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We use infinite matrix-product-state techniques to study the time evolution of the charge-density-wave (CDW)
order after a quench or a light pulse in a fundamental fermion-boson model. The motion of fermions in the model
is linked to the creation of bosonic excitations, which counteracts the melting of the CDW order. For low-energy
quenches corresponding to a change of the boson relaxation rate, we find behavior similar to that in an effective
t − V model. When the boson energy is quenched instead or a light pulse is applied to the system, the transient
dynamics are more complex, with the CDW order first quickly decreasing to an intermediate value while the
density-wave-like order of the bosons rises. In the case of pulse irradiation, the subsequent time evolution of
the CDW order depends strongly on the photon frequency. For frequencies slightly below the boson energy, we
observe a temporary increase of the CDW order parameter. Our results reveal the complex physics of driven
Mott insulators in low-dimensional systems with strong correlations.
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Introduction. Ultrafast spectroscopy [1] and experiments
on ultracold atoms in optical lattices [2] have allowed to
directly observe the dynamics of quantum states in strongly-
correlated materials. From a theoretical perspective, such
nonequilibrium systems are intriguing, as they can give rise
to exotic metastable states [3,4], and provide insight into the
relaxation dynamics of quantum matter [5,6]. For materials
with long-ranged order, a natural question is how the order
parameter evolves after a perturbation, e.g., a quench or a light
pulse [7,8]. In the context of one-dimensional (1D) systems,
this has been addressed by numerical simulations for the
magnetic order in spin chains [9,10], as well as for charge
density waves (CDWs) of electrons [11,12]. For the latter,
it was found that an electron-phonon coupling modeled by a
Holstein Hamiltonian not only renormalizes the electron mass
via the formation of polarons, but can significantly alter the
transient dynamics. This highlights that to faithfully model
a system’s dynamics, it is important to take into account
possible couplings to environmental degrees of freedom.

The paradigmatic Edwards model describes particles
whose movement requires the creation or annihilation of local
bosons that parametrize the interaction with a background
medium [13]. This is a very generic situation in a great va-
riety of condensed matter systems, in which the background
can be seen as a deformable lattice (phonons), spins, or or-
bitals forming, e.g., an ordered structure [14–17]. Previous
studies have focused on transport properties [18,19] and the
ground-state phase diagram [13,20,21]. At half band filling, it
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was demonstrated in particular that there is a metal-insulator
transition between a Tomonaga Luttinger liquid (TLL) and
a CDW phase in one dimension. However, despite the rich
physics captured by the Edwards model, its nonequilibrium
properties are unexplored so far.

In this work, we utilize infinite matrix-product-state (MPS)
methods to study the melting of the CDW order in the 1D
Edwards model and discuss the differences compared with
the previously investigated t − V and Holstein models. We
consider both sudden quenches of the Hamiltonian parameters
and pulse irradiation, which could be relevant for pump-probe
experiments.

Model and method. The Hamiltonian of the 1D Edwards
model is

Ĥ = −tb
∑

i

( f̂ †
i+1 f̂i (b̂†

i + b̂i+1) + H.c.)

− λ
∑

i

(b̂†
i + b̂i ) + ω0

∑
i

b̂†
i b̂i , (1)

where f̂ (†) and b̂(†) are fermion and boson annihilation
(creation) operators, respectively. Therefore Ĥ describes
boson-affected quantum transport: A fermion emits or ab-
sorbs a local boson of energy ω0 every time it hops between
neighboring lattice sites. The bosons can relax via the λ term.
Obviously, large ω0 and small λ parametrize a rather stiff
background medium. A different representation of the model
is obtained by the unitary transformation e

∑
i (b̂i−b̂†

i )λ/ω0 , which
removes the λ term but adds a free nearest-neighbor hopping
−t f

∑
i( f̂ †

i+1 f̂i + H.c.) with a renormalized transfer integral
t f = 2λtb/ω0.

We assume a half-filled electron band, in which case the
ground state of the Edwards model is either a TLL or a
Mott insulator with CDW order [20]. The phase diagram was
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FIG. 1. Ground-state phase diagram of the 1D Edwards model at
half-filling according to Ref. [21]. The red and blue arrows indicate
the quenches studied in Figs. 2(a) and 3 below, respectively.

derived in Ref. [21] by density-matrix-renormalization group
calculations of the TLL parameter and the charge gap. For
the benefit of the reader it is redrawn in Fig. 1. The CDW
phase is characterized by a finite value of the electronic order
parameter

OCDW = 2

N

∑
i

(−1)i〈 f̂ †
i f̂i 〉, (2)

where N is the number of sites. Since the broken translation
symmetry in the CDW phase is reflected in the boson densities
as well, it makes sense to also consider the bosonic order
parameter

Ob = 2

N

∑
i

(−1)i〈b̂†
i b̂i 〉. (3)

Importantly, OCDW + 2Ob is conserved in the limit λ = 0.
To simulate the time evolution after the system is driven

out of equilibrium, we employ numerical methods based on
infinite MPS. Namely, we first calculate the ground state with
the variational method of Ref. [22], and then carry out the time
evolution using the infinite time-evolving block decimation
(iTEBD) [23] with a second-order Suzuki-Trotter decomposi-
tion and time step 0.025 t−1

b . The fermion and boson degrees
of freedom are treated as separate sites in the MPS to keep
the dimension of the local Hilbert spaces small. Since this
increases the range of the couplings, we use the method of
Ref. [24] and apply the iTEBD gates approximately using the
time-dependent variational principle (TDVP) [25].

The boson Hilbert spaces need to be truncated to a finite
dimension Db. Because the Mott insulator in the Edwards
model typifies a CDW phase with low boson density, a rel-
atively small value of Db is sufficient and methods to treat
large local Hilbert spaces [26–29] are not necessary. We use
Db = 6 for the simulations in this work, and take tb = 1 as the
unit of energy. The truncation error in the two-site TDVP is
kept below 5 · 10−7, which leads to a maximum MPS bond
dimension of 3600. We have confirmed that the results are
converged by doing additional simulations with lower bond
dimensions.

FIG. 2. Time evolution of the CDW order parameter and boson
densities for a quench from the CDW to the TLL phase at ω0 = 5.
The initial state is the ground state for λ = 0.1, while the time
evolution is according to the Hamiltonian with λ = 0.2 [panel (a)]
or λ = 0.4 [panel (b)]. b̂even (b̂odd) is a boson annihilation operator at
an arbitrary even (odd) site.

Quenches. The simplest setting to study the melting of the
CDW order is a quench of one of the Hamiltonian parameters.
Here, we restrict ourselves to quenches from the CDW to the
TLL phase [see Fig. 1], and assume that the system is initially
in the ground state. Figure 2(a) shows the time evolution of
the order parameter OCDW and the boson densities after the
boson-relaxation parameter is abruptly switched from λ = 0.1
to 0.2 at fixed boson energy ω0 = 5. The order parameter de-
creases and exhibits damped oscillations around zero. Similar
behavior has been previously observed for quenches in the
spin-1/2 XXZ chain and the 1D Holstein model [9,12]. As
the boson energy ω0 = 5 is quite large and not modified by the
quench, the boson densities do not change significantly during
the time evolution. The long-lived oscillations with angular
frequency �ω0 already appear for isolated boson sites and can
be attributed to the change of the boson eigenmodes. There
is also a small staggered order Ob of the bosons that, when
appropriately scaled, closely follows that of the fermions. If
λ is quenched to 0.4 instead [see Fig. 2(b)], the results are
qualitatively similar, but OCDW decays more quickly and the
period of the oscillations is shortened. The oscillations of the
boson densities also become more pronounced.
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FIG. 3. CDW order parameter and boson densities for a quench
from the CDW to the TLL phase at λ = 0.02. The boson energies
before and after the quench are ω0 = 2 and ω0 = 1, respectively.

Overall, the above observations fit into a perturbative pic-
ture, in which the dynamics of the electrons are described by
an effective t − V model (see Appendix A) and the stiff back-
ground contains almost no bosons. Because of the reduced
energy scale of the effective model, the relaxation of the CDW
order is slower than in a model without boson coupling and
similar hopping amplitude, however.

As a second variant, we consider the quench from ω0 = 2
to 1 at constant λ = 0.02. Here, the perturbative model should
not be applicable, since ω0 and tb are of the same order.
Another difference is that the energy density relative to the
ground state is much larger than in the previous case. As
shown in Fig. 3(b), the CDW order OCDW again decreases
after the quench. However, although the Hamiltonian param-
eters for the time evolution correspond to a point in the TLL
phase, this is accompanied by an increase of the boson order
Ob. In fact, OCDW + 2Ob remains approximately constant
until time t � 4, and only slowly decreases afterwards. This
shows that the initial dynamics can be mainly attributed to the
boson-affected hopping ∝ tb, while the free-hopping term ∝ t f

in the alternate representation of the model becomes important
for the long-time behavior. Both the fermion and boson orders
appear to decay. Simulating the long-time evolution with MPS
to determine the relaxation times is not feasible, however,
because we can only reach times about t = 10 before the
required bond dimension becomes prohibitively large.

We have attempted to push the simulation to slightly longer
times by shifting a part of the time evolution to the opera-
tors that need to be evaluated [30,31]. In this approach, the
operators are expressed as matrix-product operators (MPO)
and evolved according to the Heisenberg picture until their
bond dimension becomes too large. Unfortunately, we found
that in the Edwards model the growth of the bond dimension
is too fast to simulate significantly longer times. The quan-
tity OCDW + 2Ob can be evolved slightly longer, since it is

FIG. 4. Time evolution of the CDW order parameter for pulses
with different frequencies. Model parameters are ω0 = 5 and λ = 0.

conserved in the limit λ = 0. To take advantage of the small
λ, we express the operator in momentum space by adapting
the method of Ref. [32] to MPOs. The result of combining
the MPS and MPO simulations is displayed in Fig. 3 as a
dashed line. It is consistent with a continued slow decay of
the density-wave order.

Pulse irradiation. A different way to melt the CDW order,
which is motivated by pump-probe experiments, is to apply a
light pulse to the system. The corresponding time-dependent
Hamiltonian is obtained by a Peierls substitution f̂ †

j+1 f̂ j (b̂†
j +

b̂ j+1) → e−iA(t ) f̂ †
j+1 f̂ j (b̂†

j + b̂ j+1) in the hopping term. We
consider a Gaussian pulse centered around t0 with width σp,
amplitude A0, and frequency ωp, i.e., the vector potential has
the form

A(t ) = A0e
− (t−t0 )2

2σ2
p cos[ωp(t − t0)]. (4)

In the following, σp = 2 and A0 = 0.2 if not stated differently.
Based on results for the optical response function [33],

we expect that the pulse has the strongest effect when its
frequency ωp is close to the boson energy ω0. For finite λ,
there should also be a noticeable response for smaller ωp. If ω0

is large, however, the physics in that case will be qualitatively
similar to that in the t − V model, for which the CDW melting
due to a pulse has been studied previously [11]. We therefore
focus on frequencies ωp ≈ ω0.

Figure 4 shows the time evolution of the CDW order after
a pulse is applied to a system with ω0 = 5 and λ = 0. While
the order parameter quickly decreases during the pulse, it
stays nearly constant afterwards, except for small, persistent
oscillations. These oscillations have frequency 2ω0 and an
amplitude scaling as A2

0 for small pulse strengths, indicating
that they can be attributed to two-boson excitations created by
second-order transitions. That the CDW order does not melt
completely is explained by the fact that for λ = 0, flipping
the CDW order requires a large energy of approximately ω0

per unit cell. Moreover, since OCDW + 2Ob is conserved, the
order parameter for either fermions or bosons must remain
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FIG. 5. Time dependence of observables after a light pulse for
model parameters ω0 = 5 and λ = 0.1.

finite in the long-time limit. Hence, the effect of the pulse is
to decrease OCDW and increase Ob. It should be noted that the
fermions can move by an even number of sites via effective
higher-order hopping processes, so that the absence of CDW
melting for λ = 0 does not apply to the CDW phase of the
Edwards model at one-third filling [34]. When ωp is detuned
relative to ω0, the results are similar but the reduction of
the CDW order and the strength of the oscillations become
weaker.

More complex dynamics can be expected when there is
a finite boson relaxation λ = 0.1 [see Fig. 5]. Similarly as
for λ = 0, OCDW (Ob) initially decreases (increases). The
CDW order now continues to change after the pulse, however,
because of the effective free hopping with amplitude t f . In-
terestingly, in this transient regime OCDW increases for some
pulse frequencies, and can even exceed the ground-state value
before it falls off again. This time-dependence of the CDW
order, which is fundamentally different from the monotonic
exponential decay found in Ref. [11] for pulse irradiation of
the 1D Holstein model, does not require fine tuning of the
pulse parameters and also occurs, e.g., for different values of
the amplitude A0 as demonstrated in Fig. 6.

A qualitative picture for the enhancement of the CDW or-
der is provided by an effective Floquet model that is valid for
large ω0 and frequencies ωp sufficiently detuned from ω0 (see
Appendix B for details). Like in the case without driving, the
effective Hamiltonian is that of a modified t − V model, but
the nearest-neighbor repulsion is amplified for ωp < ω0 and
diminished for ωp > ω0. This agrees with the result in Fig. 5
that OCDW grows for low pulse frequencies. The influence of
the increased repulsion can also be seen in the time evolution
of OCDW + 2Ob [inset of Fig. 5(a)], which unlike OCDW does
not exhibit a sharp drop off due to the resonant excitation of
bosons.

FIG. 6. CDW order parameter after a light pulse with amplitude
A0 = 0.1 [panel (a)] or A0 = 0.4 [panel (b)]. Other parameters are
the same as in Fig. 5.

In contrast to the charge order of the fermions, both the
boson density 〈b̂†

i b̂i + b̂†
i+1b̂i+1〉 and the order parameter Ob

remain nearly constant after the pulse. The approximate con-
servation of the boson density is expected because the boson
energy ω0 = 5 is large compared to the energy scale of the
electronic excitations, i.e., ω0 � t f , t2

b /ω0. To explain the
slow evolution of Ob it is helpful to look at the effective
Hamiltonian, which shows that up to second order in the
hopping bosons can not move between odd and even sites (at
higher order, terms involving nearest-neighbor boson hopping
that scale as λt3

b /ω3
0 appear). Accordingly, the time scale for

the relaxation of the boson order Ob should be much longer
than that for the relaxation of OCDW.

The effective model furthermore suggests that it is ener-
getically favorable for the fermion and boson orders to be
aligned so that OCDW and Ob have the same sign. Since Ob

seems to persists for long times, we may speculate that the
fermion order OCDW will first settle around a reduced but finite
value before it slowly approaches zero. Similar observations
have been made for certain quenches in the spinless Holstein
model, where the staggered displacement of phonons in the
initial state can remain for long times [12]. A difference in
the Edwards model is that the boson order Ob is rather small
in the CDW ground states. Because of the boson-controlled
hopping, it instead increases when the CDW order of the
fermions is disturbed by a light pulse or a quench to lower
boson energies ω0.

Conclusions. We numerically studied the charge-order
melting in terms of the 1D Edwards model, which is a min-
imal description for electrons interacting with a background
medium. The quench parameters were chosen to drive a
CDW-TLL insulator-metal transition as observed in many
low-dimensional materials. In the Edwards model, this transi-
tion is of the Mott-Hubbard type rather than the Peierls type.
By using the real-time simulation of infinite matrix-product
states, we avoided boundary and finite-size effects in the sim-
ulations. Although the simulatable times are too short for the
system to reach a true stationary state, the main effects of
the fermion-boson coupling on the relaxation dynamics can
be observed. For quenches that inject a large-enough energy
into the system, there is a rapid growth of the boson density
on a time scale t−1

b , along with a reduction of the fermion
CDW order OCDW and an increase of the boson density-wave
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order Ob. Applying a light pulse tuned to the boson energy ω0

has a similar initial effect, but the dynamics that follow differ
in the two cases. For the quench, we find a slow decrease
of both OCDW and Ob, while for the pulse, where the final
Hamiltonian is still in the CDW regime with large ω0, only
OCDW continues to change significantly whereas the boson
order Ob stays nearly constant. Assuming that thermalization
occurs, both density-wave orders should eventually disappear.
However, because of the different time scales for the dynamics
of the fermion and boson orders, the system may first ap-
proach a quasistationary state with finite OCDW. A generalized
Gibbs ensemble description based on the perturbative Hamil-
tonian as in Ref. [35] could perhaps give more insight into the
properties of such a nonequilibrium state.

Remarkably, a pulse with frequency below the boson en-
ergy can lead to an increased CDW order at intermediate
times. This is explained by an effective Floquet Hamiltonian
that has an amplified nearest-neighbor interaction compared
with the Hamiltonian from perturbation theory without driv-
ing. The enhancement of the CDW order also occurs for
smaller ω0, however, where the effective model is no longer
accurate.

For future studies, it would be interesting to investigate
how the nonequilibrium charge dynamics differ in more elab-
orate models that take into account, e.g., a dispersion of the
bosons. Understanding the effect of the fermion-boson cou-
pling on the entanglement dynamics should also be valuable,
in particular with regard to recent results on the quantum
Fisher information in nonequilibrium systems [36].
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Appendix A: Effective t − V Hamiltonian for the Edwards
Model. Using standard methods (see, e.g., Ref. [39]), an ef-
fective Hamiltonian that approximates the Edwards model
for large ω0 can be derived [40]. Taking ω0

∑
j b̂†

j b̂ j as the
unperturbed Hamiltonian, one obtains to second order

Ĥ (2) = ω0

∑
j

b̂†
j b̂ j − 2λtb

ω0

∑
j

( f̂ †
j+1 f̂ j + H.c.)

+ t2
b

ω0

[ ∑
j

(
f̂ †

j+1 f̂ j−1

(
n̂ f

j + n̂b
j − b̂†

j−1b̂ j+1

) + H.c.
)

+ 2
∑

j

n̂ f
j n̂ f

j+1 −
∑

j

(
n̂ f

j+1 − n̂ f
j

)(
n̂b

j+1 − n̂b
j

)]
,

(A1)

where n̂ f
j = f̂ †

j f̂ j and n̂b
j = b̂†

j b̂ j . For an empty boson system,
this is the t − V model for spinless fermions, except for an
additional correlated next-nearest-neighbor hopping.

Appendix B: Detuned Pumping. Let us now consider a
system driven by a time-periodic vector potential A(t ) =
A0 cos(ωpt ). As described in Ref. [41], one can use Flo-
quet theory in combination with a perturbative expansion

FIG. 7. Dependence of the parameters tp and V in the effective
Floquet model (B1) on the detuning of the pulse from the boson
energy [panel (a)], and time evolution of the CDW order for a pertur-
bation according to Eq. (B6) with σp = 2.0 and A0 = 0.2 [panel (b)].
The unit of energy is tb = 1.

to derive an effective Hamiltonian that captures the slow
time-evolution for large boson energies and detuned driving
frequency (ω0, |ωp + mω0| � tb, λ; ∀m ∈ Z). Assuming an
empty boson background, we get to second order:

Ĥ (2)
Floquet(A0, ωp) = − t f

∑
j

( f̂ †
j+1 f̂ j + H.c.)

+ tp

∑
j

(
f̂ †

j+1 f̂ j−1n̂ f
j + H.c.

)

+ V
∑

j

n̂ f
j n̂ f

j+1. (B1)
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The parameters are

t f = 2λt (0)
b

ω0
, (B2)

tp =
∑

m

t (−m)
b t (m)

b

ω0 + mωp
, (B3)

V = 2
∑

m

∣∣t (m)
b

∣∣2

ω0 + mωp
, (B4)

where

t (m)
b = tb

2π

∫ 2π

0
dτ eimτ eiA0 cos(τ ). (B5)

While the Hamiltonian Ĥ (2)
Floquet(A0, ωp) has the same form

as Ĥ (2) in Eq. (A1) for zero bosons, the relative strengths
of the terms are generally different when A0 is finite [see
Fig. 7(a)]. In particular, Eq. (B4) indicates that for ωp < ω0

(ωp > ω0) the strength V of the repulsive interaction increases
(decreases) because of the term with m = −1. Note that the

renormalized parameter t f depends on the amplitude A0 but
not the driving frequency ωp.

To test the validity of Ĥ (2)
Floquet, we simulate the time evolu-

tion of a system that starts from the ground state and is driven
out of equilibrium by a perturbation with the vector potential

A(t ) = A0e
− (t−t0 )2

2σ2
p

�(t0−t )
cos[ωp(t − t0)], (B6)

where �(t0 − t ) is the step function. This initially is equal to
a Gaussian pulse with width σp and center t0 as in the main
text, but then remains at a constant amplitude A0. In Fig. 7(b),
we compare the direct simulation of the Edwards model
with the simulation of the time-dependent effective model
given by Ĥ (t ) = Ĥ (2)

Floquet(A0e−�(t0−t )(t−t0 )2/(2σ 2
p ), ωp). For suf-

ficiently large ω0 and detuning, the Floquet model accurately
predicts the evolution of the charge-density-wave (CDW) or-
der OCDW. The main deviation is a shift due to the different
CDW orders in the ground state, which decreases for larger
ω0 (not shown).
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