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A coherent perfect absorber is capable of completely absorbing input waves. However, the coherent perfect
absorption severely depends on the superposition of the input waves, and the perfect absorption is sensitive to
the disorder of the absorber. Thus, a robust incoherent perfect absorption, being insensitive to the superposition
of input waves and the system disorder, is desirable for practical applications. Here, we demonstrate that the
linearly independent destructive interference at the port connections removes the constraint on the coherent input.
We propose an approach using the interplay between the loss and localization to form the incoherent perfect
absorption. The resonant incidence from either port is completely absorbed. Furthermore, we utilize the lattice
configuration supporting the flat band to demonstrate the disorder-immune incoherent perfect absorption. Our
findings provide insight into the fundamentals and applications for the perfect absorption of light, microwaves,
sound, mechanical waves, and beyond.
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Introduction. Dissipation ubiquitously exists in physical
systems. Unlike the conventional wisdom to suppress dissipa-
tion, non-Hermitian optics actively engineers the dissipation
and has stimulated many intriguing phenomena that have
never been found in Hermitian systems. Especially, the in-
terplay of interference and dissipation enables the complete
absorption of light with the proper coherent inputs [1–15]
. This phenomenon, known as coherent perfect absorption,
serves as the time-reversed counterpart of lasing [16–26].
The coherent perfect absorption has immediate applications
in optical switches, modulators, and imaging for the coherent
control of waves [27–30]. However, the proper superposition
of input waves is a prerequisite to achieve the complete ab-
sorption. This rigorous constraint on the coherent input limits
the absorption efficiency and hinders the practical application
of perfect absorbers [31,32]. To overcome the restriction,
a unidirectional perfect absorber is designed and the input
from one side is completely absorbed [33–38]. Furthermore,
a bidirectional perfect absorber is capable of completely ab-
sorbing resonant input from either side [39–42]. The perfect
absorption of incoherent input regardless of the superposition
of incident waves is desirable. However, its design is a tough
task. In addition, the perfect absorption is also sensitive to the
disorder in the scattering center; any fabrication imperfection
may cause the deviation from the perfect absorption.

In this Letter, we find that the linearly independent destruc-
tive interference of the degenerate eigenstates of the effective
scattering center at the port connections plays an important
role to overcome the constraint of perfect absorption on the
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coherent input, and we propose an approach to realize in-
coherent perfect absorption. In addition, we demonstrate the
disorder-immune incoherent perfect absorption created from
the compact localization of the flat band in a stub ribbon of
coupled resonators. The incident waves from both ports at
any superposition are completely absorbed in the presence of
random coupling disorder. The proposed models can also be
implemented in many experimental platforms. The formalism
is applicable for many other flat-band lattices. Our findings
open up an avenue in the design of highly efficient absorbers
for practical applications.

Perfect absorption. In a two-port scattering system, each
incident wave is split into a reflected wave and a transmitted
wave after interference in the scattering center. Interestingly,
the losses embedded in a non-Hermitian scattering center may
completely absorb the input waves. In Fig. 1, we illustrate
three types of perfect absorptions. The coherent perfect ab-
sorber realizes complete absorption of resonant input waves
from both ports at a proper superposition of the wave ampli-
tudes and phases [Fig. 1(a)]. The coherent perfect absorber is
highly sensitive to the variation of input waves. The unidirec-
tional perfect absorber realizes complete absorption of input
waves from one port [Fig. 1(b)]. The unidirectional perfect
absorber does not require the proper superposition of input
waves, but the transmission and/or reflection for the wave
injected from another port is nonzero [34–37]. Interestingly,
the incoherent perfect absorber realizes complete absorption
of input waves from either port [Fig. 1(c)]. The proper match
of input wave amplitudes and phases is unnecessary, and any
superposition of the resonant inputs from both ports can be
completely absorbed. The degenerate resonances enable inco-
herent perfect absorbers [39].

The complete absorption of input indicates that the steady-
state solution of the perfect absorber possesses the purely
incoming waves at the real frequency. Notably, both the
coherent perfect absorber, which requires a coherent input,
and the unidirectional perfect absorber, which requires a
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(a) Coherent perfect absorption (b) Unidirectional perfect absorption (c) Incoherent perfect absorption

FIG. 1. Schematic of three types of perfect absorptions. (a) Coherent perfect absorption: The reflection and transmission vanish for
coherent input waves from the opposite directions. The perfect absorption highly depends on the relative amplitudes and phases of input
waves. (b) Unidirectional perfect absorption: The reflection and transmission vanish for input wave from one direction. (c) Incoherent perfect
absorption: The output vanishes for any superposition of input waves from the opposite directions. rL , tL (rR, tR) are the reflection and
transmission for the left (right) input.

specific input direction, have the nondegenerate purely incom-
ing wave solution. By contrast, as a result of the complete
absorption of incoming waves from both the left and right
ports, the incoherent perfect absorber has two degenerate
purely incoming wave solutions at a real frequency. This dif-
fers from the two purely incoming wave solutions coalesced
to a single state [43–50], where the absorption exhibits quartic
line shape. The former one is at the diabolic point of the
non-Hermitian system and the latter one is at the exceptional
point of the non-Hermitian system. For the incoherent perfect
absorption, the incoming wave solutions from each port are
linearly independent. This overcomes the constraint on the
relative amplitude and phase of the input waves at the cor-
responding frequency.

The physical isolation between the two ports to overcome
the constraint on the coherent input is not under our con-
sideration; i.e., two decoupled single-port perfect absorbers
formally combined as a two-port system apparently real-
ize an incoherent perfect absorption. Here we highlight the
interference effect in the scattering center rather than the
physical isolation. Two necessary conditions are required to
form incoherent perfect absorption. (i) The input frequency is
the degenerate energy level of the effective scattering center,
which is the scattering center with additional on-site terms
reduced from the ports at the incoming wave solution. (ii)
The degenerate eigenstates are able to form destructive in-
terference at the connections, where the scattering center is
connected with the ports. Then, the incoming wave is confined
within each port and its extension feature is destroyed.

In our formalism, the linearly independent destructive
interference at the port connections is important for the inco-
herent perfect absorption; i.e., two on-resonance degenerate
eigenstates of the effective scattering center respectively have
vanishing amplitudes at the two port connections. The mi-
croscopic origin of the degenerate resonant states differs in
distinct physical systems [39]. Notably, the flat band is fully
constituted by degenerate states. The flat-band eigenstates
are compact localized within one or several unit cells of the
lattice. The wave input on-resonance with the flat-band energy
cannot propagate through the lattice. Thus, the unit cells of the
flat-band lattice as the scattering center are excellent candi-
dates to generate incoherent perfect absorption if the reflection
can be perfectly absorbed via engineering the losses.

Non-Hermitian square plaquette. We consider a uni-
form chain of evanescently coupled resonators [Fig. 2(a)] to
demonstrate the formation of incoherent perfect absorption.
A non-Hermitian square plaquette is embedded in the middle

of the resonator chain at two neighbor dissipative resonators;
the resonators have the loss −iγ . The couplings are −J .
The resonators have the resonant frequency ωc and support
the counterclockwise and clockwise modes, which are the
time-reversal counterparts [51]. The scattering properties for
the counterclockwise and clockwise mode are the same. In
the coupled mode theory [35,52,53], the equation of motion
for the resonator mode of the ports is

i
df j

dt
= −J f j−1 − J f j+1, (| j| > 1), (1)

FIG. 2. (a) Schematic of a non-Hermitian square plaquette
(dashed black box) embedded in the resonator array. (b) The reflec-
tion (in red) and transmission (in blue) as a function of the input
wave vector and loss. (c) The reflection and transmission at γ = J .
(d) The simulations of perfect absorption for the initial Gaussian
wave packet centered at Nc = −50 with σ = 10 and kc = π/2. (e)
The absorptance as a function of disorder strength. The blue curve is
the analytic result of the minimum absorptance, and the black (red)
curve is the numerical result of the minimum (average) absorptance
of 105 samples. The disorder is randomly chosen with a uniform
distribution in the interval (−1, 1) of disorder strength. The shaded
area is the disordered absorptance range.

L022006-2



ROBUST INCOHERENT PERFECT ABSORPTION PHYSICAL REVIEW RESEARCH 6, L022006 (2024)

and

i
df∓1

dt
= −J f∓2 − J fa(d ), (2)

where f j (| j| � 1) is the mode amplitude for the port res-
onator j and fs (s = a, b, c, d) is the mode amplitude for the
scattering center resonator s. The resonant frequency term ωc

is removed from the equations of motion for simplicity. The
system is equivalently transformed into a rotating frame with
the frequency ωc. The equations of motion for the resonator
modes of the scattering center are

i
dfa

dt
= −J fd − J fb − J f−1 − iγ fa, (3)

i
dfb

dt
= −J fa − J fc, (4)

i
dfc

dt
= −J fb − J fd , (5)

i
dfd

dt
= −J fc − J fa − J f1 − iγ fd . (6)

In the elastic scattering process, we have f j(s) =
ψ j(s)e−iω(k)t , where ψ j(s) is the steady-state wave function of
the resonator. The incoming wave is reflected and transmitted
by the scattering center. The steady-state solution is a super-
position of two counterpropagating plane waves e±ik j , where
the wave momentum k is a real number. For the wave injected
from the left side of the resonator array, we denote the steady-
state wave function in the left port as ψ j = eik j + re−ik j ( j <

0) and the steady-state wave function in the right port as
ψ j = teik j ( j > 0), where r and t are the reflection and trans-
mission coefficients, respectively. The scattering center has
the inversion symmetry. Thus, the reflection and transmission
are symmetric [54,55], being independent of the direction of
the input wave.

Substituting the wave functions into Eqs. (1) and (2), we
obtain the dispersion ω(k) = −2J cos k of the ports. Substi-
tuting the wave functions into Eqs. (3)–(6), we obtain the
scattering coefficients (see Supplemental Material, Sec. A
[56]). The reflection and transmission as the functions of the
input wave momentum k are depicted in Figs. 2(b) and 2(c).
The total intensity of the scattered light is less than unity as a
consequence of the losses [57]. At the resonant input k = π/2
for γ = J , the perfect absorption occurs with vanishing reflec-
tion and transmission r = t = 0. In this case, the scattering
matrix is a 2 × 2 null matrix. Thus, any superposition of res-
onant input wave is perfectly absorbed at the non-Hermitian
square plaquette, forming an incoherent perfect absorption. In
Fig. 2(d), we perform the dynamics of the incoherent perfect
absorption for the resonant wave injected in the left port [58].
The numerical simulations agree well with the predictions.

Incoherent perfect absorption is independent of the rela-
tive phases and amplitudes of the incoming waves from both
ports and overcomes the limitation of perfect absorption being
confined to coherent or unidirectional input. Nevertheless, we
emphasize that the incoherent perfect absorption is still sensi-
tive to the system parameters and the disorder in the scattering
center affects the absorption efficiency. Then, the incident
waves cannot be completely absorbed. Figure 2(e) shows the
decreased absorptance as a function of disorder strength in

the couplings of non-Hermitian square plaquettes. The min-
imum absorptance is 80% at a coupling disorder strength of
20% (see Supplemental Material, Sec. B [56]). The random
disorder causes fluctuation in the observed minimum absorp-
tance, which reduces as the number of samples increases.

Effective scattering center. We consider the purely incom-
ing wave solution of the two-port non-Hermitian scattering
system shown in Fig. 2(a),

� j =
{

αeik j, ( j < 0),
βe−ik j, ( j > 0),

(7)

where α : β indicates the relative amplitude and phase of
the input waves in the left and right ports. It is important to
note that any superposition of input waves from the left and
right ports can be completely absorbed, making any form of
α : β a perfect absorption solution for the incoherent perfect
absorber. In the following analysis, the momentum k does not
necessarily have to be a real number in � j .

The projection theory provides an effective Hamiltonian
that equivalently describes the original system in a re-
duced dimension [59,60], which is the effective scattering
center. From Eq. (7), the wave function continuity yield-
ing the wave functions of the connection resonator a and
d are �a = αeik·0 and �d = βe−ik·0. From Eqs. (3) and
(6), the contribution of the wave function at the port to
the scattering center is −Jαeik·(−1) and −Jβe−ik·1. From
the equivalence −Jαeik·(−1) ≡ −Je−ikαeik·0 = −Je−ik�a and
−Jβe−ik·1 ≡ −Je−ikβe−ik·0 = −Je−ik�d , the coupling to the
ports effectively reduces into the on-site term −Je−ik at the
resonators a and d . In this scenario, the effective scattering
center takes the form of

H eff
c (k) = −

⎛
⎜⎜⎝

iγ + Je−ik J 0 J
J 0 J 0
0 J 0 J
J 0 J iγ + Je−ik

⎞
⎟⎟⎠. (8)

The purely incoming wave solution usually corresponds to a
complex frequency, which is not a steady-state solution as this
leads to the input waves growing or decaying exponentially
with time. However, the purely incoming wave solution can be
turned to a real frequency by the loss, forming the steady-state
of perfect absorption.

The effective scattering center includes the energy of the
input wave, i.e.,

det |H eff
c (k) − ω(k)| = 0, (9)

where we obtain the momentum k that satisfies the purely
incoming solution. We plot the solution for different loss rates
γ in Fig. 3(a). When γ < J (γ > J), there are two complex
k located in the upper (lower) half plane, i.e., Im(k) > 0
[Im(k) < 0]. For γ = J , the two complex k meet on the real
axis at k = π/2. The two perfect absorption solutions are
degenerate and linearly independent as verified from the ef-
fective scattering center H eff

c (π/2), which has two degenerate
energy levels at ω(π/2) = 0. The corresponding degenerate
eigenstates are (1, 0,−1, 0)T and (0,−1, 0, 1)T , as illustrated
in Fig. 3(b). Two degenerate eigenstates constitute a pair of
inversion-symmetric counterparts as a consequence that the
scattering center is inversion symmetric. In this case, the
inversion symmetry plays an important role in the formation

L022006-3



H. S. XU AND L. JIN PHYSICAL REVIEW RESEARCH 6, L022006 (2024)

FIG. 3. The purely incoming solution of the non-Hermitian
square plaquette of Fig. 2(a). (a) Trajectories of two k for the purely
incoming solution as γ varies from γ /J = 0 (black solid circles)
to γ /J = 2 (black arrows), and they meet at γ /J = 1 (cyan hollow
circle). (b) Two degenerate eigenstates of the non-Hermitian square
plaquette at γ /J = 1.

of incoherent perfect absorption [39], which is not necessary
in a more general framework. This point is demonstrated as
follows.

The destructive interference of on-resonance degenerate
eigenstates from the effective scattering center at a single
connection resonator provides a strategy to destroy the ex-
tension feature of the perfectly absorbing state and create
the incoherent perfect absorption. The localization on differ-
ent ports caused by the destructive interference ensures that
the incoming waves from each port are completely absorbed
(see Supplemental Material, Sec. C [56]). Specifically, the
nonzero wave function in the resonator a (d) represents the
incoming wave from the left (right) port, while the zero wave
function in the resonator d (a) causes the vanishing of the
incoming wave from the right (left) port. Therefore, the scat-
tering center independently absorbs the incoming waves from
the left and right ports.

Stub ribbon. The incoherent perfect absorber is not unique.
The identification of the effective scattering center holding
degenerate eigenstates becomes a critical point to obtain an
incoherent perfect absorber. The flat-band lattice meets the
prerequisite for the incoherent perfect absorption. Notably,
the dispersionless flat band holds a huge number of degenerate
energy levels [61–66]. These eigenstates compactly localize
within several neighbor unit cells across the lattice [67–70].
These compact localized states are linear independent. Thus,
the flat-band lattice is a promising candidate for an effective
scattering center. The incoherent perfect absorption is possible
through engineering the losses.

We consider a stub ribbon in Fig. 4(a) [71]. The stub ribbon
is a prototypical quasi-one-dimensional flat-band lattice com-
posed of three sublattices (A, B, C) [72–75]. The sublattices
have the resonant frequency ωc. The lattice is formed by the
coupling t1 between the sublattices A and B and the coupling
t2 between the sublattices B and C. The Hamiltonian of the
stub ribbon is

Hstub =
∑

n

[t1A†
nBn + t2(B†

nCn + C†
n Bn+1)] + H.c., (10)

where A†
n, B†

n, and C†
n (An, Bn, and Cn) denote the creation

(annihilation) operators for the three sublattices in the nth

FIG. 4. (a) Schematic of the stub ribbon. The sublattices A, B, C
are denoted by the blue, green, and yellow solid circles, respectively.
The dashed box depicts one of the compact localized states associ-
ated with the zero-energy flat band. (b) and (c) are the eigenenergies
of a 30-site stub ribbon without disorder and with disorder, respec-
tively. The parameter is chosen t1 = t2/2. In (c), all the couplings
deviate from the set parameters within the range of [−20%, 20%].

unit cell. We plot the eigenenergies of a 30-site stub ribbon
in Fig. 4(b). The stub ribbon has two dispersive bands and
one zero-energy flat band in the middle. The flat band exhibits
a tenfold degeneracy, which increases with the expansion of
the lattice size. The wave function amplitudes for each site
of the unnormalized eigenstate of the flat band are depicted
in Fig. 4(a), which are compactly localized within two neigh-
bor unit cells and have nonvanishing amplitudes only at the
sublattices A and C. Notably, the flat band in the stub ribbon
is protected by the chiral symmetry (see Supplemental Ma-
terial, Sec. D [56]), rendering it independent of the coupling
strengths. The chiral symmetry and flat band persist even in
the presence of coupling disorder [76,77]. The eigenenergies
in the presence of coupling disorder are shown in Fig. 4(c).
The coupling disorder affects two dispersive bands, leading to
the perturbations in their eigenenergies [78], while the zero-
energy flat band is immune to the coupling disorder similarly
as in the topological edge state [79]. The robustness is always
desirable for practical applications [80–84].

Robust incoherent perfect absorber. To design a robust
incoherent perfect absorber, the stub ribbon as the scattering
center is connected to two semi-infinite coupled resonator
chains (Fig. 5). The two resonator chains serve as the input
and output ports, which are coupled to the sublattice C sites
from any two different unit cells of the stub ribbon. The port
coupling is −J and the resonant frequency is ωc.

We focus on the on-resonant incident wave with the mo-
mentum k = π/2. The steady-state solutions formed by the
incident wave injected from the upper and lower ports into
the stub ribbon are shown in Figs. 5(a) and 5(b), respectively.
The losses at the connection resonators are γ = J . The prop-
agation direction of the plane wave is indicated by the purple
arrow. The uniform intensity observed at the input port reveals
the presence of only incident waves, indicating the vanishing
reflection. Moreover, the zero intensity at the output port indi-
cates the vanishing transmission. The incident wave injected
from the input port propagates without reflection to the output
port until being absorbed at the connection resonators. The
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Ordered Disorder(a) (b) )d()c(

0

max

FIG. 5. The steady-state solutions for different incident directions [(a), (b)] without disorder and [(c), (d)] with disorder. The color bar
indicates the intensity of wave function. The non-Hermitian stub ribbon is the stub ribbon in Fig. 4 with additional losses at the two connection
sites. The port coupling is chosen J = t2.

incident waves injected from different ports are both trapped
within the stub ribbon and completely absorbed without any
reflection or transmission. These demonstrate the incoherent
perfect absorption.

The proposed incoherent perfect absorber, without the
requirement of coherent input, exhibits robust high absorp-
tion efficiency. We emphasize that the zero-energy flat band
is a key factor for the formation of incoherent perfect ab-
sorption in the stub ribbon. The superposition of compact
localized states of the flat band as the incoming wave solution
of the scattering system creates the destructive interference
at the two connection resonators, respectively. This ensures
the complete absorption of incoming waves injected from
both directions. Furthermore, the flat band is maintained in
the presence of random coupling disorder. Consequently, the
incoherent perfect absorption is robust against the random
coupling disorder although the distribution of the steady-state
solutions within the stub ribbon is affected. The steady-state
solutions in the presence of random coupling disorder are
depicted in Figs. 5(c) and 5(d). In addition, the incoherent
perfect absorption induced by the stub ribbon is also robust
against the random detuning in the sublattice B (see Supple-
mental Material, Sec. E [56]).

The proposed approach for the construction of robust
incoherent perfect absorbers can be applied to other quasi-
one-dimensional systems such as the rhombic lattice [85–87]

and the two-dimensional systems such as the Lieb lattice
[88–90], including various of non-Hermitian flat-band lattices
[91–98] . The incoherent perfect absorption is induced by the
interplay between the engineered loss and flat-band localiza-
tion. In addition, the incoherent perfect absorption protected
by the specific symmetries demonstrates remarkable robust-
ness to the disorder. The robust incoherent perfect absorption
can be implemented in the coupled waveguides and other
platforms [99].

Conclusion. We have found that the linearly indepen-
dent destructive interference of the on-resonance degenerate
eigenstates from the effective scattering center at the port
connections creates the incoherent perfect absorption. The
resonant inputs are completely absorbed without the require-
ment of a proper coherent input, which is beneficial for
future applications. The degenerate eigenstates of the effective
scattering center are required, but the inversion symmetry is
not necessary [39]. Furthermore, we have proposed a robust
incoherent perfect absorption using the flat-band localiza-
tion. The proposed incoherent perfect absorption protected
by the chiral symmetry is immune to the disorder, leading
to the high absorption efficiency. Our findings are insightful
for the perfect absorption of light, microwaves, sound, me-
chanical waves, and beyond.
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