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Exceptional ring of the buoyancy instability in stars
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We reveal properties of global modes of linear buoyancy instability in stars, characterized by the celebrated
Schwarzschild criterion, using non-Hermitian topology. We identify a ring of exceptional points of order 4
that originates from the pseudo-Hermitian and pseudochiral symmetries of the system. The ring results from
the merging of a dipole of degeneracy points in the Hermitian stably-stratified counterpart of the problem. Its
existence is related to spherically symmetric unstable modes. We obtain the conditions for which convection
grows over such radial modes. Those are met at early stages of low-mass stars formation. We finally show that a
topological wave is robust to the presence of convective regions by reporting the presence of a mode transiting
between the wavebands in the non-Hermitian problem, strengthening their relevance for asteroseismology.
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A fluid in a gravity field is stratified in density, and re-
sults in a stable or an unstable equilibrium. Gravity waves
propagate when the stratification is stable, whereas convec-
tion develops when the equilibrium is unstable. To develop a
convective layer, Sun-like stars must have reached an unstable
state where the square of the buoyancy frequency is negative
(Schwarzschild criterion N2 < 0, [1]). Then, through the satu-
ration of a linear instability, the star develops a quasiadiabatic
convective region consisting of large-scale flows that excite
waves and transport energy. In these regions, N2 takes small
negative values for convection to remain sustained, depend-
ing on its efficiency (N2 � −0.25 µHz2 in the Sun [2,3]).
Recently, Hermitian topology has shed light on waves prop-
agating in stably stratified fluids [4–6], but the topology of
the unstable case, which involves a non-Hermitian formalism,
has not yet been studied. The topological study of waves
consists of deducing simple conditions constraining the ex-
istence of particular linear modes of physical systems from
topological arguments. These arguments can be expressed
in a simple way, even for a complicated system of equa-
tions. Hermitian systems benefit from general topological
index theorems from which one can predict the existence of
modes transiting between different wavebands and quantized
by a topological integer called the Chern number [7–11]. As
such, Hermitian wave topology has become ubiquitous in
physical fields as diverse as condensed matter [12], plasma
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physics [13–15], optics [16,17], materials science [18–20],
or oceanography [6,21,22]. Recently, topological arguments
have been used to reveal the existence of a Lamb-like wave
that behaves as a gravity wave at large wavelengths but as
a pressure wave at small wavelengths in stably stratified
stars [4,5], raising further questions. Does this wave also prop-
agate in convective regions, which are ubiquitous in stellar
objects (e.g., Jupiter or high-mass stars, Fig. 1 of Ref. [5])?
Moreover, seeds of convection in protostars have been ob-
served recently in numerical simulations [23,24]. Figure C.1
of [23] suggests that the envelope becomes unstable to con-
vection. Performing a linear stability analysis relative to the
background reveals a few unstable radial modes whose origin
have not been discussed thus far (see Fig. 1). Does topol-
ogy allow for additional predictions on buoyancy instabilities
in stars to further characterize the physics of the birth of
convective layers? To address these questions, we study the
non-Hermitian counterpart of the model derived for stellar
pulsations. The search for topological properties in non-
Hermitian systems has recently stimulated tremendous efforts
in condensed matter [25–27], photonics [28–30], electric cir-
cuits [31], and geofluids [32] by investigating, for instance, the
existence of topological edge states in non-Hermitian setups,
or the appearance of peculiar degeneracy points where the
wave operator becomes nondiagonalizable, called exceptional
points (EPs). Here, we show that the linear perturbations of a
stellar fluid with N2 < 0 are described by a pseudo-Hermitian
and pseudochiral symmetric theory. These symmetries con-
strain the eigenfrequencies and imply the presence of a ring
of EPs of order 4, which is associated with unusual spheri-
cally symmetric unstable modes. Furthermore, we report the
presence of modes transiting between the complex wavebands
of the dispersion relation, one of which is the Lamb-like wave
whose topological origin was revealed in Ref. [4], which we
find to be robust to non-Hermitian N2 < 0 regions.
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FIG. 1. First panel: Density fluctuations with respect to azimuthal average, showing convective-like motion. Data from Ref. [23] (2D
simulation of an hydrodynamical stellar collapse), zoomed in near the surface of the protostar. Second panel: Average azimuthal profiles of
N2 and S, parameters involved in the linear stability analysis Eq. (2). Third and fourth panels: Growth rates of a linear stability analysis of this
stratification, and profiles of pressure p and radial velocity w of one unstable mode (red), computed numerically with an eigenmodes analysis
(see Ref. [33]). The instability develops both inside and outside the surface of the protostar. Three modes (black) differ from the others (green):
they have nonzero growth rates on radial perturbations (� = 0).

Wave operator, wave symbol. We consider a nonmag-
netic, nonrotating stellar fluid at rest in a spherically
symmetric steady state. Perturbations of this equilibrium
involve velocity, pressure, and density. Perturbations are adi-
abatic, modeling stars where the diffusion time is much
longer than the dynamical time [1,34]. Perturbations of the
gravitational potential are neglected (Cowling approxima-
tion [35]). The equilibrium is still static: no convection
has developed yet. We discuss the superadiabatic situa-
tion at N2 < 0. We define the perturbation vector X ≡

(ṽ w̃ �̃ p̃)
�

based on rescaled perturbed quantities
(respectively, horizontal velocity, radial velocity, entropy, and
pressure), after projection onto vector spherical harmonics of
angular number � (see Supplemental Material (SM) [33]). The
set of equations for perturbations of the form e−iωt X (r) is

ωX = HX, (1)

where the wave operator H is defined as

H ≡

⎛
⎜⎜⎝

0 0 0 L�(r)
0 0 i(N2)1/2 −iS + i

2 c′
s + ics∂r

0 −i(N2)1/2 0 0
L�(r) iS + i

2 c′
s + ics∂r 0 0

⎞
⎟⎟⎠. (2)

This model involves three characteristic frequencies: the
squared Brunt-Väisälä frequency

N2 ≡ −g
d ln ρ0

dr
− g2

c2
s

, (3)

which characterizes buoyancy, the buoyant-acoustic fre-
quency

S ≡ cs

2g

(
N2 − g2

c2
s

)
− 1

2

dcs

dr
+ cs

r
, (4)

which gives the rate at which buoyant and acoustic oscillations
exchange momentum [5], and the squared Lamb frequency
L2

� ≡ c2
s �(� + 1)/r2, which is the momentum in the angu-

lar directions. ρ0 is the steady background density, cs is the
speed of sound, and g is the gravity field, which are all func-
tions of the radius r. Whenever N2 is negative, the fluid is

unstable, and the operator H is non-Hermitian with respect to
the standard scalar product.

The spectrum of the model is obtained by solving the
system of ordinary differential Eqs. (1) and (2), with appro-
priate boundary conditions (see SM [33]). This system implies
parameters varying in space, and an analytical solution is, in
general, out of reach. However, the existence of eigenmodes
of H such as Lamb-like modes, whose frequency transits
between other modes when varying a parameter (here �), can
be easily accessed without explicitly solving the differential
system, but through topological properties of a dual wave sym-
bol, a matrix H with scalar coefficients obtained by a Wigner
transform of the wave operator H that maps the differential
problem onto phase space [11], as suggested by Ref. [36].
H physically represents the local action of the medium on a
plane wave, without requiring that the medium varies slowly
with respect to the wavelength (see SM [33]). This symbol
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matrix H reads

H ≡

⎛
⎜⎜⎝

0 0 0 L�

0 0 iN Kr − iS
0 −iN 0 0
L� Kr + iS 0 0

⎞
⎟⎟⎠, (5)

and depends on the three parameters Kr , L�, and S for fixed
N2. Kr = cskr with kr the Wigner symbol of −i∂r is the radial
wave number of a wave locally plane. We denote ω and �

the eigenvalues of H and H , respectively. When N2 > 0,
the matrix H is Hermitian and always diagonalizable with
real eigenvalues. When N2 < 0, N is purely imaginary and
H �= H̄�.

Symmetries and exceptional points. For a subset of the
parameter space (Kr, S, L�), H is nondiagonalizable. These
particular points are EPs. At these points, the eigenvalues are
degenerate and the eigenvectors coalesce, in the sense that the
number of independent eigenvectors is less than the number of
eigenvalues that merge. The occurrence of EPs is constrained
by the presence of certain symmetries. In our case, one notices
that H benefits from a pseudo-Hermitian symmetry

UHU −1 = H̄�, (6)

with the unitary transform U = diag(1, 1,−1, 1). Eigenval-
ues of pseudo-Hermitian matrices are either real or complex
conjugate pairs. Pseudo-Hermiticity also increases the order
of EPs in the parameter space [25]. H also has a chiral
symmetry �H�−1 = −H , with the unitary transform � =
diag(1, 1,−1,−1), which can be traced back from the time-
reversal symmetry of the fluid Lagrangian. Equivalently, this
chiral symmetry combined with the pseudo-Hermitian sym-
metry [Eq. (6)] can be taken into account as a pseudochiral
symmetry

(�U )H (�U )−1 = −H̄�, (7)

that was also shown to constrain the existence of EPs [25].
We show that the combined effect of both pseudochirality and
pseudo-Hermiticity leads to a codimension 2 for fourfold EPs
(see SM [33]). This means that, for N2 < 0, the four complex-
valued eigenbands of H are expected to cross on a curve in
the (Kr, S, L�) space. A direct derivation shows that those EPs
satisfy

L� = 0, (8)

K2
r + S2 = −N2, (9)

meaning that they form a circle of radius |N | around the
origin in the (Kr, S) plane at L� = 0. H is diagonalizable
everywhere apart from this circle, where only two eigenvec-
tors exist, (1 0 0 0)� and (0 0 (iKr + S)/N 1)�.
This exceptional ring thus consists of fourfold EPs (algebraic
multiplicity of 4) with a geometric multiplicity of 2.

This ring where modes degenerate separates radial modes
(� = 0) into two regions of distinct spectral properties.
Figure 2 shows the real and imaginary parts of the eigenvalues
of H . Outside the ring (K2

r + S2 > |N2|), the radial modes
behave classically [37]: radial pressure waves have finite real
frequencies and radial buoyancy modes have zero growth
rates. Inside (K2

r + S2 < |N2|), they behave differently: the
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FIG. 2. Eigenvalues � of H around the EPs. There are two
acoustic bands (orange and blue) with real eigenvalues, and two
gravity bands (green and red) with purely imaginary eigenvalues.
The yellow rings and points highlight the positions of the excep-
tional points. At large wavelengths Kr � N , pulsations and onset
of convection behave very differently from what is expected in the
short wavelength limit or in a Boussinesq approximation. Top right:
Bubble of instability [39]. Bottom left: Double coffee filter [38].
Bottom-right: Viaduct [38].

acoustic bands degenerate at � = 0, and gravity modes have
nonzero growth rates, the maximum value

√−N2 being
reached for Kr = S = 0. When crossing the ring, two eigen-
values of H transit from real to pure imaginary values. Since
H is pseudo-Hermitian, this can be interpreted as a Krein
collision in the framework of Krein signature theory [38].
Unstable (imaginary) eigenvalues with zero Krein signature
unfold from the encounter of stable (real) eigenvalues with
opposite Krein quantities κ (X ) = X̄ �UX , X being the corre-
sponding eigenvector of H , colliding at the EP ring. A Krein
quantity κ̃ = ∫

drd
 (|ṽ|2 + |w̃|2 + | p̃|2 − |�̃|2), with 
 the
solid angle, can also be defined for any solution X (r, t ) of
Eq. (1) and is a conserved quantity of the flow. In particular,
κ̃ = 0 for an unstable mode (see SM [33]).

To date, no theorem connects the EPs of the symbol matrix
H to a possible manifestation in the spectrum of H. If such a
connection exists, one expects to find the footprint of EPs in
radial modes (� = 0) as this is where the EP ring is found in
the Wigner matrix, when the radial wavelength is large enough
and the profiles of N2 and S are such that the parameters cross
the ring shown in Fig. 2 as r varies. Furthermore, the above
analysis suggests that the relevant unstable modes are those of
wavelengths typically longer than ∼cs/|N | (N2 �= 0 since con-
vection has not started nor saturated to a quasiadiabatic state
yet). This condition also requires S to be smaller than |N |, at
least locally. Figure 3 shows the spectrum of a model where
the aforementioned condition is satisfied. The unstable region
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FIG. 3. Spectrum of a model with the stratification profile shown
in the top left panel, corresponding to a layer N2 < 0 such that S
goes to zero at a given radius r0 and remains smaller than |N |. Right
panels: (i) Three acoustic modes with ω(� = 0) = 0 and (ii) two
gravity modes have nonzero growth rates in the � = 0 limit. The
other modes have a classical behavior. Bottom left: Schematic of
the location of the modes in parameter space: five modes behave
differently because they are inside the EP ring. Orange points are
acoustic modes, green points are unstable buoyancy modes, black
points are exceptional modes. See SM for details on numerics [33].

is wide enough so low-order radial modes have a sufficiently
large radial wavelength, enough for the corresponding Kr to be
located inside the ring. The spectrum exhibits three acoustic
waves with zero frequency for � → 0 and two unstable buoy-
ancy modes with nonzero growth rates for � → 0. Various
profiles of preconvective unstable equilibria have been tested
(Fig. 4 of SM [33]). They all have such exceptional modes
since they are continuous deformations of the model of Fig. 3.
Additional modes enter the EP ring by pairs when increasing
the length of the layer. These properties are a physical foot-
print of the existence of EPs. These results are consistent with
recent reports of experiments on compressible fluids, in which
convection develops via axisymmetric modes [40–42].

Fundamental mode. In the stably stratified problem
(N2 > 0), H has degenerated eigenvalues for (Kr, S, L�) =
(0, 0,±N ), for which both the gravity and acoustic waves
have frequencies N . Such degeneracies act as monopoles of
Berry curvature in the parameter space (Kr, S, L�), and carry
topological charges given by Chern numbers ±1. Those Chern
numbers are in direct correspondence with the existence of
the Lamb-like waves in the spectrum of the operator H,
and explain the transit of the fundamental mode between the
bands [4–6].

In the present Letter, H is no longer Hermitian, and
the correspondence between the Lamb-like wave and the
Chern numbers is not guaranteed. Several approaches have

N2 > 0 N2 < 0

Re(ω)

S = −x

Re(ω) Im(ω)

�

S = +x

� �

FIG. 4. Frequencies of models with S varying linearly in space
(on some appropriately rescaled spatial variable x). Left: Stable
stratification. The transiting mode depends on the sign of dS/dx.
Right: Unstable stratification. Apart from the buoyancy modes being
transposed to imaginary values, the transiting mode behaves as it
does in the stable case. When S = −x, it arises as a propagating
Lamb-like wave. When S = +x, it is an unstable mode of growth
rate |N |, independently of �. Only the first ten modes of each band
are represented.

recently been developed to address the topological properties
of non-Hermitian operators [27,29–31,43–50]. In particu-
lar, non-Hermitian formulations of the Chern numbers as
monopoles of Berry curvature have been proposed, and a
non-Hermitian generalization of the correspondence with the
transit of the fundamental mode has been developed [26,51].
However, such a generalization cannot apply here, as the
Hermitian degeneracy point is turned into a EP curve when
the sign of N2 is swapped, with zero net Chern number.
Other works have introduced winding numbers associated to
such circles of EPs [29,30,51], which we also find to vanish
here. Nevertheless, we confirm below the existence of the
the Lamb-like wave in regions with N2 < 0. To do so, we
study the normal form, setting linear spatial dependency for
S, that is, S(r) = α(r − r0), and N2 < 0, sound speed cs, and
Lamb frequency L� constant [5,52]. The spectral properties
of this problem capture the essential topology that will be
reflected in the spectra of real objects. Within these assump-
tions, Eq. (1) is found to admit a fundamental mode with the
zero node trapped around the radius r0 where S(r0) = 0. How-
ever, its behavior depends strongly on the slope of S at r0, as
shown in Fig. 4 (derivation in SM [33]). For a negative slope
(α < 0), this mode verifies ω2 = L2

� and its eigenfunctions
are ṽ, p̃ ∝ exp(− α

2cs
(r − r0)2), w̃ = �̃ = 0, which have the

peculiar property of having no radial velocity nor entropy per-
turbation. This is the Lamb-like wave, and we thus conclude
that it still propagates for N2 < 0. In contrast, for a positive
slope (α > 0), the fundamental mode verifies ω2 = −|N2|
and corresponds to a growing perturbation. Its eigenfunctions
are ṽ = p̃ = 0, w̃, �̃ ∝ exp(− α

2cs
(r − r0)2), which have no

angular velocity or pressure perturbation. We verified numeri-
cally that this mode is independent of the boundary conditions
(see SM [33]). The importance of polarization relations is key
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for wave topology [36,53,52]. Equation (1) admits nonzero
solutions even if some of the component fields are equal
to zero. Preserving the vector structure of the problem pre-
vents the filtration of such solutions, as may happen when
decoupling the initial system of equations into a single high-
order ordinary differential equation. The general problem is
expected to have the same properties, since it is a continuous
deformation of this model, as long as no new location where
S goes to zero is introduced (Fig. 4 of SM [33]). When N2(r)
takes positive and negative values in different regions of the
star, the Lamb wave still exists and coexists with an unsta-
ble buoyancy band. This is true whether S(r) goes to zero
inside the stable or unstable region. In sharp contrast, when
the profile of S(r) goes to zero with a positive slope in a region
of negative N2, we observe an unstable mode with a growth
rate ∼

√
|N2|, independently of �.

Asteroseismology. The topological study of pulsating
modes in stars has so far been restrained to radiative regions
(N2 > 0), the problem being Hermitian [5]. The question of
whether the Lamb-type topological wave could propagate in
convective regions (small N2 < 0) remained unanswered. We
show in this Letter that these waves can indeed propagate
within them. They are therefore relevant even for objects
such as high mass stars or Jupiter (see Fig. 1 of Ref. [5]).
On top of this, convective regions can also generate multiple
exceptional modes that behave like acoustic waves with zero
frequency at � = 0. The existence or not of such modes in
observational data constrains the internal structure of objects
with convective interiors.

Birth of convection in protostars. Unstable exceptional
modes of low radial order, low �, and high growth rates
develop when the conditions N2 < 0 and N2 + S2 < 0 are
satisfied. These conditions are met during the formation of
a low-mass protostar, as shown in Fig. 1 from 2D simu-
lations [23] (see SM [33] for physical interpretation). This
clarifies the origin of radial unstable modes developing around
the surface of the protostar. Hence, topological modes provide
a possible explanation for the long-lasting problem of how and
when convection starts in young stars. Further high-resolution
3D numerical simulations are, however, required to prove
that the kinematic signature observed corresponds indeed to
convective motion, and to study how these modes will develop
in the nonlinear regime (e.g., convective eddies or fully devel-
oped turbulence).

Future studies are needed to quantify the role of rotation
and self-gravity on these modes. Additional symmetries are
expected to be broken in some regions of the extended param-
eter space. Exceptional points and Krein signature will be key
tools to diagnose properties of global modes in such complex
objects. The topological invariant associated with exceptional
modes remains to be found.
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of exceptional points out of Dirac cones, Nature (London) 525,
354 (2015).

[29] Y. Xu and C. Zhang, Dirac and Weyl rings in three-dimensional
cold-atom optical lattices, Phys. Rev. A 93, 063606 (2016).

[30] D.-W. Zhang, Y. X. Zhao, R.-B. Liu, Z.-Y. Xue, S.-L. Zhu,
and Z. D. Wang, Quantum simulation of exotic PT -invariant
topological nodal loop bands with ultracold atoms in an optical
lattice, Phys. Rev. A 93, 043617 (2016).

[31] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,
Biorthogonal bulk-boundary correspondence in non-Hermitian
systems, Phys. Rev. Lett. 121, 026808 (2018).

[32] Z. Zhu, C. Li, and J. B. Marston, Topology of rotating stratified
fluids with and without background shear flow, Phys. Rev. Res.
5, 033191 (2023).

[33] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.6.L012055 for details on deriva-
tions, calculations, and numerical tests. They additionally cite
Refs. [54–64].

[34] P. Ledoux, Stellar models with convection and with disconti-
nuity of the mean molecular weight, Astrophys. J. 105, 305
(1947).

[35] T. G. Cowling, The non-radial oscillations of polytropic stars,
Mon. Not. R. Astron. Soc. 101, 367 (1941).

[36] Y. Onuki, Quasi-local method of wave decomposition in a
slowly varying medium, J. Fluid Mech. 883, A56 (2020).

[37] J. L. Tassoul, Sur l’instabilité convective d’une masse gazeuse
inhomogène, [On the convective instability of a inhomogeneous
gaseous mass], Annales d’Astrophysique 30, 363 (1967).

[38] O. N. Kirillov, Nonconservative Stability Problems of Modern
Physics (De Gruyter, Berlin, 2021), Vol. 14.

[39] R. S. MacKay, Stability of equilibria of Hamiltonian systems,
in Hamiltonian Dynamical Systems (CRC Press, Boca Raton,
2020), pp. 137–153.

[40] R. Menaut, Y. Corre, L. Huguet, T. L. Reun, T. Alboussière, M.
Bergman, R. Deguen, S. Labrosse, and M. Moulin, Experimen-
tal study of convection in the compressible regime, Phys. Rev.
Fluids 4, 033502 (2019).

[41] J. P. Koulakis and S. Putterman, Convective instability in a
stratified ideal gas containing an acoustic field, J. Fluid Mech.
915, A25 (2021).

[42] J. P. Koulakis, Y. Ofek, S. Pree, and S. Putterman, Thermal
convection in a central force field mediated by sound, Phys. Rev.
Lett. 130, 034002 (2023).

[43] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa,
and M. Ueda, Topological phases of non-Hermitian systems,
Phys. Rev. X 8, 031079 (2018).

[44] T.-S. Deng and W. Yi, Non-Bloch topological invariants in a

non-Hermitian domain wall system, Phys. Rev. B 100, 035102
(2019).

[45] S. Yao and Z. Wang, Edge states and topological invariants of
non-Hermitian systems, Phys. Rev. Lett. 121, 086803 (2018).

[46] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-Hermitian
boundary modes and topology, Phys. Rev. Lett. 124, 056802
(2020).

[47] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv.
Phys. 69, 249 (2020).

[48] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional
topology of non-Hermitian systems, Rev. Mod. Phys. 93,
015005 (2021).

[49] H. Shen, B. Zhen, and L. Fu, Topological band theory for non-
Hermitian Hamiltonians, Phys. Rev. Lett. 120, 146402 (2018).

[50] T. E. Lee, Anomalous edge state in a non-Hermitian lattice,
Phys. Rev. Lett. 116, 133903 (2016).

[51] Y. Xu, S.-T. Wang, and L.-M. Duan, Weyl exceptional rings in a
three-dimensional dissipative cold atomic gas, Phys. Rev. Lett.
118, 045701 (2017).

[52] A. Venaille, Y. Onuki, N. Perez, and A. Leclerc, From ray
tracing to waves of topological origin in continuous media,
SciPost Phys. 14, 062 (2023).

[53] N. Perez, P. Delplace, and A. Venaille, Manifestation of the
Berry curvature in geophysical ray tracing, Proc. R. Soc. A 477,
20200844 (2021).

[54] R. G. Barrera, G. A. Estevez, and J. Giraldo, Vector spherical
harmonics and their application to magnetostatics, Eur. J. Phys.
6, 287 (1985).

[55] K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P.
Brown, Dedalus: A flexible framework for numerical simula-
tions with spectral methods, Phys. Rev. Res. 2, 023068 (2020).

[56] J. S. Oishi, K. J. Burns, S. E. Clark, E. H. Anders, Benjamin
P Brown, G. M. Vasil, and D. Lecoanet, eigentools: A Python
package for studying differential eigenvalue problems with an
emphasis on robustness, J. Open Source Software 6, 3079
(2021).

[57] D. O. Gough, Linear adiabatic stellar pulsation, in Astrophysical
Fluid Dynamics - Les Houches 1987, edited by J.-P. Zahn, and
J. Zinn-Justin, Vol. 49 (1993), p. 399.

[58] N. Vaytet, G. Chabrier, E. Audit, Benoît Commerçon, J.
Masson, J. Ferguson, and F. Delahaye, Simulations of
protostellar collapse using multigroup radiation
hydrodynamics-ii. the second collapse, Astron. Astrophys. 557,
A90 (2013).

[59] H. Weyl, Quantum mechanics and Group theory, Z. Phys. 46, 1
(1927).

[60] E. Wigner, On the quantum correction for thermodynamic equi-
librium, Phys. Rev. 40, 749 (1932).

[61] R. G. Littlejohn and W. G. Flynn, Geometric phases in the
asymptotic theory of coupled wave equations, Phys. Rev. A 44,
5239 (1991).

[62] C. Emmrich and A. Weinstein, Geometry of the transport equa-
tion in multicomponent WKB approximations, Commun. Math.
Phys. 176, 701 (1996).

[63] L. Ryzhik, G. Papanicolaou, and J. B. Keller, Transport equa-
tions for elastic and other waves in random media, Wave motion
24, 327 (1996).

[64] J. Vanneste and T. G. Shepherd, On wave action and phase in the
non–canonical Hamiltonian formulation, Proc. R. Soc. London,
Ser. A 455, 3 (1999).

L012055-6

https://doi.org/10.1051/0004-6361/202346711
https://doi.org/10.1103/PhysRevLett.127.186602
https://doi.org/10.1103/PhysRevLett.130.066601
https://doi.org/10.1088/1361-648X/ab11b3
https://doi.org/10.1038/nature14889
https://doi.org/10.1103/PhysRevA.93.063606
https://doi.org/10.1103/PhysRevA.93.043617
https://doi.org/10.1103/PhysRevLett.121.026808
https://doi.org/10.1103/PhysRevResearch.5.033191
http://link.aps.org/supplemental/10.1103/PhysRevResearch.6.L012055
https://doi.org/10.1086/144905
https://doi.org/10.1093/mnras/101.8.367
https://doi.org/10.1017/jfm.2019.825
https://adsabs.harvard.edu/full/1967AnAp...30..363T
https://doi.org/10.1103/PhysRevFluids.4.033502
https://doi.org/10.1017/jfm.2021.83
https://doi.org/10.1103/PhysRevLett.130.034002
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevB.100.035102
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1103/RevModPhys.93.015005
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevLett.118.045701
https://doi.org/10.21468/SciPostPhys.14.4.062
https://doi.org/10.1098/rspa.2020.0844
https://doi.org/10.1088/0143-0807/6/4/014
https://doi.org/10.1103/PhysRevResearch.2.023068
https://doi.org/10.21105/joss.03079
https://doi.org/10.1051/0004-6361/201321423
https://doi.org/10.1007/BF02055756
https://doi.org/10.1103/PhysRev.40.749
https://doi.org/10.1103/PhysRevA.44.5239
https://doi.org/10.1007/BF02099256
https://doi.org/10.1016/S0165-2125(96)00021-2
https://doi.org/10.1098/rspa.1999.0301

