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N-body antibunching in a degenerate Fermi gas of 3He∗ atoms
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A key set of observables for investigating quantum systems are the n-body correlation functions, which provide
a powerful tool for experimentally determining coherence and directly probing the many-body wave function.
While the (bosonic) correlations of photonic systems are well explored, the correlations present in matter-wave
systems, particularly for fermionic atoms, are still an emerging field. In this work, we use the unique single-atom
detection properties of 3He∗ atoms to perform simultaneous measurements of the n-body quantum correlations,
up to the fifth order, of a degenerate Fermi gas. In a direct demonstration of the Pauli exclusion principle, we
observe clear antibunching at all orders and find good agreement with predicted correlation volumes. Our results
pave the way for using correlation functions to probe some of the rich physics associated with fermionic systems.
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Pair correlations for photons were first considered in at-
tempts to explain the Hanbury-Brown and Twiss (HBT)
effect, where correlations between intensity fluctuations were
observed for a thermal light source [1]. The increased prob-
ability of two photons arriving at a detector simultaneously
compared to random chance (termed bunching) is caused
by the constructive interference between individual photons.
Glauber famously reconciled this effect with a full quan-
tum description of coherence based on n-body correlation
functions, which started the field of quantum optics [2]. The
experimental realization of trapped neutral atoms at ultracold
temperatures with large de Broglie wavelengths opened the
possibility of conducting equivalent optics experiments with
atoms instead of photons, termed quantum atom optics. There
have since been a number of studies on the measurement
of nth-order bosonic correlation functions in a variety of
ultracold systems [3–14]. These explorations are significant
for investigating quantum statistics, quantifying information
on the coherence and size of a quantum source as well as
providing deeper insight into many-body quantum behavior.

Ultracold atoms also open up the fascinating possibility
of measuring fermionic correlation functions, which have no
equivalent in classical optics. In the HBT effect for fermionic
fields, the antisymmetry of the wave function leads to destruc-
tive interference between possible propagation paths and thus
a decreased probability of simultaneous detections [15]. This
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direct demonstration of the Pauli exclusion principle is re-
ferred to as antibunching and, unlike bosonic bunching, has no
classical counterpart [16]. However, partly due to there being
less ultarcold fermionic experiments compared to bosons [17],
there have been only a handful of studies on the second-order
correlation function of neutral fermions [15,16,18] and a sin-
gle measurement of three-atom correlations [19] but nothing
on higher-order fermionic correlation functions.

Here we present the measurement of the normalized
fermionic correlation functions simultaneously from second
to fifth order for a ballistically expanding degenerate Fermi
gas (DFG) of 3He∗ atoms. For comparison, we also present the
second-order correlation function of a thermal cloud of 4He∗

atoms, which is used to sympathetically cool the 3He∗ atoms,
as they each display distinct behavior [20–22]. We utilize a
Multi-Channel Plate (MCP) with a delay-line detector (DLD)
to reconstruct the distribution of an ultracold 3He∗ and 4He∗

mixture [23] with single atom resolution in the far field after
ballistic expansion [24]. This allows us to directly determine
correlation functions for both bosonic (4He∗) and fermionic
(3He∗) atoms, with our only limiting factors on maximum
correlation function order achievable being data rates and
detector resolution. We are able to observe fermionic anti-
bunching for every order up to n = 5. We also investigate how
the correlation width of the fermionic cloud varies with cloud
size. Our results agree with theory [20] when considering the
effects of finite detector resolution and binning size (details in
Appendices).

Correlation functions were introduced by Glauber [2] to
characterize the coherence between an n-tuple of particles in
space and time. We consider an nth order correlation function
that considers n-fold coincidence count rates

G(n)(r1, t1; . . . ; rn, tn)

= 〈�̂†(r1, t1)�̂(r1, t1) . . . �̂†(rn, tn)�̂(rn, tn)〉, (1)
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where �̂†(ri, ti ) is the field operator for a particle at position
ri at time ti and the angle brackets denote averaging. Since
here we will only be studying equilibrium distributions, we
can ignore the ti variable and only consider G(n)(r1; . . . ; rn).
To physically interpret the nth-order correlation function, we
take the normalized version

g(n)(r1; . . . ; rn) = G(n)(r1; . . . ; rn)

ρ(r1)ρ(r2) . . . ρ(rn)
, (2)

where ρ(ri ) = G(1)(ri; ri ) = 〈�̂†(ri )�̂(ri )〉, which gives the
probability of detecting n particles at points (r1) to (rn) with
respect to random chance. For instance, a measurement of
g(n)(0, . . . , 0) = 1 implies that the detection probability be-
tween the various points follows an uncorrelated Poissonian
distribution. In contrast, g(n)(0, . . . , 0) > 1 implies there is
bunching present in the system and g(n)(0, . . . , 0) < 1 implies
antibunching.

Our experiment starts with a combined degenerate Fermi
gas of 3He∗ atoms and a Bose-Einstein condensate (BEC)
of 4He∗ atoms, both trapped in a magnetic trap with
trapping frequencies for the 3He∗ atoms of ωx,y,z = 2π ×
(58(3), 694(1), 701(2))Hz [23,25]. After the trap is switched
off, the clouds fall ∼850 mm (fall time tTOF = 416 ms) onto a
MCP and DLD, which can detect the 3D location of individual
atoms with ∼130 µm x, y and ∼3 µs z resolution [24,26]. Due
to the different masses of the two helium species, applying a
small magnetic field gradient during time-of-flight (TOF) sep-
arates the arrival times of the clouds, allowing the distribution
of each species to be measured in a single shot [23]. The TOF
is sufficiently long that the detected position distribution at the
detector is close to the cloud’s in-trap momentum distribution
and hence the correlation functions correspond approximately
to the in-trap momentum.

The single atom resolution in 3D allows us to reconstruct
correlation functions directly. For simplicity, we only consider
correlations along the single axis with the highest detector
resolution (the z axis of the ballistic expansion). Since this
corresponds to the arrival time of a falling cloud at the detec-
tor, we refer to this as correlations in arrival time t . We can
therefore consider the simplified volume integrated correla-
tion function, which for the second order is

g(2)(τ ) ≡
∫∫

dr dt G(2)(r, t ; r, t + τ )∫∫
dr dtρ(r, t )ρ(r, t + τ )

. (3)

Here, we have averaged over all arrival times and are hence
now finding the correlation between detected events with a
delay τ between their arrival times. The area of the spatial
integral over the x and y directions is chosen to be com-
parable to the correlation lengths in these directions so that
all events within the integration volume are correlated. We
will also extend this logic to the nth order correlation to
obtain the simplified volume integrated correlation function
g(n)(τ1, . . . , τn−1), as shown in Fig. 1 for g(3)(τ1, τ2) (see Ap-
pendix A for further details).

In Figs. 2(a) and 2(b), we show the experimentally mea-
sured g(2)(τ ) for a cloud of ultracold bosons (a) and fermions
(b). Both distributions have the expected Gaussian form, with
bunching [i.e., g(2)(0) > 1] visible in the thermal 4He∗ atoms
and antibunching [g(2)(0) < 1] evident for the DFG of 3He∗

MCP detector

yx

z

g

FIG. 1. Schematic showing how correlation functions are mea-
sured experimentally. An initially trapped cloud (top, blue) is
released and expands as it falls onto an MCP detector (grey), which
measures the arrival times of each atom as well as their x-y spa-
tial locations. To construct the unnormalized third-order correlation
function (G(3)(τ1, τ2)), all subsequent atoms arriving within a spatial
volume �x and �y of each atom have their arrival time differences
τ1 and τ2 (bottom right) recorded and histogrammed.

(a)

(b)

FIG. 2. The second-order normalized correlation function g(2)(τ )
for (a) fermionic 3He∗ atoms and (b) thermal bosonic 4He∗ atoms.
The measured correlation amplitudes for (a) and (b) are g(2)(0) =
0.84(1) and g(2)(0) = 1.11(6), while the correlation lengths are lt =
240(10) and 180(40) µs, respectively. The data in (a) have �t =
133 µs, �x = 130 µm, and �y = 560 µm, and is averaged over 2000
experimental runs. The data in (b) use bin widths of �t = 100 µs,
�x = 130 µm, and �y = 420 µm and is averaged over 300 exper-
imental runs, with each run containing 116 separately out-coupled
clouds of atoms, similar to Ref. [24]. The errors are estimated from
the standard deviation of the counts of correlated tuples across all
experimental runs.
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atoms. The temperature of the 4He∗ atoms is T = 200(30) nK,
determined by fitting the thermal wings of the 4He∗ distribu-
tion, as in [23].

By fitting Gaussians to the data in Figs. 2(a) and 2(b)
(see Appendix B for details), we find the correlation length
at the detector for the DFG is lt = 240(10) µs, while for
the thermal 4He∗ cloud, it is lt = 180(40) µs. Incorporating
experimental factors such as finite binning and detector reso-
lution (as in previous investigations [6]), we perform a Monte
Carlo simulation (see Appendix C for details) and find an
expected correlation amplitude of g(2)(0) = 0.83 for the DFG,
which agrees well with the experimentally measured value of
0.84(1). We similarly find the expected correlation length for
the 3He∗ atoms lt = 269 µs, which again agrees well with the
measured value of 270(10) µs.

To further investigate the dependence of the antibunching
on temperature, we vary the final temperature of the 3He∗

atoms by evaporating more of the coolant gas (4He∗). This
reduces the temperature while keeping the total number of
fermions approximately the same. As there are few bosons
left in the mixture and most of those remaining are in the con-
densate, it becomes difficult to ascertain an accurate measure
of temperature from the 4He∗ cloud, as discussed in Ref. [23].
Hence, we use the time-of-flight width of the Fermi cloud,

given by σTOF = tTOF
γ (ξ )

√
kBT
m (see Appendix C for details), as a

proxy for temperature.1 Note that the time-of-flight width is
isotropic even for a degenerate Fermi cloud. Figure 3 shows
the measured correlation length lt (a) and maximum anti-
bunching amplitude g(2)(0) (b) as a function of σTOF, along
with theoretical expected values (see Appendix C for details).

Higher order correlation functions can also be calculated
from the same dataset. The full representation of a higher-
order correlation function requires a n + 1 dimensional graph,
for example, g(3)(τ1, τ2) for our data are shown in the 3D
surface plot in Fig. 4, with (τ1, τ2) as defined in Fig. 1.
The antibunching effect is visible in the reduced value of
g(3)(τ1, τ2) as τ1, τ2 → 0. As representations of higher-order
correlation functions are difficult to visualize, we instead plot
the diagonal correlation g(n)(τ ) ≡ g(n)(τ, . . . , τ ), where all
time differences are equal (i.e., τ1 = τ2 . . . τn−1 = τ ). The di-
agonal correlation function for n = 3 is indicated by the black
line in Fig. 4. In Fig. 5, we plot g(n)(τ ) for n = 3 (a), 4 (b),
and 5 (c). Each plot shows antibunching for g(n)(0), and we
observe that the minimum antibunching amplitude decreases
with increasing order, as shown in Fig. 5(d).

To characterize this change in g(n)(0) with n, we assume
that the atoms are noninteracting particles, meaning that we
can apply Wick’s theorem to decompose all higher-order
correlation functions into a function of first-order corre-
lation functions g(1)(τ ) [9,22,27]. The exact form of this

1The reason we do not use this expression to estimate tempera-
ture directly is that γ (ξ ) diverges at low temperatures, making a
straightforward conversion very difficult. To make a proper estimate
of temperature, the temperature T and the degeneracy parameter γ

(which is itself temperature dependent) must be calculated together
using a full fit of the TOF distribution and an atom number estimate.
See Ref. [23] for further details.

(a)

(b)

FIG. 3. The experimentally measured temporal correlation
length lt (a) and correlation amplitude g(2)(0) (b) for various time-
of-flight widths of the 3He∗ cloud. These are compared to the
theoretically ideal value (dashed line) and expected value taking into
account experimental factors (solid line) where realistic effects such
as finite binning, resolution and dark counts are included via a Monte
Carlo simulation (see Appendix C). For (b), the theoretically ideal
value is g(2)(0) = 0 for all cloud widths, and hence it is not included
in the plot. We find excellent agreement for both correlation length
and amplitude between the experimentally measured values and the
expected nonideal values.

decomposition differs for bosons and fermions. For example,
the third-order correlation function can be expressed as (see
Appendix A)

g(3)(τ1, τ2) = 1 + 2R(g(1)(τ1)g(1)(τ2)g(1)(τ2 + τ1))

+ η(|g(1)(τ1)|2 + |g(1)(τ2)|2 + |g(1)(τ2 + τ1)|2),
(4)

FIG. 4. Surface plot of the third-order normalized correlation
function of a DFG of 3He∗ atoms g(3)(τ1, τ2). The data have �t =
133 µs, �x = 130 µm, and �y = 560 µm, and is averaged over 2000
experimental runs.
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(a) (b)

(d)(c)

FIG. 5. The normalized correlation functions of a DFG of 3He∗ atoms at orders: (a) g(3)(τ ), (b) g(4)(τ ), and (c) g(5)(τ ). (d) The correlation
amplitude, denoted as g(n)(0), for values of n ranging from 2 to 5, is presented, with the red shaded area illustrating the theoretically predicted
values of amplitude. The diagonal correlation lengths extracted from the fitted Gaussians in (a), (b), and (c) are 300(10), 390(50), and
340(100) µs, respectively. All orders have bin sizes �t = 100 µs, �x = 130 µm, and �y = 420 µm, and are averaged over 2000 experimental
runs. The errors are estimated from the standard deviation of the counts of correlated tuples across all experimental runs.

where η = −1 for fermions and +1 for bosons. The gen-
eral form of the decomposition of g(n)(0) in terms of g(1)(0)
for fermions (η = −1) given by Wick’s theorem (see Ap-
pendix A) is

g(n)(0) = 1 −
n∑

k=2

(
n

k

)
(k − 1)(−1)kg(1)(0)k, (5)

where
(n

k

)
is the binomial coefficient. In general, g(1)(0) =

1, and hence all powers of g(1)(0) also equal 1, leading to
g(n)(0) = 0 for all n.2

However, for the finite experimental resolution and bin size
used here, the amplitude of the antibunching will be signifi-
cantly reduced, similar to what has been previously observed
for bosonic bunching [6,22]. Since the resolution and bin size
are the same for all dimensions (τ1, . . . , τn−1), the first-order
correlation function is the same for all τi, i.e., g(1)(τ1 → 0) =
. . . = g(1)(τn−1 → 0). Thus the relation in Eq. (5) can be used
to predict the experimentally expected value of higher order
g(n)(τ → 0) when the experimentally determined value of
g(1)(0) does not equal 1, by using the value of g(1)(0) extracted
from lower order experimentally measured correlation func-
tions. Given this, we can extrapolate the predicted amplitudes

2To clarify this point further it is easier to consider the form
g(n)(0) = ∑

ν∈P(n) η
i(ν )g(1)(0)|supp(ν )| (see Appendix A for derivation)

where P(n) is the set of permutations of the numbers 1 to n, supp(ν )
is the support of the permutation ν, and i(ν ) is the number of in-
versions contained in the permutation. Given that there is an equal
number of permutations with odd and even numbers of inversions,
we will have an even number of positive negative, which will exactly
cancel to give zero.

of higher-order correlation functions based on the measured
amplitude of g(1)(0) implied from lower-order ones. Based on
the measured value of g(2)(0) = 0.84(1) (see Fig. 2), we find
g(1)(0) = 0.40(1). The amplitudes from third to fifth order
are hence predicted to be g(3)(0) = 0.65(1), g(4)(0) = 0.48(2),
and g(5)(0) = 0.34(4), respectively. The shaded region in
Fig. 5(d) compares this to the value measured from the actual
correlation functions. These values all compare well with the
experimental values of g(3)(0) = 0.66(1), g(4)(0) = 0.52(3),
and g(5)(0) = 0.3(1)s.

In conclusion, we have measured the fermionic normal-
ized correlation functions from second to fifth order. The
observed antibunching in n-tuples of 3He∗ atoms agrees with
the predictions of Wick’s theorem combined with realistic
experimental effects. Our method could be extended to in
principle measure arbitrarily high-order correlations, with the
major limiting factor being data acquisition rates. The ability
to measure higher-order correlation functions of fermionic
atoms opens up a range of experimental possibilities. These
include probing interesting many-body phenomena such as
time crystals [28] and d-wave superconductors [29] or inves-
tigating foundational quantum mechanical effects such as the
weak equivalence principle [30].

ACKNOWLEDGMENTS

This work was supported through Australian Research
Council Discovery Project Grant No. DP190103021. S.S.H.
was supported by Australian Research Council Future Fel-
lowship Grant No. FT220100670. K.F.T. was supported
by an Australian Government Research Training Program
scholarship.

L022003-4



N-BODY ANTIBUNCHING IN A DEGENERATE FERMI … PHYSICAL REVIEW RESEARCH 6, L022003 (2024)

TABLE I. Decomposition of the nth order fermionic (η = −1) correlation functions, for n from 2 to 5, in terms of the first-order correlation
function. The notation Sk represents the set of k element subsets of the set S. Alternatively, this can be thought of as the set of possible outcomes
for the operation S choose k. We have also used the notation DR(S) = {k ∈ M(D(S)) : |k| = R}, i.e., the set of elements of M(D(S)) with

cardinality equal to R, where D are the derangements of the set S a and M acts on a set of permutations X as follows M(X ) = {{{i, ν(i)} : i ∈
[1, |ν|]} : ν ∈ X }, giving the mapping set.b Generally, ti can be thought of as some arbitrary dimension position vector. For comparison, we
show the simplified decomposition of g(n)(0), where all ti = 0.

n g(n)(t1, . . . , tn) c g(n)(0)

2 1 − |g(1)(t1, t2)|2 1 − g(1)(0)2

3 1 − ∑
(i, j)∈[1,3]2 |g(1)(ti, t j )|2 + 2R(g(1)(t1, t2)g(1)(t1, t3)g(1)(t2, t3)) 1 − 3g(1)(0)2 + 2g(1)(0)3

4 1 − ∑
(i, j)∈[1,4]2 |g(1)(ti, t j )|2 + ∑

k∈[1,4]3 2R(
∏

(i, j)∈k2 g(1)(ti, t j )) 1 − 6g(1)(0)2 + 8g(1)(0)3 − 3g(1)(0)4

+ ∑
k∈D2 ([1,4])

∏
(i, j)∈k |g(1)(ti, t j )|2 − ∑

k∈D4([1,4]) 2R(
∏

(i, j)∈k g(1)(ti, t j ))

5 1 − ∑
(i, j)∈[1,5]2 |g(1)(ti, t j )|2 + ∑

k∈[1,5]3 2R(
∏

(i, j)∈k2 g(1)(ti, t j )) 1 − 10g(1)(0)2 + 20g(1)(0)3 − 15g(1)(0)4 + 4g(1)(0)5

+ ∑
l∈[1,5]4 (

∑
k∈D2 (l )

∏
(i, j)∈k |g(1)(ti, t j )|2 − ∑

k∈D4(l ) 2R(
∏

(i, j)∈k g(1)(ti, t j )))

aPermutations of S such that no element remains at the same place. This can also be stated as the support of the permutation is equal to the
original set S.
bThis can be thought of as the set of the sets of pairs of elements that map to each other for each permutation contained in set X .
cIn this column of the table, we have used the indexation shorthand (i, j) ∈ S for {{i, j} : {i, j} ∈ S and i < j}. The purpose of the implicit
condition i < j is to disambiguate the indexation as if {i, j} ∈ S then { j, i} ∈ S. Thus if a sum or product over {i, j} ∈ S were followed strictly
it could lead to double counting.

APPENDIX A: DECOMPOSITION OF g(n)

VIA WICK’S THEOREM

The general form of Wick’s theorem can be simplified for
a correlation function using its respective anticommutation or
commutation relations (see example 5 in Ref. [31])

〈N̂1 . . . N̂n〉 =
∑

ν∈P(n)

ηi(ν)
n∏

j=1

〈�̂†
j �̂ν( j)〉. (A1)

Here P([1, n]) is the set of permutations of the numbers
1 to n, i(ν) is the number of inversions contained in the
permutation ν, N̂k = �̂

†
k �̂k is the number operator, ν( j) rep-

resents the jth term in the permutation ν and η is +1 for
bosons and −1 for fermions. We can readily identify the LHS
of Eq. (A1) as G(n)(r1, t1; . . . ; rn, tn) (for now we will con-
sider G(n)(t1; . . . ; tn) for notational convenience and relevance,
however, this derivation is also valid for an arbitrary position
vector in some parameter space) and the RHS as a function of
various G(1)′s. Using the notation of time differences, we can
then rewrite Eq. (A1) as

G(n)(t ; . . . ; tn) =
∑

ν∈P([1,n])

ηi(ν)
n∏

j=1

G(1)(t j ; tν( j) ), (A2)

where G(1)(tk; tm) = 〈�̂†
j �̂ν( j)〉 by definition. As we wish to

consider the normalized correlation functions, we divide both
sides by ρ1 . . . ρn to give

g(n)(t1, . . . , tn) =
∑

ν∈P([1,n])

ηi(ν)
n∏

j=1

G(1)(t j ; tν( j) )√
ρ j

√
ρν( j)

. (A3)

Note that we have used the fact that each term in the sum has
exactly one �̂

†
k and �̂k for each k between 1 to n and have “as-

signed” each of these a normalization of
√

ρk from ρ1 . . . ρn. If
ν( j) = j, we have G(1)(t j ; t j ) = ρ j , hence by definition these
terms are canceled by the denominator, otherwise we obtain

g(1)(t j ; tν( j) ). Thus

g(n)(t1, . . . , tn) =
∑

ν∈P([1,n])

ηi(ν)
∏

j∈supp(ν)

g(1)(t j, tν( j) ), (A4)

where supp(ν) is the support of the permutation ν 3. We can
use Eq. (A4) to derive any order correlation function. Table I
shows the correlation functions up to n = 5.

To match the measured correlation function, we simplify
further by substituting tk = t + τk−1 and integrating over t to
obtain the averaged correlation function

g(n)(τ1, . . . , τn−1)

=
∑

ν∈P([0,n−1])

ηi(ν)
∏

j∈supp(ν)

∫
dt g(1)(t + τ j ; t + τν( j) ),

(A5)

where we have shifted the indexation down by 1 to reflect
the relabeling and τ0 = 0. Next, note that

∫
dt g(1)(t + τ j ; t +

τν( j) ) = ∫
dt ′ g(1)(t ′; t ′ + τν( j) − τ j ); thus we can write these

terms as g(1)(τν( j) − τ j ). From this, we see the exact form of
the decomposition of the average nth-order correlation func-
tion, g(n)(τ1, . . . , τn−1), in terms of g(1)(τ )′s is given by Wick’s
theorem as

g(n)(τ1, . . . , τn−1)

=
∑

ν∈P([0,n−1])

ηi(ν)
∏

j∈supp(ν)

g(1)(τν( j) − τ j ). (A6)

In the text, we consider the diagonal correlation function
g(n)(τ ) ≡ g(n)(τ, . . . , τ ), and specifically we are looking at

3The support of a permutation is the set of numbers (or more
generally elements) that are moved from their original positions
under that permutation. For example, the support of the permutation
1234 �→ 2134 is {1, 2}.
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the behavior of g(n)(τ → 0). Note τ can be positive or neg-
ative, however, we assume the same sign for all particles
(i.e., τ1, . . . , τn−1 all have the same sign). In the ideal case
of g(1)(τ → 0) = 1, Eq. (A6) gives the interesting result that
if n � 2 and η = −1 then g(n)(τ ) = 0 for all τ . This intu-
itively makes sense, as g(n)(τ ) > 0 for n � 2 would require
two fermions to be measured at the same location, which in
the ideal case is impossible. We will see, however, there is
deviation from this ideal case experimentally due to various
effects. Hence, to predict the value of g(n)(0) under realistic
measurement conditions we set τ = 0 (assuming nothing of
the value of g(n)(0)) and reach

g(n)(0) =
∑

ν∈P([0,n−1])

ηi(ν)g(1)(0)|supp(ν)|. (A7)

This can be rewritten as

g(n)(0) = 1 +
n∑

k=2

T (k)

(
n

k

)
ηk−1g(1)(0)k, (A8)

where T (k) =!k for bosons (η = 1), with !k denoting the sub-
factorial of k, and T (k) = (k − 1) for fermions (η = −1). To
understand this simplification consider that for |supp(ν)| = k,
we must displace k elements of our original set of n, so we(n

k

)
choices of the set of elements that we are displacing. For

bosons, we then simply consider the number of possible ways
we can permute these k elements such that none are left in
their original positions, known as a derangement, of which
there are !k ways to do for such a number of elements. For
fermions, we instead need to consider how many derange-
ments have a different parity of inversions. This is given by
(−1)k−1(k − 1), noting this difference is independent of the
original set of elements we chose.

For g(1)(0) = 1, we obtain the expected relations of
g(n)(0) = n! for bosons and g(n)(0) = 0 for fermions. For
bosons, this is can be understood by noting that each term
in the sum from Eq. (A7) contributes 1, and thus the total sum
equals the number of terms, i.e., the number of permutations
of the numbers from 0 to n − 1, which is n!. For fermions, we
see that the sum in Eq. (A7) is equal to the difference between
the number of permutations with odd and even numbers of
inversions, which is always equal, and hence we obtain 0. As
discussed in the main text, this implies that the measured value
of g(n)(τ → 0) can be predicted solely by the experimentally
measured value g(1)(0). It can be seen that the measured value
rapidly deviates from zero for g(1)(0) �= 0, explaining the mea-
sured g(n)(τ ) distributions (see main text Fig. 5).

APPENDIX B: EXACT FORM OF CORRELATION
LENGTH FOR NONINTERACTING FERMI GASES IN A

HARMONIC TRAP

We construct our experimental correlation functions us-
ing a time-of-flight distribution and hence discuss correlators
in terms of detected position and time. However, since
our measurements are in the far-field, which approximately
corresponds to the in-trap momentum distribution, for this
derivation we will use the in-trap position and momentum
of the trapped atoms, i.e. the underlying distribution which
produces the time-of-flight profile. We discuss how to convert

these momentum correlation lengths to their time-of-flight
equivalents in the text and Appendix C.

From Appendix A, we can see that if we find an analytical
form for the correlation length of G(1)(p1; p2) we can use
Wick’s theorem to extend it to find an analytical form for any
G(n)(p1; . . . ; pn). The definition of the first-order coherence
function can be rewritten in terms of the Wigner function
W (p, q) [20] as

G(1)(r, r′) =
∫

dpe−ip·(r−r′ )/h̄W

(
p,

r + r′

2

)
, (B1)

G(1)(p, p′) =
∫

dre−ir·(p−p′ )/h̄W

(
p + p′

2
, r

)
, (B2)

with r, r′ and p, p′ referring to the in-trap position and
momentum, respectively. Under the local density (or semi-
classical) approximation, which assumes W (p, q) is equiv-
alent to a spatially homogeneous system with a varying
chemical potential, the Wigner function of harmonically
trapped atoms is given by

W (p, q) = 1

(2π h̄)3

1

Exp[βp2 + αq2]/ξ − η
, (B3)

where α = m
2kBT , β = 1

2mkBT , q = (ωxx)2 + (ωyy)2 + (ωzz)2 is

the normalized position vector, and ξ = eμ/kBT is the fugacity.
Notice that exchanging the momentum p and position q in a
harmonic trap is equivalent to exchanging the values of β and
α. Thus the momentum and position correlation functions are
functionally equivalent for noninteracting gases in a harmonic
trap.

The main quantity of interest measured in this work is the
average normalized correlation function. We consider the full
definition

g(1)(�p) ≡
∫

dP G(1)
(
P − �p

2 ; P + �p
2

)
∫

dP
√

ρ
(
P − �p

2

)√
ρ
(
P + �p

2

) , (B4)

where ρ(pi ) = G(1)(pi; pi ) is the momentum density function.
Using Eqs. (B2) and (B3), we can approximate the solution of
Eq. (B4) (assuming �p  (2mkBT )

1
2 ) as

g(1)(�p) ∼ exp

[
−�p2

2l2
c

]
(B5)

with correlation length li = h̄
2si

γ (ξ ), where si =
√

kT
mω2

i
is the

size of a thermal cloud in the i axis of a harmonic trap and

γ (ξ ) =
√

Li3(ηξ )
Li4(ηξ ) . This approximation accurately predicts the

bulk behavior of the correlation functions, even in highly
degenerate regimes. Accordingly, we can express g(2)(�p)
and g(3)(�p1,�p2) for fermions as Gaussian functions with
corresponding correlation lengths over the whole temperature
range of interest. Following from the relations in Table I, we
find

g(2)(�p) = 1 − e
− �p2

l2c (B6)

g(3)(�p1,�p2) = 1 − e−
(

�p1
lc

)2

− e−
(

�p2
lc

)2

− e−
(

�p1+�p2
lc

)2

+ 2e
− �p2

1+�p2
2+(�p2+�p1 )2

2l2c . (B7)
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TABLE II. Detection and analysis parameters used in Monte
Carlo simulation. Analysis parameters are the same as those used
to analyze the experimental data.

Parameter Value Ref

DLD resolution (t, x, y) (3 µs, 120 µm, 120 µm) [6,9]
Flight time (tTOF) 0.417 s

Trap freq (ωx, ωy, ωz )/2π (58(3), 694(1), 701(2))Hz [23]
Dark count rate 0.046 mm−2 s−1

Bin size (�t, �x, �y) (100 µs, 130 µm, 420 µm)

Note that the sign of the �p2 + �p1 terms is due to us
considering an ordered set of events. If we were looking at
an unordered set, we would need to consider an average of
�p2 + �p1 and ±(�p2 − �p1).

APPENDIX C: PREDICTED EXPERIMENTAL
CORRELATION AMPLITUDES AND LENGTHS

While the results from Appendixes A and B indicate the
expected correlation length and amplitude at a given order
for a perfect detection system, experimental measurements
will typically yield reduced amplitudes, due to a variety of
effects. To understand the most relevant effects, we will briefly
describe how the nth order correlation function is computed
for this particular work. We first compute the spatial (both in

(a)

(b)

FIG. 6. Results of the Monte Carlo simulation for (a) first-
and (b) second-order Fermi correlation functions (black x’s) for
correlation lengths of (lt , lx, ly ) = (244.6 µs, 83.0 µm, 996.6 µm)
(corresponding to σTOF = 8 mm). The predicted correlation length
and amplitude for g(2)(τ ) are lSIM

t = 250(1) µs and g(2)(0)SIM =
0.853(1), respectively. These are extracted by fitting a Gaussian to
the simulation output (blue line). For comparison, we also show the
ideal distributions, plotted using Eqs. (B5) and (B6), for the first and
second orders, respectively (red dashed line).

(a)

(b)

FIG. 7. The experimentally measured temporal correlation
length lt (a) and correlation amplitude g(2)(0) (b) for various time-
of-flight widths of the 3He∗ cloud compared to the theoretically ideal
value (red dashed line) and the results of our Monte Carlo simulation
(black solid line).

x and y axes) and temporal differences between all pairs of
atom detections of a given atomic species. For the nth order
correlation function, we consider all n-tuples of particles, for
example, pairs in second order and triplets in third order,
whose spatial difference between all pairs of particles in the
tuple are less than a given threshold �x and �y for the x and y
axes respectively. This is practically equivalent to integrating
the full correlation function over these dimensions. Hence,
we expect improved correlation amplitudes for decreasing �x
and �y at the cost of signal-to-noise performance. We then
take all the temporal differences τ1, . . . , τn−1 for all detected
atoms in a given experimental realization. These differences
can then be histogrammed to obtain the unnormalized n-th
order correlation function along the time dimension. The un-
ormalized distribution is averaged over many experimental
realizations to improve signal-to-noise. To normalize the dis-
tribution, we repeat the above procedure, however this time
for counts recorded in different experimental realizations,
which cannot possibly interfere and hence should contain no
underlying correlation. This allows us to determine the bulk
distribution. Note that the detection efficiency does not affect
the normalized correlation function, as it proportionally af-
fects the numerator and the denominator by the same amount.
From this, we see that the strongest deviation from the ideal
case comes from the effective integration over the x and y axes
due to the finite bin size. There is also a slight integration over
the time axis due to finite bin size. This effect compounds at
higher orders, as for each new particle added we integrate over
another set of axes. Less noticeable, but still significant effects
are the resolution of the detector and the dark, or background,
count rate of the detector.
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To account for these effects, we can perform a Monte Carlo
simulation of our full measurement process, as described
above, assuming the underlying true distribution follows the
relations in Appendixes A and B with the various imperfec-
tions included. As our detection parameters, such as resolution
and dark count rate, are fixed, and the ideal correlation ampli-
tude is always zero for any order, the only relevant variable in
our simulation is the correlation length. The correlation length
of the trapped gas, as derived in Appendix B, is given by li =

h̄
2si

γ (ξ ). As mentioned above, in practice, we experimentally
measure the correlations in a ballistically expanding cloud.
Hence, we rescale the momentum space correlation length to
give the experimentally measured TOF correlation lengths

lTOF
i = h̄tTOFγ (ξ )

2msi
, (C1)

where tTOF is the flight time, and now i ∈ (t, x, y). For the t
axis, as we measure arrival time rather than a location, the
TOF scaling is slightly different. If the expansion of the cloud
is negligible compared to the fall distance, we can consider a
correlation time of

lt = lTOF
z

gtTOF
= h̄γ (ξ )

2mszg
, (C2)

where g is the acceleration due to gravity.
We can now test the validity of our model by varying

the TOF correlation length and comparing the results to the
measured amplitude and correlation length. In practice, we
vary the correlation length by changing the temperature of
the trapped cloud. However, as it is difficult to ascertain an
accurate measure of temperature from the TOF profile of
the 3He∗ cloud alone, we instead use the (isometric) time-

of-flight width of the cloud, given by σTOF = tTOF
γ (ξ )

√
kBT
m , as

a proxy for temperature. From Eq. (C1), we can see that
lTOF
i = h̄ωi

2mσTOF
t2
TOF, and thus, as ωi is fixed σTOF alone is a

sufficient initial condition for our Monte Carlo simulation and
can be directly compared to experiment.

The relevant experimental parameters used in our
simulation are listed in Table II. The resultant g(1) and
g(2) distributions for correlation lengths of (lt , lx, ly) =
(244.6 µs, 83.0 µm, 996.6 µm) (σTOF = 8 mm) with and
without the experimental imperfections are shown in Fig. 6.
The predicted values for the experimentally measured
amplitude and correlation length for various cloud sizes are
shown in Fig. 7, showing good agreement between theory
and experiment and demonstrating that it is crucial to include
these realistic imperfections in order to obtain accurate
predictions.
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