resistivity, the nonreciprocity
of the resistivities ηxxx and ηxyy in Eqs. (2) and (3) converges

FIG. 1. (a) Transition line (Tc(h), h) of the s-wave Rashba-
Zeeman superconductor, (b) Cooper-pair momentum −q0, (c) GL
coherence lengths ξx and ξy, and (d) anharmonicity parameters −Axxx

and −Axyy along the transition line (Tc(h), h). Here ξx , ξy, and q−1
0 are

in units of ξ0, i.e., ξx and ξy at h = 0. The increasing tendency in ξx

and ξy comes from the decrease of Tc(h). The inset in (d) shows the
region 0 � h/Tc0 � 1.

to a finite value as it approaches the transition temperature
[6,32,33]. We define this limiting value by

ηi jk
s ≡ lim

ε→+0
ηi jk (ε) = −Lz

π
√

ξxξy

T

(
ξxξy

ξ jξk

)2

Ai jk (10)

for two-dimensional superconductors. This quantity measures
the intrinsic nonreciprocity, which does not depend on the
normal-state resistivity.

Application to helical superconductivity. By using the GL
formula (7), we study rectification and the NHE in atomi-
cally thin s-wave and d-wave Rashba superconductors in the
in-plane Zeeman field h. The Bloch Hamiltonian is given
by HN (k) = ξ (k) + [g(k) − h] · σ, with the hopping energy
ξ (k) = −2t (cos kx + cos ky) − μ and Rashba SOC g(k) =
αR(− sin ky, sin kx, 0). We microscopically determine the GL
coefficient αq [73], which gives q0 = q0x̂ upon minimization
and ξi and Ai jk by taking q derivatives. The qualitative results
do not depend on model parameters t , μ, αR, etc., when αR �
Tc0, as is the case in most noncentrosymmetric superconduc-
tors. Note that the Rashba energy αR is always dominant
over the Zeeman energy h on the entire phase diagram since
h ∼ Tc0 is considered. Here we denote the transition temper-
ature in the magnetic field h by Tc(h) and Tc0 ≡ Tc(0). The
parameters adopted for numerical calculations are available in
the Supplemental Material [73].

We show in Fig. 1 the superconducting transition line and
GL coefficients of the s-wave state. The Cooper-pair momen-
tum q0 of the soft mode along the transition line (Tc(h), h) is
shown in Fig. 1(b), whose finite value indicates the realization
of helical superconductivity for T < Tc(h). It is shown for
h/Tc0 ∼ 1.5 that the system experiences a rapid increase in
|q0| known as the crossover between weakly and strongly
helical states [36,37]. While the coherence lengths ξx and
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FIG. 2. Strength of the rectification ηxxx
s and NHE ηxyy

s in the
s-wave Rashba-Zeeman superconductor along the transition line
(Tc(h), h). The inset shows the region 0 � h/Tc0 � 1.

ξy are always of the same order of magnitude [Fig. 1(c)],
the anharmonicity parameters Axxx and Axyy are extremely
enhanced in the crossover region as shown in Fig. 1(d): The
rapid change in q0 naturally accompanies the anomalous q
dependence of αq around there. The inset shows that Axxx

and Axyy have tiny linear slopes corresponding to MCA in the
small magnetic field h, as expected. The h-linear behavior is
limited to the low-field region and thus the nonlinear effects
are essential. The high-field behavior is discussed below. The
huge increase of the anharmonicity parameters naturally en-
hances rectification and the NHE as shown in Fig. 2: Both the
longitudinal and Hall nonreciprocities ηxxx

s and η
xyy
s given in

Eq. (10) are increased by several orders of magnitude along
the transition line. The enhancement of ηxxx

s compared to η
xyy
s

originates from the increased anisotropy ξy/ξx in the crossover
region [see Fig. 1(c) and Eq. (10)]. Similar results are obtained
for various parameters and for the d-wave states [73]. The val-
ues of η

i jk
s obtained are comparable in units of η0 ≡ Lzξ0/Tc0,

implying large NCT in superconductors with small Tc0 and
large ξ0. For the case of heavy-fermion superlattices [69],
we obtain ηxxx

s ∼ 10η
xyy
s ∼ 10−2 µm2/µA while assuming

ξ0 ∼ 5 nm, Tc0 ∼ 2 K, and Lz ∼ 10 nm. This means that 10%
rectification is obtained for a current density of approximately
10 µA/µm2 at the mean-field transition temperature. Typical
values of the nonlinear resistivity in the fluctuation regime
are estimated to be ρxxx

2∗ ∼ 10ρ
xyy
2∗ ∼ 10−4 � µm3/µA while

assuming σ−1
1n ∼ 5 × 10−7 � m. These values are well within

the experimental scope. Thus, a sharp increase of rectification
and the NHE in the crossover regime, as opposed to the stan-
dard h-linear behavior, serves as a promising probe of helical
superconductivity.

Interestingly, the anharmonicity parameters take slightly
smaller but still sizable values in higher magnetic fields
[h/Tc0 � 2.5 in Fig. 1(d)]. A large rectification and NHE are
obtained there in combination with small Tc(h) (Fig. 2), while
the sign reversal seen in Fig. 2 may be absent or shifted
to higher fields, depending on model parameters [73]. It is
known that the high-field helical superconductivity resem-
bles in nature the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state of centrosymmetric superconductors [37]. While these
systems do not show nonreciprocal paraconductivity due to

the cancellation of fluctuating Cooper pairs with opposite
momenta, our results imply that the FFLO state, and possibly
the pair-density-wave states, might show giant NCT once the
symmetry-protected degeneracy of Cooper-pair momenta is
externally lifted. This could be achieved by the out-of-plane
bias voltage and in-plane magnetic field, realizing the same
symmetry configurations as helical superconductivity. Quan-
titative studies are awaited for candidate materials such as
cuprate thin films [52,76–79].

Orbital magnetic field. We have pointed out that a colossal
rectification and NHE are promising probes of thin-film he-
lical superconductors. A natural question is then whether the
conclusion still holds in quasi-two-dimensional superconduc-
tors where the cyclotron motion of fluctuating Cooper pairs
takes place. To study this problem, we derive a Kubo-type
formula of σ

i jk
2s for the time-dependent GL equation of the

form �0
∂
∂t |ψ (t )〉 = α̂ |ψ (t )〉 + |ζ (t )〉,

σ
i jk
2s = 2�2

0

βV

∑
μνλ

Ji jk
μνλ(αμ + αν + 2αλ)

αλ(αμ + αν )(αμ + αλ)2(αν + αλ)2
, (11)

with α̂ |μ〉 = αμ |μ〉, Ji jk
μνλ = Re(〈μ| ji|ν〉 〈ν| j j |λ〉 〈λ| jk|μ〉),

and ji = −∂Ai α̂ [73]. This general formula of the phe-
nomenological nonlinear paraconductivity is applicable to,
e.g., systems with orbital magnetic fields as well as multiple
pairing channels.

Let us consider bulk noncentrosymmetric superconductors
in the magnetic field B in the y direction, which can be de-
scribed by α̂ = αq|q→∇/i−2A(x) [33,72,80]. We focus on the
first-order effect of the anharmonicity parameters Axxx and
Axyy for the purpose of an order estimate of NCT [73], σ xxx

2s =
τ 2

0 T

2π |B|√ε̄
Axxx and σ

xyy
2s = 3τ 2

0 T
4πε̄3/2 Axyy, where B ≡ Bξxξz is the

magnetic flux threading the area spanned by the coherence
length. The most singular terms regarding the reduced tem-
perature in the magnetic field ε̄ ≡ ε + 2|B| = [T − Tc(B)]/T
are kept here, while σ

yxy
2s = σ

yyx
2s = σ

xyy
2s /2 is obtained to the

leading order of ε̄. The obtained nonlinear conductivity indi-
cates that the orbital magnetic field suppresses the singularity
of rectification perpendicular to the field while leaving that of
the NHE intact [see the d = 3 result shown below Eq. (7)].
See Supplemental Material for more details of NCT for the
orbital magnetic field.

The obtained expressions of NCT are proportional to the
anharmonicity parameter Ai jk , implying that the rapid in-
crease of NCT occurs in bulk samples as well, triggered
by the helical-superconductivity crossover. To estimate the
nonreciprocity in the fluctuation regime, we discuss a typical
value of nonreciprocity ηxxx

∗ ≡ ρxxx
2∗ /ρxx

1∗ since the intrinsic
limiting value ηxxx

s vanishes. At the reduced temperature
defined by σ xx

1s (ε̄∗) = σ xx
1n /3, we obtain the nonreciprocity

ηxxx
∗ ∼ 10−5 µm2/µA for layered helical superconductors in

the crossover region, by using the coherence lengths ξx ∼
ξy/2 ∼ 5 nm and ξz ∼ 2 nm, relaxation time τ0 ∼ π/8T ,
and B ∼ 2Tc0 ∼ 0.4 meV, as well as Axxx estimated from
Fig. 1(d). The NHE can be estimated similarly [73]. The ob-
tained rectification and NHE ρxxx

2∗ ∼ ρ
xyy
2∗ ∼ 10−5 � µm3/µA

are smaller than those of two-dimensional systems but are
still observable when the fluctuation regime is visible for the
experimental resolution of temperature [81].
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Discussion. We have demonstrated that rectification and
the NHE in the fluctuation regime are promising probes of he-
lical superconductivity regardless of sample dimensions. The
results strongly suggest that the enhanced NCT in moderate
and high magnetic fields is observable in realistic thin-film
samples with a non-negligible thickness, which would lie
between the two-dimensional and three-dimensional limits
studied in this work. In particular, the NHE would serve as a
better probe because the linear Hall resistance is absent owing
to the y-mirror symmetry. A materials-based study for the can-
didate helical superconductors [68–71] is left as an intriguing
future issue, as well as the fully microscopic treatment of NCT
including the quantum-mechanical corrections beyond the GL
approach.

As a complementary question, it is also interesting to con-
sider the effect of helical-superconductivity crossover on NCT
caused by vortices and antivortices. This occurs below the

mean-field transition temperature, and nonreciprocal renor-
malization of the superfluid density plays an essential role
[33]. Since the anharmonicity parameter Ai jk causes such
a renormalization, an enhanced NCT is also expected by
this mechanism and would smoothly connect with that of
paraconductivity above the mean-field transition temperature.
Thus, the enhanced NCT in the crossover regime, both below
and above the mean-field transition temperature, will work as
the promising probe of helical superconductivity. Quantitative
studies are left as a future issue.

Acknowledgments. We appreciate inspiring discussions
with Yuji Matsuda and Tomoya Asaba. We are also grateful
for helpful discussions with Hikaru Watanabe. This work
was supported by JSPS KAKENHI (Grants No. JP18H01178,
No. JP18H05227, No. JP20H05159, No. JP21K13880, No.
JP21K18145, No. JP22H01181, No. JP22H04476, and No.
JP22H04933) and SPIRITS 2020 of Kyoto University.

[1] Y. Tokura and N. Nagaosa, Nonreciprocal responses from non-
centrosymmetric quantum materials, Nat. Commun. 9, 3740
(2018).

[2] T. Ideue and Y. Iwasa, Symmetry breaking and nonlinear elec-
tric transport in van der Waals nanostructures, Annu. Rev.
Condens. Matter Phys. 12, 201 (2021).

[3] G. L. J. A. Rikken, J. Fölling, and P. Wyder, Electrical magne-
tochiral anisotropy, Phys. Rev. Lett. 87, 236602 (2001).

[4] G. L. J. A. Rikken and P. Wyder, Magnetoelectric anisotropy in
diffusive transport, Phys. Rev. Lett. 94, 016601 (2005).

[5] T. Ideue, K. Hamamoto, S. Koshikawa, M. Ezawa, S. Shimizu,
Y. Kaneko, Y. Tokura, N. Nagaosa, and Y. Iwasa, Bulk rectifica-
tion effect in a polar semiconductor, Nat. Phys. 13, 578 (2017).

[6] R. Wakatsuki, Y. Saito, S. Hoshino, Y. M. Itahashi, T. Ideue,
M. Ezawa, Y. Iwasa, and N. Nagaosa, Nonreciprocal charge
transport in noncentrosymmetric superconductors, Sci. Adv. 3,
e1602390 (2017).

[7] F. Qin, W. Shi, T. Ideue, M. Yoshida, A. Zak, R. Tenne,
T. Kikitsu, D. Inoue, D. Hashizume, and Y. Iwasa, Super-
conductivity in a chiral nanotube, Nat. Commun. 8, 14465
(2017).

[8] K. Yasuda, H. Yasuda, T. Liang, R. Yoshimi, A. Tsukazaki,
K. S. Takahashi, N. Nagaosa, M. Kawasaki, and Y.
Tokura, Nonreciprocal charge transport at topological in-
sulator/superconductor interface, Nat. Commun. 10, 2734
(2019).

[9] E. Zhang, X. Xu, Y.-C. Zou, L. Ai, X. Dong, C. Huang, P.
Leng, S. Liu, Y. Zhang, Z. Jia, X. Peng, M. Zhao, Y. Yang,
Z. Li, H. Guo, S. J. Haigh, N. Nagaosa, J. Shen, and F. Xiu,
Nonreciprocal superconducting NbSe2 antenna, Nat. Commun.
11, 5634 (2020).

[10] F. Ando, Y. Miyasaka, T. Li, J. Ishizuka, T. Arakawa, Y. Shiota,
T. Moriyama, Y. Yanase, and T. Ono, Observation of supercon-
ducting diode effect, Nature (London) 584, 373 (2020).

[11] Y.-Y. Lyu, J. Jiang, Y.-L. Wang, Z.-L. Xiao, S. Dong, Q.-H.
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