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Multiple pulsar-timing-array collaborations have reported strong evidence for the existence of a gravitational-
wave background. We study physical implications of this signal for cosmology, assuming that it is attributed to
scalar-induced gravitational waves. By incorporating primordial non-Gaussianity fNL, we specifically examine
the nature of primordial curvature perturbations and primordial black holes. We find that the signal allows for
a primordial non-Gaussianity fNL in the range of −4.1 � fNL � 4.1 (68% confidence intervals) and a mass
range for primordial black holes mpbh spanning from ∼10−5M� to ∼10−2M�. Furthermore, we find that the
signal favors a negative non-Gaussianity, which can suppress the abundance of primordial black holes. We also
demonstrate that the anisotropies of scalar-induced gravitational waves serve as a powerful tool to probe the
non-Gaussianity fNL. We conduct a comprehensive analysis of the angular power spectrum within the nano-Hertz
band. Looking ahead, we anticipate that future projects, such as the Square Kilometre Array, will have the
potential to measure these anisotropies and provide further insights into the primordial universe.
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Introduction. Multiple collaborations of pulsar timing array
(PTA) have presented strong evidence for a signal exhibiting
correlations consistent with a stochastic gravitational-wave
background (GWB) [1–4]. The strain has been measured to
be on the order of 10−15 at a pivot frequency of 1 yr−1.
Though this GWB aligns with expectations from astrophysical
sources, specifically inspiraling supper-massive black hole
(SMBH) binaries [5], it is important to note that the current
datasets do not rule out the possibility of cosmological ori-
gins or other exotic astrophysical sources, which have been
explored in collaborative accompanying papers [6,7]. Notably,
several cosmological models have demonstrated superior fits
to the signal compared to the SMBH-binary interpretation. If
these alternative models are confirmed in the future, they may
provide compelling evidence for new physics.

Our focus lies on the cosmological interpretation of the
signal, specifically the existence of scalar-induced gravita-
tional waves (SIGWs) [8–13]. This possibility had been used
for interpreting the NANOGrav 12.5-year dataset [14] in
Refs. [15–24]. It was recently revisited by the PTA col-
laborations [6,7], but the statistics of primordial curvature
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perturbations was assumed to be Gaussian. However, it was
demonstrated that primordial non-Gaussianity fNL signifi-
cantly contributes to the energy density of SIGWs [25–33].
This indicates noteworthy modifications to the energy-density
spectrum, which is crucial for the data analysis of the recent
PTA datasets, as studied by Ref. [34] during the preparation
of our present paper. We will address the importance of fNL

to SIGWs through Bayesian analysis over the NANOGrav
15-year (NG15) data. On the other hand, it has been shown
that primordial non-Gaussianity could generate initial inho-
mogeneities in SIGWs, leading to anisotropies characterized
by the angular power spectrum [33]. Related studies can be
found in Refs. [35–43]. Our analysis will also encompass a
comprehensive examination of the angular power spectrum
within the PTA band. Moreover, this spectrum is capable of
breaking the degeneracies among model parameters, partic-
ularly leading to possible determination of fNL, and playing
a crucial role in distinguishing between different sources of
GWB. Therefore, by interpreting the signal as originating
from SIGWs, we aim to study physical implications of PTA
datasets for the nature of primordial curvature perturbations,
including their power spectrum and angular power spectrum.

We will study implications of the aforementioned re-
sults for scenarios involving formation of primordial black
holes (PBHs), which was accompanied by the production of
SIGWs. Enhanced primordial curvature perturbations not only
lead to formation of PBHs through gravitational collapse [44],
but also produce GWB via nonlinear mode couplings. The
study of SIGWs thus allows us to explore the PBH scenarios
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[45–52]. Related works analyzing observational datasets can
be found in Refs. [6,7,20–22,48,53], and influence of pri-
mordial non-Gaussianity on the mass function of PBHs was
also studied [24,54–67]. Taking fNL into account, we will
reinterpret the constraints on power spectrum as constraints
on the mass range of PBHs.

SIGW energy-density fraction spectrum. Here, we show a
brief but self-consistent summary of the main results of the
energy-density fraction spectrum in a framework of SIGW
theory.

For the homogeneous and isotropic component of a
GWB, the energy-density fraction spectrum is defined as
�̄gw(η, q) = ρ̄gw(η, q)/ρcrit (η) [68], where q represents the
wavenumber, ρcrit denotes the critical energy density of the
universe at conformal time η, and the overbar signifies quan-
tities at the background level. This definition implies that∫

ρ̄gw(η, q)d ln q corresponds to the energy-density fraction
of GWB [68]. The spectrum can be formally expressed as
ρ̄gw(η, q) ∼ 〈hi j,l hi j,l〉, where hi j (η, q) represents the strain
with wave vector q, and the angle brackets denote an en-
semble average. For subhorizon-scale SIGWs, we have hi j ∼
ζ 2, leading to �̄gw(η, q) ∼ 〈ζ 4〉 [8,9], where ζ (q) repre-
sents curvature perturbations in the early universe. In the
case of primordial Gaussianity, semianalytic formulas for
�̄gw(η, q) were derived in Refs. [12,13], with earlier relevant
works in Refs. [8,9]. However, in the presence of primordial
non-Gaussianity fNL, there are not such semianalytic formu-
las. Recent literature provided relevant studies on this topic
[25–33,69]. In this work, we adopt the conventions established
in our previous study [33].

To quantify contributions of fNL to the energy density of
SIGWs, we express the primordial curvature perturbations ζ

in terms of their Gaussian components ζg, i.e., [70]

ζ (q) = ζg(q) + 3

5
fNL

∫
d3k

(2π )3/2
ζg(k)ζg(q − k). (1)

Here, fNL represents the nonlinear parameter that character-
izes the local-type primordial non-Gaussianity. To simplify
the subsequent analytic formulas, we introduce a new quantity
as follows:

FNL = 3
5 fNL. (2)

It is worth noting that perturbation theory requires the condi-
tion ASF 2

NL < 1, where AS will be defined later. We define the
dimensionless power spectrum of ζg as

〈ζg(q)ζg(q′)〉 = δ(3)(q + q′)
2π2

q3
�2

g(q). (3)

We assume that �2
g(q) follows a log-normal distribution with

respect to ln q [21,31,71–73],

�2
g(q) = AS√

2πσ 2
exp

[
− ln2(q/q∗)

2σ 2

]
, (4)

where AS represents the spectral amplitude at the spectral peak
wavenumber q∗, and σ denotes the standard deviation that
characterizes the width of the spectrum. The wavenumber q
is straightforwardly converted into the frequency ν, namely,
q = 2πν.

FIG. 1. Unscaled (or equivalently, AS = 1 and FNL = 1) con-
tributions to the energy-density fraction spectrum of SIGWs. We
display σ = 1/2, 1, 2 and produce this figure by using the original
data of Ref. [33].

Via detailed derivations based on Wick’s theorem, we can
decompose �̄gw ∼ 〈ζ 4〉 into three components depending on
the power of fNL. The complete derivations have been sim-
plified by employing a Feynman-like diagrammatic approach
[25,28,30–33]. Here, we present the final results,

�̄gw(η, q) = �̄(0)
gw(η, q) + �̄(1)

gw(η, q) + �̄(2)
gw(η, q), (5)

where we provide the analytic expressions for �̄(n)
gw, which are

proportional to A2
S (ASF 2

NL)n with n = 0, 1, 2, in the Appendix.
They were evaluated using the vegas package [74], while
their numerical results for σ = 1/2, 1, 2 are reproduced in
Fig. 1. Specifically, �̄(0)

gw corresponds to the energy-density
fraction spectrum in the case of Gaussianity, while �̄(1)

gw and
�̄(2)

gw fully describe the contributions of local-type primordial
non-Gaussianity fNL.

The energy-density fraction spectrum of SIGWs at the
present conformal time η0 can be expressed as

�̄gw,0(ν) = �rad,0

[
g∗,ρ (T )

g∗,ρ (Teq )

][
g∗,s(Teq )

g∗,s(T )

] 4
3

�̄gw(η, q). (6)

In the above equation, �rad,0h2 = 4.2 × 10−5 represents the
physical energy-density fraction of radiations in the present
universe [75]. T and Teq correspond to the cosmic tempera-
tures at the emission time and the epoch of matter-radiation
equality, respectively. ν can be related to T , g∗,ρ (T ), and
g∗,s(T ) as follows [21]:

ν

nHz
= 26.5

(
T

GeV

)[
g∗,ρ (T )

106.75

] 1
2
[

g∗,s(T )

106.75

]− 1
3

. (7)

Here, g∗,ρ and g∗,s represent the effective relativistic degrees
of freedom in the universe, which are tabulated functions of
T as provided in Ref. [76]. To illustrate the interpretation
of present PTA data in the framework of SIGWs, we depict
�̄gw,0(ν) with respect to ν in Fig. 2, using three specific sets
of model parameters.

Implications of PTA data for new physics. In this section,
we investigate the potential constraints on the parameter space
of the primordial power spectrum and PBHs using the NG15
data. While it is possible to obtain constraints from other PTA
datasets using the same methodology, we do not consider
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FIG. 2. Energy-density fraction spectra of SIGWs for different sets of independent parameters. The NG15 data are also shown for
comparison.

them in this study, as they would not significantly alter the
leading results of our present work.

Through performing a Bayesian analysis [7], we could
gain valuable insights for the posteriors of four independent
parameters, i.e., FNL, AS , σ , and ν∗, for which the priors are
set to be FNL ∈ [−30, 30], log10 AS ∈ [−3, 1], σ ∈ [0, 5], and
log10(ν∗/Hz) ∈ [−9,−5]. Here, we adopt the aforementioned
condition of perturbativity, namely, ASF 2

NL < 1. The inference
results within 68% confidence intervals are given as

FNL = −0.00+2.45
−2.46, (8)

log10 AS = −0.97+0.65
−0.46, (9)

σ = 1.08+1.08
−0.83, (10)

log10(ν∗/Hz) = −6.99+0.93
−0.45. (11)

We can also recast Eq. (8) into constraints on fNL, i.e.,

fNL = −0.0 ± 4.1. (12)

Figure 3 shows two-dimensional contours in log10 AS − FNL

plane at 68% (dark blue regions) and 95% (light blue regions)
confidence levels. There is a full degeneracy in the sign of

FIG. 3. Two-dimensional contours (blue shaded) in the
log10 AS − FNL plane inferred from the NG15 data. Dotted lines
denote FNL = −(4ζc )−1 while solid curves stand for models, which
expect fpbh = 1 for mpbh = 10−2M�, in the cases of ζc = 0.7 (purple)
and ζc = 1.2 (rose), respectively.

primordial non-Gaussianity fNL, as the energy-density frac-
tion spectrum is dependent of only the absolute value of FNL,
as demonstrated in Fig. 1. The above results indicate that the
PTA observations have already emerged as a powerful tool for
probing physics of the early universe. We can further recast
the constraints on the primordial curvature power spectrum
into constraints on the nature of PBHs, which is characterized
by their mass function. Due to significant uncertainties in the
formation scenarios of PBHs (as discussed in reviews such as
Ref. [43]), we adopt a simplified scenario [62] to illustrate
the importance of fNL. Though it is an approximation, our
results would be consistent with those from numerical rela-
tivistic simulations [77]. The initial mass function of PBHs is
described by

β =
∫

ζ>ζc

P(ζ )dζ =
∫

ζ (ζg)>ζc

1√
2πσg

exp

(
− ζ 2

g

2σ 2
g

)
dζg,

(13)

where P(ζ ) represents the probability distribution function
(PDF) of primordial curvature perturbations, σg is the standard
variance of the Gaussian component ζg in the PDF, and ζc

stands for the critical fluctuation. We further find σ 2
g = 〈ζ 2

g 〉 =∫
�2

g(q)d ln q = AS by considering the power spectrum de-
fined in Eq. (4). Additionally, it is known that ζc is of order
O(1), with specific values of 0.7 and 1.2, as suggested by
Ref. [78].

To evaluate Eq. (13), we divide FNL into two regimes, i.e.,
FNL > 0 and FNL < 0. In the case of FNL > 0, we solve the
equation ζ (ζg) = ζc, yielding a relation

ζg± = −1 ± √
1 + 4FNLζc

2FNL
. (14)

By substituting it into Eq. (13), we gain

β =
(∫ ζg−

−∞
+

∫ +∞

ζg+

)
P(ζg)dζg

= 1

2
erfc

(
ζg+√
2AS

)
+ 1

2
erfc

(
− ζg−√

2AS

)
, (15)
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where erfc(x) is the complementary error function. Similarly,
in the case of −(4ζc)−1 < FNL < 0, we gain

β =
∫ ζg−

ζg+
P(ζg)dζg = 1

2
erfc

(
ζg+√
2AS

)
− 1

2
erfc

(
ζg−√
2AS

)
.

(16)

In contrast, in the case of FNL < −(4ζc)−1, no PBHs were
formed in the early universe, since the curvature perturbations
are expected to never exceed the critical fluctuation. As a
viable candidate for cold dark matter, the abundance of PBHs
is determined as [79]

fpbh � 2.5 × 108β

[
g∗,ρ (Tf )

10.75

]− 1
4
[

mpbh

M�

]− 1
2

, (17)

where mpbh represents the mass of PBHs, and Tf denotes cos-
mic temperature at the formation occasion. Roughly speaking,
mpbh can be related to the horizon mass mH and then the peak
frequency ν∗, namely, [17]

mpbh

M�
� mH

0.31M�
�

( ν∗
5.0nHz

)−2
. (18)

Based on Eq. (11), we could infer that the mass range
of PBHs is the order of O(10−5−10−2)M�. However, the
inferred abundance of PBHs exceeds unity in the case of a
sizable positive FNL, indicating an overproduction of PBHs.
This is because the inferred value of AS is typically one order
of magnitude larger than the value of AS that leads to fpbh = 1.
To illustrate this result more clearly, we include in Fig. 3 two
solid curves corresponding to mpbh = 10−2M� and fpbh = 1
in the cases of ζc = 0.7 (purple curve) and ζc = 1.2 (rose
curve), respectively. For comparison, we mark the critical
value FNL = −(4ζc)−1 with dotted lines. Therefore, we find
that a negative FNL is capable of alleviating the overproduction
of PBHs, especially when considering a sizable negative FNL,
namely, FNL < −(4ζc)−1, which prevents the formation of any
PBHs. However, due to large uncertainties in model buildings,
it remains challenging to exclude the PBH scenario through
analyzing the present PTA data.

In summary, it is crucial to measure the primordial non-
Gaussianity or at least determine the sign of FNL in order to
assess the viability of the PBH scenario. However, it is im-
possible to determine the sign of FNL through measurements
of the energy-density fraction spectrum of SIGWs, due to the
sign degeneracy. In the next section, we will propose that the
inhomogeneous and anisotropic component of SIGWs has the
potential to break the sign degeneracy, as well as other degen-
eracies in model parameters, opening up new possibilities for
making judgments about the PBH scenario in the future.

SIGW angular power spectrum. Here, we investigate the
inhomogeneities and anisotropies in SIGWs via deriving the
angular power spectrum in the PTA band, following the re-
search approach established in our existing paper [33].

The inhomogeneities in SIGWs arise from the long-
wavelength modulations of the energy density generated by
short-wavelength modes. As discussed above, SIGWs orig-
inate from extremely high redshifts, corresponding to very
small horizons. However, due to limitations in the angular res-
olution of detectors, the signal along a line-of-sight represents
an ensemble average of the energy densities over a sizable

number of such horizons. Consequently, any two signals
would appear identical. Nevertheless, the energy density of
SIGWs produced by short-wavelength modes can be spatially
redistributed by long-wavelength modes if there are couplings
between the two. The local-type primordial non-Gaussianity
could contribute to such couplings.

Similar to the temperature fluctuations of relic photons
[80], the initial inhomogeneities in SIGWs at a spatial loca-
tion x can be characterized by the density contrast, which is
denoted as δgw(η, x, q), given by

δgw(η, x, q) = 4π
ωgw(η, x, q)

�̄gw(η, q)
− 1, (19)

where the energy-density full spectrum ωgw(η, x, q) is de-
fined in terms of the energy density, namely, ρgw(η, x) =
ρcrit (η)

∫
d3q, ωgw(η, x, q)/q3. We specifically get ωgw ∼

〈ζ 4〉x, where the subscript x denotes an ensemble average
within the horizon enclosing x [33,35]. We decompose ζg

into modes of short wavelength ζgS and long wavelength ζgL,
namely, ζg = ζgS + ζgL [81]. At linear order in ζgL, we get
δgw ∼ ζgL〈ζgSζ

3
S 〉x, where ζS represents the part of ζ composed

solely of ζgS . Terms of higher orders in ζgL are negligible due
to smallness of the power spectrum �2

L ∼ 10−9 [75]. Using
Feynman-like rules and diagrams, we get an expression for
δgw(η, x, q), i.e., [33]

δgw(η, x, q) = FNL
�ng(η, q)

�̄gw(η, q)

∫
d3k

(2π )3/2
eik·xζgL(k), (20)

where we introduce a quantity of the form

�ng(η, q) = 23�̄(0)
gw(η, q) + 22�̄(1)

gw(η, q). (21)

The present density contrast, denoted as δgw,0(q), can
be estimated analytically using the line-of-sight approach
[82–84]. It is contributed by both the initial inhomogeneities
and propagation effects, given by [35]

δgw,0(q) = δgw(η, x, q) + [4 − ngw,0(ν)](η, x). (22)

Here, ngw,0(q) denotes the index of the present energy-density
fraction spectrum in Eq. (6), given by

ngw,0(ν) = ∂ ln �̄gw,0(ν)

∂ ln ν
� ∂ ln �̄gw(η, q)

∂ ln q

∣∣∣∣
q=2πν

. (23)

For the propagation effects, we consider only the Sachs-
Wolfe (SW) effect [85], which is characterized by the
Bardeen’s potential on large scales

(η, x) = 3

5

∫
d3k

(2π )3/2
eik·xζgL(k). (24)

We assume the statistical homogeneity and isotropy for the
density contrasts on large scales, similar to the study of cosmic
microwave background (CMB) [86].

The anisotropies today can be mapped from the aforemen-
tioned inhomogeneities. The reduced angular power spectrum
is useful to characterize the statistics of these anisotropies. It
is defined as the two-point correlator of the present density
contrast, namely,

〈δgw,0,�m(2πν)δ∗
gw,0,�′m′ (2πν)〉 = δ��′δmm′C̃�(ν), (25)
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FIG. 4. Physical energy-density fraction spectra of SIGWs,
h2�gw,0(ν ) (solid), and the variance of SIGW density contrasts,
h2[�(� + 1)C�(ν )/(2π )]1/2 (dashed). For comparison, we show the
sensitivity region of SKA [87] (gray shaded).

where δgw,0(q) has been expanded in terms of spherical har-
monics, i.e.,

δgw,0(q) =
∑
�m

δgw,0,�m(q)Y�m(n). (26)

We roughly get C̃� ∼ δ2
gw,0 ∝ 〈ζgLζgL〉 ∼ �2

L. Detailed analy-
sis using the Feynman-like rules and diagrams was conducted
in Ref. [33]. Under the assumption of low-� multipoles, we
summarize the main results as

C̃� = 18π�2
L

25�(� + 1)

{
fNL

�ng

�̄gw
+ [4 − ngw,0]

}2

, (27)

which is recast into the angular power spectrum

C�(ν) =
[
�̄gw,0(ν)

4π

]2

C̃�(ν). (28)

Analogous to CMB, for which the root-mean-square (rms)
temperature fluctuations is [�(� + 1)CCMB

� /(2π )]1/2, the rms
density contrast for SIGWs is [�(� + 1)C�(ν)/(2π )]1/2, which
represents the variance of the energy-density fluctuations.
Note that the rms density contrast is constant with respect to
�, but depends on frequency bands.

In Fig. 4, we present the rms density contrast as a function
of gravitational-wave frequency. We also include the energy-
density fraction spectrum for comparison. We find that

√
C̃�

is roughly the order of 10−4, depending on specific model

parameters. It is worth noting that the angular power spec-
trum can break degeneracies among these parameters. For
instance, based on Fig. 4, we observe a coincidence in the
energy-density fraction spectra for three different parameter
sets. However, the angular power spectrum breaks this coinci-
dence, particularly in the case of the sign degeneracy of fNL.
This result suggests that measurements of the anisotropies
in SIGWs have the potential to determine the primordial
non-Gaussianity [33]. Recently, an upper limit of C̃� < 20%
was inferred from the NG15 data [88]. However, this limit is
not precise enough to test the theoretical predictions of our
present work. In contrast, based on Fig. 4, we anticipate that
the Square Kilometre Array (SKA) program [87] will offer
sufficient precision to measure the non-Gaussianity fNL.

Conclusions. In this study, we examined the implications of
recent PTA datasets for understanding the nature of primordial
curvature perturbations and primordial black holes (PBHs).
Specifically, we investigated the influence of primordial non-
Gaussianity fNL on the inference of model parameters, and
vice versa, by analyzing the recent NG15 data. In particular,
at 68% confidence level, we inferred | fNL| < 4.1, which is
competitive with the constraints from measurements of CMB.
Even when considering the non-Gaussianity fNL, we found
that the PBH scenario is in tension with the NG15 data, except
when a sizable negative fNL is considered, which can signifi-
cantly suppress the abundance of PBHs. Our results indicated
that the PTA observations have already emerged as a powerful
tool for probing physics of the early universe and dark matter.
Moreover, we proposed that the anisotropies of SIGWs serve
as a powerful probe of the primordial non-Gaussianity in the
PTA band. For the first time, we conducted the complete
analysis of the angular power spectrum in this frequency band
and found that it can effectively break potential degeneracies
among the model parameters, particularly the sign degener-
acy of fNL. Additionally, we explored the detectability of the
anisotropies in SIGWs in the era of the SKA project.
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Appendix:
Formulae for evaluating the SIGW energy density. After a comprehensive derivation following the methodology presented in

Refs. [31–33], we can precisely express the three terms in Eq. (5) as

�̄(0)
gw(η, q) = 1

3

∫ ∞

0
dt1

∫ 1

−1
ds1J2(u1, v1, x → ∞)

1

(u1v1)2
�2

g(v1q)�2
g(u1q), (A1)
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�̄(1)
gw(η, q) = F 2

NL

3π

2∏
i=1

[ ∫ ∞

0
dti

∫ 1

−1
dsi viui

]{
πJ2(u1, v1, x → ∞)

(u1v1u2v2)3
�2

g(v1v2q)�2
g(u1q)�2

g(v1u2q)

+
∫ 2π

0
dϕ12 cos 2ϕ12J (u1, v1, x → ∞)J (u2, v2, x → ∞)

�2
g(v2q)

v3
2

�2
g(w12q)

w3
12

[
�2

g(u2q)

u3
2

+ �2
g(u1q)

u3
1

]}
, (A2)

�̄(2)
gw(η, q) = F 4

NL

24π2

3∏
i=1

[ ∫ ∞

0
dti

∫ 1

−1
dsi viui

]{
2π2J2(u1, v1, x → ∞)

(u1v1u2v2u3v3)3
�2

g(v1v2q)�2
g(v1u2q)�2

g(u1v3q)�2
g(u1u3q)

+
∫ 2π

0
dϕ12dϕ23 cos 2ϕ12J (u1, v1, x → ∞)J (u2, v2, x → ∞)

× �2
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u3
3

�2
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13

[
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�2
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23
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23

�2
g(w123q)
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123

]}
, (A3)

where we define x = qη, si = ui − vi, ti = ui + vi − 1, and

yi j = cos ϕi j

4

√
ti(ti + 2)

(
1 − s2

i

)
t j (t j + 2)

(
1 − s2

j

) + 1

4
[1 − si(ti + 1)][1 − s j (t j + 1)], (A4a)

wi j =
√

v2
i + v2

j − yi j, (A4b)

w123 =
√

v2
1 + v2

2 + v2
3 + y12 − y13 − y23. (A4c)

The calculation for the average of the squared oscillation J (u, v, x → ∞) has been provided in Ref. [33], as well as in earlier
studies referenced in Refs. [12,13,30,31], i.e.,

J (ui, vi, x → ∞)J (u j, v j, x → ∞) = 9
(
1 − s2

i

)(
1 − s2

j

)
ti(ti + 2)t j (t j + 2)

(
s2

i + t2
i + 2ti − 5

)(
s2

j + t2
j + 2t j − 5

)
8(−si + ti + 1)3(si + ti + 1)3(−s j + t j + 1)3(s j + t j + 1)3

×
{[(

s2
i + t2

i + 2ti − 5
)

ln

(∣∣∣∣ t2
i + 2ti − 2

s2
i − 3

∣∣∣∣) + 2(si − ti − 1)(si + ti + 1)

]

×
[(

s2
j + t2

j + 2t j − 5
)

ln

(∣∣∣∣∣ t2
j + 2t j − 2

s2
j − 3

∣∣∣∣∣
)

+ 2(s j − t j − 1)(s j + t j + 1)

]

+π2�(ti −
√

3 + 1)�(t j −
√

3 + 1)
(
s2

i + t2
i + 2ti − 5

)(
s2

j + t2
j + 2t j − 5

)}
. (A5)

The equations presented in this Appendix can be utilized to numerically calculate the energy density of SIGWs in a self-
consistent manner.
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