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Resonance triplet dynamics in the quenched unitary Bose gas
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The quenched unitary Bose gas is a paradigmatic example of a strongly interacting out-of-equilibrium
quantum system, whose dynamics become difficult to describe theoretically due to the growth of non-Gaussian
quantum correlations. We develop a conserving many-body theory capable of capturing these effects, allowing
us to model the postquench dynamics in the previously inaccessible time regime where the gas departs from
the universal prethermal stage. Our results show that this departure is driven by the growth of strong lossless
three-body correlations, rather than atomic losses, thus framing the heating of the gas in this regime as a
fully coherent phenomenon. We uncover the specific few-body scattering processes that affect this heating
and show that the expected connection between the two-body and three-body contacts and the tail of the
momentum distribution is obscured following the prethermal stage, explaining the absence of this connection
in experiments. Our general framework, which reframes the dynamics of unitary quantum systems in terms of
explicit connections to microscopic physics, can be broadly applied to any quantum system containing strong
few-body correlations.

DOI: 10.1103/PhysRevResearch.6.L012056

Introduction. It is a well-known fact that the quantum
many-body problem scales exponentially with the number
of particles. Hence, despite the rapid rise in available com-
puting power over the last few decades, exact descriptions
typically remain out of computational reach [1,2]. In many
cases, however, simplifying assumptions can be made about
the underlying processes of the system, namely, that they
obey Gaussian statistics and can be described by long-lived
quasiparticles and collective motions of the medium using
just a few degrees of freedom [3]. Such simplifications are
at the heart of our understanding of a wide range of quantum
phenomena, ranging from Fermi liquids and polarons to su-
perfluids and conventional superconductors [4–10].

In realistic quantum systems, however, quasiparticles attain
a finite lifetime due to the presence of non-Gaussian correla-
tions, which allow collisions and decay into the many-body
continuum [11–13]. In extreme cases, these correlations lead
to such short lifetimes that the quasiparticle spectrum is no
longer well defined and the standard simplifications do not ap-
ply. The theoretical challenge of understanding such strongly
correlated systems is important in many branches of physics,
such as condensed matter [14–20], ultracold gases [21–29],
nuclear physics [30–32], and quantum technologies [33–38].
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Due to the large degree of control over the interaction
strength, ultracold atomic gases provide a versatile quan-
tum simulator for probing non-Gaussian physics [39–41].
Additionally, the underlying microscopic physics can be
encoded exactly in many-body models of these systems,
enabling quantitative comparisons between theory and ex-
periment [42,43]. At the frontier of such approaches is the
description of ultracold atomic many-body systems featuring
nonperturbative few-body effects [44–49]. Here, a series of
experiments exploring the quench of a degenerate Bose gas to
the unitary regime [50–53], where interactions are as strong as
allowed by quantum mechanics, raise important fundamental
questions regarding the interplay of integrability, ergodicity,
and few-body correlations in strongly correlated systems far
out of equilibrium. Immediately following the quench, the
dynamics are Gaussian and integrable in nature, resulting in
the formation of a universal prethermal stage [54–57]. At later
times, non-Gaussian correlations develop and integrability is
broken, facilitating the transition of the system towards a
global equilibrium. While this behavior is well characterized
for weakly interacting systems [54], the analogous break-
ing of integrability for quenches to the strongly interacting
regime poses a highly nontrivial theoretical problem due to
the appearance of nonperturbative phenomena such as strong
few-body scattering, bound states of the medium [57–59], and
rapid three-body losses [60]. Furthermore, the quench is asso-
ciated with the formation of an infinite number of three-body
bound Efimov states, whose role and impact remain subjects
of active research [59,61–64].

In this Letter, we utilize the method of cumulants to for-
mulate a conserving theory of the quenched unitary Bose
gas, capturing the non-Gaussian correlations forming in the
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intermediate-time regime that follows the prethermal stage
but preceeds the crossover into a thermal gas. Through direct
comparisons with experiment, we characterize the prethermal
departure as a consequence of the growth of strong few-body
correlations, rather than incoherent particle losses, which
broaden the momentum distribution and result in lossless
heating of the system. Then, motivated by the absence of a
power-law tail in the asymptotics of the momentum distribu-
tions observed in Refs. [50,53], we examine how this expected
behavior set by the universal contact relations [65–71] is
obscured as the system departs the prethermal regime.

Model. We consider a system of N identical bosons of
mass m in a cubic volume V , which occupy single-particle
states with momentum k annihilated by operators âk. Two
such atoms may couple to form an energetically closed chan-
nel molecule with center-of-mass momentum 2k and internal
energy ν > 0, annihilated by the molecular operator b̂2k. Cru-
cially, we neglect any direct interaction between free atoms,
such that all scattering processes in the energetically open
channel are mediated by this molecular state. The resulting
Hamiltonian reads [72–74]

Ĥ =
∑

k

h̄2k2

2m
â†

kâk +
∑

k

(
h̄2k2

4m
+ ν

)
b̂†

kb̂k

+ g

2
√

V

∑
k,q

[
ζ (2q) b̂†

kâ 1
2 k−qâ 1

2 k+q + H.c.
]
, (1)

with k ≡ |k|. The interaction coupling the atomic and molec-
ular states is modeled by a separable potential with strength
g and step-function form factor ζ (2q) ≡ θ (� − q), where
θ is the Heaviside step function such that � represents a
cutoff on the relative two-body momentum. By an analytic
solution of the two-body problem, the model parameters
can be linked to physical quantities via the renormalization
relations [42,75,76],

g2 = 8π h̄4

m2R∗
, ν = h̄2

mR∗

(
2�

π
− a−1

)
, (2)

where a is the s-wave scattering length, R∗ is the characteristic
length scale set by the atom-molecule transition rate [77], and
the momentum cutoff is related to the van der Waals length
as � ∼ 1/rvdW. At unitarity (a−1 → 0), the dressed molec-
ular state becomes degenerate with the scattering threshold
correspondent with a Feshbach resonance [40]. We express
all observables in the Fermi scales kn = (6π2n)1/3, En =
h̄2k2

n/2m, and tn = h̄/En, where n = N/V is the gas density. In
a many-body context the relative importance of the molecular
state is quantified by the resonance width R∗kn [78].

For both the atomic and molecular fields we adopt the
U(1) symmetry-breaking picture of a Bose-Einstein conden-
sate (BEC), where the singlets 〈ak〉 = δk0

√
V ψa and 〈bk〉 =

δk0

√
V ψm are described by the atomic and molecular con-

densate wave functions ψa and ψm, respectively. To model
the quench scenario, we assume that for t < 0 the gas is an
ideal atomic BEC, such that |ψa|2 = n. At t = 0, the system
is instantaneously quenched to unitarity such that na3 	 1.
Then, the far out-of-equilibrium BEC state suffers quantum
depletion and sequentially generates higher-order correlations
in the gas, which we track using a cumulant expansion

[51,79–83]. Truncating the expansion at the level of two-body
atomic correlations we obtain the model of Refs. [43,75],
with vanishing background scattering length. This resonance
doublet model includes the cumulants (denoted with subscript
c),

na
k = 〈â†

kâk〉c, κa
k = 〈âkâ−k〉c, (3)

which describe the single-particle momentum distribution and
pairing field, respectively. Its integrable equations of motion
are equivalent to the two-channel Hartree-Fock-Bogoliubov
equations [3,43]. In this work, we introduce an extension
of this model referred to as the resonance triplet model.
Here we include the additional molecular and mixed-channel
cumulants,

nm
k = 〈b̂†

kb̂k〉c, κm
k = 〈b̂kb̂−k〉c,

χk = 〈b̂†
kâk〉c, κam

k = 〈b̂kâ−k〉c, (4)

and the non-Gaussian tripling field,

Ra
k,q = 〈âkâqâ−k−q〉c. (5)

In the short-range or vacuum limits, the three-body cor-
relations κam

k and Ra
k,q obey a coupled-channel three-body

Schrödinger equation and thus represent closed- and open-
channel components of the three-body wave function [76].
As shown in Ref. [59], Ra

k,q becomes macroscopically occu-
pied following the quench and furnishes an order parameter
signaling the formation of a Bose-Einstein condensate of Efi-
movian triples, which motivates its inclusion in the theory.
The cumulants χk and nm

k ensure the conservation of energy,
which is possible in the resonance triplet model due to the
cubic form of the Hamiltonian [Eq. (1)]. This is a crucial
difference between the present model and the single-channel
triplet model of Ref. [57], where an inclusion of three-body
correlations induces an unphysical leak of energy to the tail
of the momentum distribution, thereby prohibiting that model
from studying the intermediate-time window considered in
this Letter.

Prethermal departure. We begin by examining the dynam-
ics of the momentum distribution in Fig. 1, comparing against
experimental results to look for clues about the causes of the
prethermal departure and the nature of the intermediate-time
regime. Since higher-order correlations develop sequentially
following the quench, the doublet and triplet models are ini-
tially equivalent [80]. In this early-time regime, atomic pair
excitations are directly generated by condensed molecules, as
depicted diagrammatically in Fig. 2(a). As shown in Ref. [75],
the early-time growth of the condensed molecular fraction
scales as |ψm|2 ∼ (t/t∗)2, where t∗ = √

τ tn is the mean transi-
tion time for atom-molecule conversion. Here τ = mR∗/h̄kn is
the molecular lifetime. For broad resonances where R∗kn 
 1,
one finds t∗ 
 tn, such that the molecular state acts solely as a
mediator of the interaction and the growth of excitations is set
purely by tn. If R∗kn is increased, the associated increase of t∗
gradually slows down the excitation of atoms until the narrow
resonance limit R∗kn → ∞, where all dynamics are frozen.

Following the initial excitation growth, a momentum-
dependent plateau is reached, signifying the quasisteady
prethermal stage characterized by approximate equilibration
of macroscopic observables and emblematic of integrable
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FIG. 1. Broadening of the single-particle momentum distribution
following the quench. In panels (a)–(c), we plot the dynamics of
the excited-state population na

k for a set of momenta. Resonance
doublet (triplet) model results are shown with dash-dotted (solid)
lines and are matched with the normalization of the experimental
data of Ref. [53], shown with gray circles. In panel (d), we show
in a similar format the dynamics of the average kinetic energy per
particle 〈ε〉k for the broad resonance case R∗kn = 0.3, comparing
with the experimental data of Ref. [52]. The black dotted line shows
the expected T ∼ t2/13 scaling for loss-induced heating [52].

dynamics [54,57]. Our key finding is that the rapid depletion
of the condensate for broad resonances spurs the growth of
Ra and hence of non-Gaussian three-body correlations, lead-
ing to a momentum-dependent departure from the prethermal
stage visible in Figs. 1(a)–1(c). The shape of the departure
shows remarkable qualitative agreement with the experiment
of Ref. [53], with just slightly slower growth of excitations
due to the mismatch in resonance width. In contrast, the in-
tegrable resonance doublet model remains in the prethermal

FIG. 2. Two-body (a) and three-body (b) scattering processes
that drive the depletion of the atomic condensate. Atomic (molecular)
states are shown with single (double) lines, and condensed states are
shown with dashed red lines. Each vertex represents atom-molecule
conversion.

stage at all times, consistent with the single-channel doublet
model studied in Ref. [57].

Physically, the broadening of the momentum distribution
shown in Fig. 1 arises from the significant interaction energy
injected into the system by the quench, which is gradually
converted into kinetic energy via two- and three-body scat-
tering and thus results in lossless correlation-induced, rather
than recombination-induced, heating. To quantify this lossless
heating, we follow experiment [52] and examine the averaged
kinetic energy per particle [57],

〈ε〉k = 1

N

∑
k′

na
k′

h̄2k′2

2m
θ (k − k′). (6)

The restriction to a maximum momentum k accounts for the
limited resolution in the experiment [52]. From Fig. 1(d) it
is clear that the Gaussian statistics of the resonance dou-
blet model are unable to capture the experimental departure
from the prethermal plateau that occurs by t ∼ tn. The reso-
nance triplet model does capture this departure, following the
experimental results until the crossover where the gas was ex-
perimentally found to pass from degenerate to nondegenerate
regimes. This agreement further strengthens the interpretation
of the dynamics at intermediate times as correlation (rather
than loss) dominated.

Correlations in the intermediate-time regime. Having
provided evidence for the lossless nature of the intermediate-
time regime, we now study the dominant processes in the
system during this time. The difference between the res-
onance doublet and resonance triplet dynamics in Fig. 1
arises predominantly from a distinct non-Gaussian process
in the resonance triplet model, shown diagrammatically in
Fig. 2(b) [76]. Together, the processes in Fig. 2 seed the
postquench growth of short-range atomic two- and three-body
correlation functions, given as

〈d†d〉 =
∣∣∣∣∣ 1

V

∑
k

κa
k

∣∣∣∣∣
2

, 〈t†t〉 =
∣∣∣∣∣∣

1

V
3
2

∑
k,q

Ra
k,q

∣∣∣∣∣∣
2

. (7)

Here d̂ = ψ̂ (0)ψ̂ (0) and t̂ = ψ̂ (0)ψ̂ (0)ψ̂ (0) represent the lo-
cal dimer and trimer field, respectively, with the field operator
ψ̂ (0) = (1/

√
V )

∑
k âk. Due to their short-range nature, the

value of the correlation functions is expected to be fully spec-
ified by universal relations derived from few-body physics.
Hence they can be directly related to the two-body and three-
body contact densities C2 and C3, which form a measure of
the probability for finding two and three particles in close
proximity [65–67,70]. In our two-channel model, we derive
the following relations from effective field theory [76],

C2 = m2g4

4h̄4ν2
〈d†d〉 + m3g6

2h̄6ν3�2

(
H + J

π

)
〈t†t〉, (8)

C3 = − m2g4

8h̄4ν2�2
H ′〈t†t〉. (9)

Here H , J , and H ′ are known log-periodic functions of the
Efimovian binding wave number κ∗ and the cutoff � [70]. As
shown in Fig. 3, the prethermal departure is indeed correlated
with a significant increase in C3, indicating the introduc-
tion of strong non-Gaussian three-body correlations in this
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FIG. 3. Dynamics of two-body and three-body contact densities
C2 in panel (a) and C3 in panel (b), for different values of the
resonance width R∗kn. Results from the resonance doublet (triplet)
model are shown with dash-dotted (solid) lines. For comparison
we show with black dashed lines the linear early-time growth of
C2 as derived in Ref. [84] for broad resonances and the long-time
constant value of C2 from Ref. [85]. For C3 we show the range of
quadratic early-time growths derived in Ref. [63], which correspond
to maximum (kn/κ∗ ∼ 1) and minimum (κ∗ 
 kn) enhancement of
C3 due to the Efimov effect, again in the broad resonance limit.

regime. Simultaneously, the influence of surrounding parti-
cles on clustered pairs leads to a significant decrease of the
two-body contact [57]. As shown in Ref. [59], the value of
C2 and C3 following the quench is determined predominantly
by the magnitude of macroscopic order parameters associated
with condensation of pairs and triples. These findings are
confirmed in our model by the development of a substantial
fraction of condensed triples for t > tn [76]. We note that
the increase of C3 for broad resonances is connected with an
increased overlap of the size of the Efimov trimer, quantified
by the binding wave number κ∗, and the Fermi scale kn. Con-
sistent with Figs. 1(a)–1(c), the value of C3 is decreased for
narrow resonances, where κ∗ 
 kn represents the previously
unexplored limit opposite to the universal regime κ∗ 	 kn

examined in Ref. [59].
Asymptotics in the intermediate-time regime. We now focus

on the large-momentum tail of na
k, whose expected behavior

due to universal relations derived from few-body physics was
not observed in experiments [50,53]. Specifically, the follow-
ing asymptotic behavior is predicted at thermal equilibrium,

k4na
k −→

k→∞
C2 + C3F (k)/k, (10)

where F (k) is a log-periodic function specified by κ∗ [70].
While Eq. (10) provides a possible route to extract the values
of the contacts from na

k, a 1/k4 tail has so far not been ob-
served in quench experiments [50,53]. Fits to Eq. (10) were
made in Ref. [71], but found values for C2 were considerably
larger than expected from theoretical calculations [57,85,86].
Additionally it has been shown that in lower-dimensional
systems the scaling in Eq. (10) can be disrupted by nonlocal
correlations [87].

Motivated by this disagreement between existing theory
and experiment, we compare in Fig. 4 the single-particle

FIG. 4. Dynamics of the tail of the single-particle momentum
distribution for the broad resonance R∗kn = 0.3. In the left-hand
(right-hand) panels, we compare the resonance doublet (triplet) mod-
els with the asymptotic prediction in Eq. (10), shown with a black
dashed line. For the sake of comparison the doublet results are
replotted in the right-hand panels. For t/tn = 1.0 and 2.0, we also
compare with the experimental data of Ref. [53], shown with the
green circles.

momentum distribution obtained from our models with the
asymptotic prediction in Eq. (10). In the resonance doublet
model, where all dynamics are Gaussian, C3 vanishes triv-
ially and one can show analytically that the expected 1/k4

power law due to C2 is always present [76]. In the resonance
triplet model, we observe that the non-Gaussian processes
responsible for the departure from the prethermal stage for
t � tn damp the oscillatory behavior of na

k, consistent with
the findings of Ref. [54] at weak interactions and in agree-
ment with the experimental data of Ref. [53]. At the same
time, the significant increase of excitations for k > kn ob-
scures the expected power laws for all the examined momenta
k/kn � 4. Hence, once the gas has exited the prethermal stage,
the asymptotic expansion in Eq. (10) no longer captures the
momentum distribution over the considered range. As exper-
imental results are lacking beyond this range due to poor
signal-to-noise ratios [50], our findings suggest that signifi-
cant caution should be exercised when fitting Eq. (10) out of
equilibrium and explain why a power-law tail was not seen in
Refs. [50,71]. It is important to note, however, that our results
do not invalidate Eq. (10), but rather push its possible appli-
cability to larger momenta. For sufficiently large values of
k/kn, our distributions do converge consistently with the value
of C2 obtained from Eq. (8), but also exhibit strong finite-
range features due to the density regimes considered [76].
We have confirmed that the distributions in Fig. 4 are density
independent.
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Conclusion. In this Letter, we have shown how a conserv-
ing many-body model constructed from a selection of micro-
scopically relevant Gaussian and non-Gaussian correlations
is able to elucidate the dynamics of quenched unitary Bose
gases in the time window succeeding the integrable dynamics
associated with the prethermal stage. In the future, this general
framework can be used in studying the wide array of other
quantum systems that exhibit non-Gaussian physics, includ-
ing, for example, strongly interacting ultracold mixtures and
polarons [29,48,49,88,89], trions in semiconductors [90–94],
nuclear matter [95–98], and Rydberg atom arrays [99].
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