PHYSICAL REVIEW RESEARCH 6, L012063 (2024)

Higher-order quantum transformations of Hamiltonian dynamics
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We present a quantum algorithm to achieve higher-order transformations of Hamiltonian dynamics. Namely,
the algorithm takes as input a finite number of queries to a black-box seed Hamiltonian dynamics to simulate a
desired Hamiltonian. Our algorithm efficiently simulates linear transformations of any seed Hamiltonian with a
bounded energy range consisting of a polynomial number of terms in system size, making use of only controlled-
Pauli gates and time-correlated randomness. This algorithm is an instance of quantum functional programming,
where the desired function is specified as a concatenation of higher-order quantum transformations. By way of
example, we demonstrate the simulation of negative time-evolution and time-reversal, and perform a Hamiltonian

learning task.
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Efficiently simulating the dynamics of complex quantum
systems is often stated as one of the main motivations of quan-
tum computing. While such simulation is considered hard on
classical computers, a range of efficient quantum algorithms
have been developed for simulating Hamiltonian dynamics
[1-7]. The core principle behind the standard Hamiltonian
simulation algorithms is that the desired Hamiltonian dy-
namics can be well approximated by a series of (arguably)
simpler quantum operations. These algorithms rely on having
a classical description of the desired Hamiltonian, which can
often be used for obtaining a decomposition into a sum of
easily implementable terms. This limits the way we can de-
velop large-scale, complex quantum programs for dynamics
simulation. Quantum algorithms which do not require detailed
descriptions of quantum resources have a higher flexibil-
ity in quantum software development. This is related to the
fundamental problem of understanding how much quantum
algorithms need to rely on the classical description of their
inputs in order to achieve quantum advantages in information
processing.

In this work we study Hamiltonian dynamics that can be
implemented given a seed Hamiltonian H without using a
classical description of H. That is, we study transformations
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of black-box Hamiltonians. We present a quantum algo-
rithm that simulates the dynamics of f(H), where f is any
physically realizable linear function of H, given a description
of f and using a black-box Hamiltonian H with a bounded
energy range. This algorithm is an instance of a higher-order
quantum transformation on the unitary operation realized by
the seed Hamiltonian dynamics. The functions that the algo-
rithm can implement include both the negative time-evolution
and the time-reversal of an unknown Hamiltonian evolution
by considering f(H) = —H and f(H) = H" (transposition
of H in terms of the computational basis), respectively. Such
general transformations have applications ranging from fun-
damental physics simulations to potential improvements in
state-of-the-art algorithms, such as the Hamiltonian singular
value transformation [8]. We also show an application of
our algorithm for Hamiltonian learning [9], in particular, a
task of efficiently estimating a parameter of a multiparameter
Hamiltonian using Hamiltonian dynamics, by appropriately
choosing f(H).

Our work constitutes the first systematic study of higher-
order quantum transformations in the context of Hamiltonian
dynamics. Higher-order quantum transformations have at-
tracted significant attention in recent years in the context of
quantum circuit transformations and are also known as super-
channels, supermaps, quantum combs, and process matrices
[10-15]. Higher-order algorithms for quantum computation
can be seen as an analog of functional programming in classi-
cal computing, where the possible inputs to an algorithm are
quantum channels (for example, unitaries) specified “opera-
tionally” by their input-output description only (i.e., as black
boxes).

Previous works on this topic have focused on the possible
transformations that can be achieved when the input channels
are taken to be a finite sequence of quantum gates [10,15-24].
Yet, the resources available in a given computation are not
always best described by a finite sequence of gates but rather
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by a continuously parameterized Hamiltonian evolution. In
fact, it is known that certain functions such as controlization,
which cannot be implemented on black box unitaries [25-28],
can in fact be implemented if access to the underlying Hamil-
tonian evolution is given [17,29]. This is because it is possible
to apply an arbitrary fractional power of an unknown Hamil-
tonian evolution by changing the evolution time, whereas
applying a fractional power is not possible for black box
unitaries.

Summary of algorithm. We now present our algorithm in
detail (see Algorithm 1). We represent Hilbert spaces of an
n-qubit quantum system and a single-qubit auxiliary system
by H and H., respectively. We assume that we can invoke
the Hamiltonian evolution e=#* of a seed Hamiltonian H €
L(#H), with an upper bound Ay of the difference between the
maximum and the minimum energy eigenvalues given, for any
time T > 0.

We assume that f(I) o I, which ensures that the resulting
evolution e~/ preserves the invariance under the global
phase of =7, This class of f covers all physically realizable
linear transformations of H as shown in Appendix C of the
Supplemental Material [30]. In our setting we are given the
Pauli transfer matrices y [31] as in Eq. (1) of a Hermitian-
preserving linear map f : L(H) — L(H). Our algorithm
simulates the Hamiltonian evolution e~/ for any ¢ > 0
representing the time for the transformed Hamiltonian dynam-
ics up to an error € > 0 and variance 4¢. (See the Supplemen-
tal Material [30] for the proof in Appendix A, which relies on
more general results proven in Appendix B. A similar analysis
of variance is obtained in probabilistic state synthesis [32].)

The runtime of our algorithm is upper-bounded as
O(B*1*Ajn/e) in terms of B:=2)"; :|va.al, which is a
function of elements of the Pauli transfer matrix. The total
evolution time of the input dynamics e~** is B¢, which can
be shown from step 3 and step 6 of Algorithm 1.

In Algorithm 1 the gate sequence Vy ; is constructed only
from controlled-Pauli gates, which are Clifford gates. The
only element which may be non-Clifford is the black-box
dynamics e~#7. Dependence on the transformatlon f is spec-
ified only through the probability distribution pl. _ in choosing
(i, w) in Step 4 and through the gate X°/ in Step 5. The
total runtime O(B%*t*>A%n/e¢) is calculated by multiplying the
number of iterations N with the runtime O(n) for implement-
ing the controlled-Pauli gates in Vy ; using CNOT gates and
single-qubit Clifford gates. Note that N is independent of
n, even though the set of parameters j € ({0, 1, 2, 3}”)4 has
exponentially many terms. The procedure of Algorithm 1 is
summarized in Fig. 1.

To understand how the gate sequence V¢ ; transforms the
Hamiltonian at each iteration, Fig. 2 shows the explicit evo-
lution of an arbitrary seed Hamiltonian H = ) ; cyoy after
pre- and postprocessing, with each successive gate in the
(random) sequence Vy ; averaged over ¥ and v, namely,
o Do Ve d® e"H’ﬁ/N)VTJ For simplicity, H is assumed
to be traceless (any trace-full part is proportional to the iden-
tity and is therefore invariant under the overall transformation
f, by construction). The gate sequence of & 6,, dYow Vi ®

e HIB/N )Vf‘ ; is constructed in a functional programming

ALGORITHM 1. Simulating e~#/#

Input:

o A finite number of queries to a black-box Hamilto-
nian dynamics e *7 of a seed Hamiltonian H with
7 > 0 on an n-qubit system H

e An upper bound Ag of the difference between the
maximum and the minimum energy eigenvalues

e A Hermitian-preserving linear map f : L(H) — L(H)
satisfying f(I) o I, which can always be represented
by the Pauli transfer matrix elements vg,4 as

f= Z Va,a fa,a, (1)
@€{0,1,2,3}"
7€{0,1,2,3}"\(0,...,0)

for some v,z € R and functions fgz 4 defined by
fwalos) == 0pa0w (2)
for any tensor products of Pauli operators oz :=

0, @+ Q0w,, where oo=1, 01=X, 02=Y, 03=2
and 4, U, @€ {0,1,2,3}" are Pauli index vectors

e Input state |¢)) € H, Allowed error € > 0, Time ¢t > 0

Output: A state approximating e ™™D |} with an er-
ror less than € (measured by the 1-norm)

Runtime: O(B*t*A%n/e) for B:=23 - - |va.4]
Used Resources: ’

System: H and one auxiliary qubit H.

Gates: e "™ (7 > 0) and controlled-Pauli gates on
He®@H

Procedure:
Compute N := ceil [max (M SﬁtAH)]

—_

2: Initialize:
|current) « |0) ® |¢¥)
3: form=1,...,N do
4: Randomly choose
o (7,7) € ({0,1,2,3}™)? with prob. p&ll, = ow
o (i,%W) € ({0,1,2,3}™)? with prob. p(z) = 2‘7%’7
5: Prepare the gate sequence [with j = (7, ¥, @, )]
where sy 1= H%W (all gates other than X°f are
independent of f) and HAD refers to the Hadamard
gate ,
6: |current) < Vi ;(I ® eﬂHm/N)VfT’j |current)
7: end for

8: Trace out H. of |current)
9: Return |current)

approach, namely, by concatenations of a series of higher-
order transformations, here called Processes @ to @. Each
of these processes is designed to implement a Hamiltonian
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FIG. 1. A circuit representation of Algorithm 1 implementing
the transformation e~ > ¢~/ for an arbitrary Hermitian-
preserving linear map f : L(H) +— L(H) satisfying f(I) o< I. The
unitary e~/ is simulated deterministically and approximately for
an arbitrary input state |¢y) € ‘H and the auxiliary qubit initialized
in the state |0) € H,. The number N on the top-right of the bracket
refers to the number of iterations, while #8/N is the Hamiltonian
evolution time of each iteration. For each iteration an index j =
(9,7, i, w) is randomly chosen from the probability distribution
pj = p%l_%, pff_fb to perform the j-dependent circuit inside the square
brackets.

dynamics whose Hamiltonian is given by
H O0\y\o (H O0\o (H H
en=(5 5) =6 o) 5)
9 H Hoy 9 . 0 I 8 . 0 o3
O',j,‘H O',;HO',} Ca 1 0 Ca Oy 0
g (o 0 g (Vo) o 0
Cii 0 —0g SgN(Y,i)Ca 0 —op )

Applying the first controlled-o; gate before and after the
seed Hamiltonian evolution e #'#/N with ¥ chosen inde-
pendently from the uniform distribution in each iteration
but perfectly correlated between the pre- and postprocessing
within each iteration (Process @) implements Hamilto-
nian controlization [17]. That is, the effective evolution
(ctrloy)e "U®MIB/N (ctrloy) averaged over ¥ simulates a
Hamiltonian of the form H & 0.

Process @ is based on the identity

= Z (1®Uﬁ/)<H(lO Hm)(1®0§/)

n H, H
7€(0,1,2,3) 01 H
1 (trHy trHy
= — 1
on (tngl trHy ®1 @)

where Hyy, Hy, Hyp € L(H) are arbitrary operators, not-
ing that for all i, tr(H) =tr(o;Ho;) =0 and tr(ozH) =
tr(Hoy) = 2"c;. The two gates oy are chosen independently
from the uniform distribution at each iteration.

Algorithm 1 is universal in the sense that it transforms
the dynamics of any seed Hamiltonian H to that of the
Hamiltonian f(H) for any choice of a physically realizable
linear transformation f, even if H is only given as a black
box. Therefore the algorithm is an instance of higher-order
quantum transformations of Hamiltonian dynamics. The al-
gorithm makes use of a general approximation technique for
simulating Hamiltonians of the form g(H) = Zi h;U;HU i
where {U;}; is a set of unitaries, {h;}; is a set of positive
numbers, and H is a seed Hamiltonian. This approximation
is represented by the following circuit:

~ )

{pj«,j}

where A and p; are defined as A := ) h; and p; :=h;/A.
The approximation is based on the randomized Hamiltonian
simulation of Ref. [3] and the identity Ue H'UT = ¢~ VHU"
for any unitary U, time ¢t > 0, and Hermitian operator H. This
technique is also known as Hamiltonian reshaping [33]. Our
algorithm can be seen as a special case of the approximation
(7) with h; =2|y; 3|/16" and U; = Vy ;, where the seed
Hamiltonian has the form / ® H.

Applications of the algorithm. We describe three ap-
plications of our algorithm: the negative time-evolution of
Hamiltonian dynamics e 7 1 ¢f' (1,¢ > 0), the time
reversal of Hamiltonian dynamics ¢ 77 > ¢~ 't (7,1 >
0), and a Hamiltonian single-parameter learning task of
estimating one of the parameters represented by a Pauli coef-
ficient ¢ (Jcz| < 1,9 € {0, 1,2, 3}") of a Hamiltonian H =
> caoq with Heisenberg-limited precision scaling using its
dynamics e 77 (1 > 0).

In general, all three applications can be performed even if
the dynamics e 7 is given as a black box, apart from knowl-
edge of Ay. However, given the knowledge that H belongs
to a subspace of L(#) spanned by the set {03}5c; for some
J C {0, 1, 2,3}, negative time-evolution and time-reversal
can be performed in a runtime of O[poly(]J/|)]. This property
is useful when the Hamiltonian is known to be k-local for
some constant k, in which case J = {w : ||w]|o < k} satisfies
|[J] ~ O(n*), so that the overall runtime is polynomial in the
system size n, based on the fact that Ay is also poly(n).

In quantum algorithms that make direct use of Hamiltonian
dynamics, both the positive and negative time-evolution are
often assumed to be readily accessible. For example, this is
required in the recent Hamiltonian singular value transfor-
mation [8]. However, in practice, a Hamiltonian evolution
being native to a given hardware does not automatically

Seed Hamiltonian
dynamics

FIG. 2. A description of how a seed Hamiltonian H = )_; c303 is transformed after each pair of gates in Algorithm 1, for a fixed choice

of i, w. The labels ® to @ correspond to the Processes defined in the text.
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guarantee that the same is true for the corresponding negative
time-evolution. Therefore the ability to efficiently simulate
the negative time-evolution of any Hamiltonian given as
a black box can decrease the resources required for such
algorithms. On the more foundational side, given access
to a black-box Hamiltonian evolution, one might be inter-
ested in simulating the corresponding time-reversed evolution.
For example, the evolution of an antiparticle can be de-
scribed by the time reversal of the corresponding particle
evolution [34,35].

The simulations of both negative time-evolution and
time-reversal are performed by choosing the function f as
fre(H) := —H and f™(H) := H', respectively, which are
specified by

Peg = —3@ i
v = (=1)"85 (5)
where s, w,) = {j € {1,...,n} | w; = 2}|. In the defini-

tion of y;v, the fact that I"=1,XT=X,YT =-Y, and
ZT = Z are used.

In both of these cases, 8 =2} 5  |[va.al = 2(4" — 1), and
thus the runtime O(B%t> A%,n/¢€) is exponential in n in general.
However, when H is in a subspace of £(7) spanned by the set

{03)3es, We can define

. —Spu (@el)
neg ,__ R
Wit {0 (otherwise) ©
rev .__ (_1)512811),1; (ﬁ S -])
Vo = {0 (otherwise), )

since f(H) does not depend on values of yy ; for ii ¢ J. In
this case B = 2|J| so the runtime scales as O(|J[*t>*A%n/e),
which is O[poly(n)] for a realistic Hamiltonian whose number
of terms |J| is polynomial in the system size n. For a general
Hamiltonian linear transformation f, if both the seed Hamil-
tonian and the transformed Hamiltonian have a polynomial
number of terms in 7, then the nonzero elements of f can be
truncated so that the runtime O(8%t*> A% n/¢€) has a polynomial
dependence on n.

We note that the runtime scales as t? for time ¢ of the
output dynamics e~/ meaning that in order to perform
the time-reversal or negative time-evolution by this algorithm,
the dynamics is slowed down quadratically in terms of time
t. As the total evolution time of the input dynamics e~"#7 is
Bt, the dynamics is also slowed down by a constant factor §.
An application of simulating the negative time-evolution to
Hamiltonian block encoding [8] is described in Appendix D
of the Supplemental Material [30].

Finally, we consider an application of our algorithm
to Hamiltonian single-parameter learning. Estimation tech-
niques of parameters of unknown Hamiltonians for Hamil-
tonian learning have many applications in quantum sensing
[36], analyzing properties of quantum many-body physics
[37], and quantum device calibration [38]. Recently, an esti-
mation technique achieving the Heisenberg limit for precision
scaling in the estimation of parameters of a low-interaction
Hamiltonian utilizing transformations of Hamiltonian dynam-
ics has been proposed [33]. Our algorithm can be used to
extend similar techniques to a more general class of n-qubit
Hamiltonians.

Our estimation algorithm consists of two steps. The
first step simulates e~ /s (t > 0) using the Hamiltonian
dynamics e** ( > 0), where ¥ specifies c; that we want to
estimate and f; is a Hermitian-preserving linear map chosen
as fz(H)=c¢;Y ® I ® --- ® 1. This function f; “filters” to
keep only the coefficient c; and changes all other coefficients
to be zero, and then sends the coefficient c3 to the coefficient
of Y ® I ® ---® I, which is chosen for the convenience of
the second step. The corresponding y is given by yy; :=
8%.(2.0....0)0a,5- The second step performs robust phase estima-
tion [39] using e~ /+#)" similarly to the technique in [33] to
obtain an estimate for c; by measuring only the first qubit in
our algorithm. The total evolution time is O[(log §)/€], where
€ is precision and § is the failure probability, which achieves
the Heisenberg-limited precision scaling. The detailed pro-
cedure and analysis of the total evolution time are given in
Appendix E of the Supplemental Material [30].

For parameter estimation of low-interaction Hamiltonians,
the method of [33] can perform the full-parameter estimation
in a single run with total evolution time O[(logd)/€e], while
our method requires polynomially longer total evolution time,
as we need to repeat the single-parameter estimation for every
parameter to perform the same task. However, the method of
[33] requires exponential total evolution time for estimating a
high-interaction coefficient (a coefficient of a k-local Hamil-
tonian term with k = O(n)), while our algorithm requires
the same total evolution time for any coefficient. Therefore
our algorithm is suitable for estimating a single parameter of
nonlocal Hamiltonians.

Summary and outlook. We presented a universal algorithm
that can simulate any linear physically realizable Hermitian-
preserving transformation of any Hamiltonian dynamics given
as a black box. Our algorithm requires only a finite number
of calls to the black-box Hamiltonian dynamics and random
pairs of correlated controlled-Pauli gates. We showed how
our algorithm can simulate both the time-reversal and nega-
tive time-evolution of any unknown Hamiltonian dynamics,
as well as an application to Hamiltonian single-parameter
learning, efficiently estimating a single parameter of a mul-
tiparameter Hamiltonian.

In our algorithm the probability distributions for choosing
multiple gates at different time steps are correlated in the sense
that the gate V¢ ; is always used together with its adjoint VfT, i
and the probabilities for picking its component controlled-
Pauli gates are correlated via a joint probability distribution.
This algorithm demonstrates how multiply correlated random-
ness can be leveraged to construct unitary operators without
introducing decoherence. Our algorithm is a starting point
for the emerging field of black-box Hamiltonian simula-
tion. One possible future direction is to extend higher-order
quantum transformations of Hamiltonian dynamics to Hamil-
tonian transformations beyond Hermitian-preserving linear
transformations.
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