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Spectroscopy of edge and bulk collective modes in fractional Chern insulators
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The exploration of atomic fractional quantum Hall (FQH) states is now within reach in optical-lattice exper-
iments. While ground-state signatures have been observed in a system realizing the Hofstadter-Bose-Hubbard
model in a box [Léonard et al., Nature (London) 619, 495 (2023)], how to access hallmark low-energy collective
modes remains a central open question in this context. We introduce a spectroscopic scheme based on two
interfering Laguerre-Gaussian beams, which transfer a controlled angular momentum and energy to the system.
The edge and bulk responses to the probe are detected through local density measurements by tracking the
transfer of atoms between the bulk and the edge of the FQH droplet. This detection scheme is shown to
simultaneously reveal two specific signatures of FQH states: their chiral edge branch and their bulk magnetoroton
mode. We numerically benchmark our method by considering few bosons in the ν =1/2 Laughlin ground state
of the Hofstadter-Bose-Hubbard model, and demonstrate that these signatures are already detectable in realistic
systems of two bosons, provided that the box potential is sufficiently large compared to the droplet. Our paper
paves the way for the detection of fractional statistics in cold atoms through edge signatures.
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I. INTRODUCTION

The interplay of topology and interactions leads to fasci-
nating phases of matter, such as the fractional quantum Hall
(FQH) states, which host fractionalized anyonic excitations.
The progress in engineering artificial gauge fields [1,2] and
topological bands [3] has raised the hope of realizing FQH
states of ultracold atoms. Specifically, realistic protocols for
the preparation of FQH states were proposed [4–12] based on
the quasiadiabatic evolution of a small ensemble of neutral
atoms loaded into an optical lattice. In this context, extracting
the universal signatures of FQH states is an important goal and
great challenge; theoretical proposals in this direction have
focused on the measurement of the Hall response [13–16],
central charge [17], and the anyonic properties of quasiholes
[18–23]. Recently, a two-particle bosonic Laughlin state was
identified in an optical lattice [24], where local density mea-
surements permitted the observation of key bulk signatures,
including a nearly quantized Hall conductivity and vortex like
correlations.

Edge states are a fundamental hallmark of topological mat-
ter. In FQH systems, they form one-dimensional conduction
channels [25], which are responsible for a wealth of quantum
coherent phenomena in mesoscopic systems [26]. Despite the
success of chiral Luttinger liquid theory in capturing these
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phenomena, microscopic details such as boundary effects can
deeply affect the low-energy picture [27–33].

Another key feature of FQH phases is their bulk collective
excitations, called the magnetoroton mode (MRM), which can
be viewed as a density modulation of the ground state [34,35].
Owing to the incompressibility of FQH phases, the MRM is
gapped; its softening marks the transition to a Wigner crystal.
While it is absent in integer quantum Hall phases, the MRM
generically appears in all FQH phases.

FIG. 1. (a) Fractional quantum Hall (FQH) droplet on the
Hofstadter-Bose-Hubbard lattice, with a sketch of the expected edge
spectrum. (b) Spatial shape of the Laguerre-Gaussian (LG) laser field
acting on the atoms, realized by interfering two beams with angular
momentum l1 and l2, and resulting in a transfer of angular momentum
l = l1 − l2. (c) Response of the FQH droplet to the LG beams at
resonance: edge states are populated, resulting in a detectable density
increase at the droplet’s edge.
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Thanks to the local probes accessible in optical-lattice ex-
periments, the realization of the FQH effect in quantum gases
may provide an opportunity to reveal the rich phenomenology
of FQH edge and bulk modes. Promisingly, resolving individ-
ual edge states could provide a marker of topological order,
permitting the unambiguous detection of non-Abelian FQH
states [36–38]. Moreover, the maximal angular momentum
of the MRM could serve as an additional topological marker
to distinguish FQH phases [39–43]. While edge properties
have been detected in weakly interacting cold atom settings
[44–48], how to extract and resolve the low-energy spectrum
of FQH states remains an open question.

In this paper, we develop a spectroscopy protocol to extract
the edge and bulk collective modes of FQH states in ultracold
gases. Our proposal builds on Ref. [49] and is summarized in
Fig. 1: two interfering Laguerre-Gaussian (LG) lasers trans-
fer an angular momentum l and energy h̄ω to the system
prepared in the FQH ground state of a lattice Hamiltonian.
The absorption resonance is subsequently measured in situ
through local density measurements by monitoring the trans-
fer of atoms between the bulk and edge. We numerically
benchmark our protocol using the experimentally real-
ized [24,50] Hofstadter-Bose-Hubbard (HBH) model, which
supports a ν = 1/2 Laughlin ground state [51–53]. By calcu-
lating the coupling matrix elements of our probe, we obtain
the angular momentum resolved absorption spectrum and
show that the characteristic edge and bulk collective modes
are present in systems with as few as two particles. Interest-
ingly, the LG matrix elements have an approximate selection
rule corresponding to the emergent continuous rotation sym-
metry of low-energy states. This property allows us to extract
the edge and bulk modes even when they are energetically
mixed. Upon approaching the experimental configuration of
Ref. [24], the walls of the confining box nearly coincide
with the edge of the FQH droplet, leading to a gapped edge
mode lying higher in energy than the first bulk excitation. The
explicit time-dependent simulation of our protocol shows that
the time necessary to detect a measurable transfer of density
from bulk to edge is compatible with current experimental
constraints. Our protocol could apply to other models of FQH
states of ultracold atoms, including rotating atomic traps [48].

II. MODEL

We consider the HBH model, describing bosons hopping
on the Harper-Hofstadter lattice [54] and interacting through
an on-site Hubbard interaction of strength U >0,

Ĥ = −J
∑
m,n

(b̂†
m+1,nb̂m,nei2παn + b̂†

m,n+1b̂m,n + H.c.)

+ U

2

∑
m,n

b̂†
m,nb̂m,n(b̂†

m,nb̂m,n − 1)

+
∑
m,n

V (m, n)b̂†
m,nb̂m,n, (1)

where the operator b̂m,n (b̂†
m,n) destroys (creates) a boson

at site (m, n), J is the tunneling energy, α is the mag-
netic flux density, and V (m, n) = V0((m − m0)2 + (n − n0)2)
is a confining potential (m0, n0 are the coordinates of the

FIG. 2. Low-energy spectrum (a), (c) and corresponding cou-
pling matrix elements In (b), (d) for a system of two hardcore bosons
in the HBH model at flux density α = 1/8 in a 10 x 10 box, with (a),
(b) or without (c), (d) a harmonic potential of strength V0 = 0.01. ωn

is the energy difference between excited and ground states. Unlike
the energy spectrum, the matrix elements always distinguish edge
and bulk modes, regardless of the presence of a harmonic potential.
The numbers in (a) indicate the number of states in each cluster,
which matches the CFT counting with finite particle number correc-
tion. While matrix elements to all excited states are shown in (b), (d),
the small |In| sometimes precludes their visualization. We have added
a red dashed line wherever necessary to identify the edge counting.

lattice center). Throughout the paper, we work in the strong
interaction regime U � J =1 and use hardcore bosons in the
numerics unless otherwise stated. For α < 1/3, this model
hosts a fractional Chern insulator ground state [51–53], which
is a lattice analog of the ν = 1/2 bosonic Laughlin state. A
cold-atom implementation of this model was realized using
two bosons in a box potential [24,50], revealing signatures of
the Laughlin FQH state [24].

We start by reviewing the properties of the FQH edge spec-
trum. In the low-energy limit, the edge modes of FQH states
are described by a conformal field theory (CFT), whose nature
depends on the topological order in the bulk [25,36,37,55]; for
the Laughlin state considered here, it coincides with the chiral
Luttinger liquid. This powerful bulk-edge correspondence can
be harnessed to identify FQH states from their low-energy
spectrum, which reveals the universal counting of the CFT
(the number of low-energy edge states for each momentum
value). Extracting the edge spectrum is a nontrivial task,
even numerically. Previous numerical studies have shown that
a gapless chiral edge mode, whose counting matches the
CFT expectation [32,33], could be extracted from the energy
spectrum in the presence of a smooth confining potential.
Interestingly, this property is already present in two-boson
systems, with corrections to the CFT counting due to fi-
nite particle number [33,56]. This is illustrated in Fig. 2(a),
through the low-energy spectrum of two bosons in the HBH
model in a weak harmonic trap, using the eigenvalues of the
modified C4 rotation operator [57] to highlight the chirality of
the edge spectrum. The situation is different in a box potential,
where the absence of low-energy structure prevents the extrac-
tion of the edge spectrum; see Fig. 2(c) and Refs. [13,32]. We
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now show how chiral edge and bulk properties can nonethe-
less be extracted in these relevant configurations, using a
proper spectroscopic probe.

A. Optical spectroscopy

We propose to probe the FQH edge and bulk modes by
using two interfering LG lasers designed to induce a transition
from the prepared FQH ground state to low-energy excita-
tions. This transition involves a transfer of angular momentum
l and energy h̄ω, which are conveniently controlled by the
pair of LG beams [58] (Fig. 1). This differs from the detec-
tion scheme of Refs. [29,59], where the dispersion relation is
extracted through a Fourier transform of the particle density
following a quench. Such a LG-driving scheme was initially
proposed in Ref. [49] to probe the edge spectrum of inte-
ger QH states. Beyond the strongly interacting nature of the
FQH state treated in this paper, the small system sizes envis-
aged to realize FQH states in experiments results in a highly
discretized spectrum. Our proposed scheme takes these key
properties into account, and we discuss their consequences on
the resulting absorption spectrum.

The LG modes are solutions of the cylindrical-symmetric
wave equation and take the following form:

LG(r, θ ) ∝
(

r

r0

)|l|
e
− r2

2r2
0 eiθ l ≡ fl (r)eiθ l , (2)

where the integer l represents the quantum of orbital angular
momentum carried by each photon. As shown in Fig. 1(b),
such an optical mode has a spatial vortex structure, with a
ring of maximum amplitude that can be adjusted to optimize
the edge response. The interference of two such LG beams,
with frequencies ω1, ω2 and angular momenta l1, l2 produces
a time-periodic potential acting on the atoms,

Ôl (t ) = 2ε
∑

j

fl (r j ) cos (ωt + θ j l ) b̂†
j b̂ j, (3)

where j sums over the lattice sites, θ j is the polar angle at j,
ω = ω2 − ω1 and l = l2 − l1.

To predict allowed transitions, we calculate the coupling
of the FQH ground state ψ0 to excitations ψn through the LG
drive, i.e., the coupling matrix elements:

In =
∑

j

〈ψn| fl (r j )e
iθ j l b̂†

j b̂ j |ψ0〉. (4)

We calculate the low-energy eigenstates of Ĥ for a sys-
tem of N = 2 hard-core bosons on a 10 x 10 lattice with
magnetic flux α = 1/8 using exact diagonalization (ED). The
corresponding low-energy spectrum and matrix elements In

are represented in Fig. 2 for a harmonic and a box potential,
respectively. In both cases, the matrix elements exhibit a chiral
branch at l < 0, and two isolated gapped states at l = 1 and
l = 2. We interpret the gapless l < 0 branch as the chiral edge
mode; as expected, the sign of orbital angular momentum
injected by the probe matches the chirality of the edge boson.
Conversely, the l > 0 signal is interpreted as low-energy bulk
excitations, which correspond to the MRM [35]. While the
maximum value of |l| in the edge mode is dictated by the
lattice size (here, the 10 x 10 box), giving rise to a large
number of low-energy edge states, the number of MRM states
above the Laughlin state is equal to the number of particles

[43,60,61]. The analysis of density profiles (below in the main
text, and in Ref. [61]) corroborates this interpretation of nega-
tive and positive l states as edge and bulk states, respectively.

Interestingly, the LG probe identifies the chiral branch
and MRM even when no structure can be extracted from the
low-energy ED spectrum [Figs. 2(c) and 2(d)]. This behavior
originates from the approximate rotation symmetry of the
low-energy eigenstates. While the discrete C4 rotation symme-
try of our lattice model only guarantees the conservation of the
angular momentum l modulo 4, l is approximately conserved.
At small α, reduced lattice effects lead to a better conservation
of l [61]. Yet, even for the experimentally relevant regime α ≈
1/4, coupling matrix elements that satisfy the conservation of
l mod 4 but not the conservation of l are 40 times smaller
than those that do. Overall, Figs. 2(b) and 2(d) show that the
addition of a weak harmonic potential increases the velocity
of the chiral edge mode, such that its winding becomes visible
in the folded energy spectrum [Fig. 2(a)].

We have chosen the value r0 = 2 for the Gaussian exten-
sion of the probe such that fl (r) remains nonzero both in the
bulk and a few magnetic lengths outside the edge of the FQH
droplet, at least for |l| � 5. This is a necessary condition for
the corresponding matrix elements to be nonzero, due to the
density profiles of the ground state and low-energy excited
states, whose spatial extension increases with increasing en-
ergy [61]. Naturally, the optimal value of r0 depends on the
size of the droplet; in larger droplets, it is especially useful to
optimize r0 to specific values of l [61].

B. Connection to the Harvard experiment

We now apply our spectroscopy protocol to the experimen-
tal setup of Ref. [24]. There, N = 2 interacting (U = 8.1J)
bosons are confined to a 4 x 4 box with hard walls on the HBH
lattice, and a FQH ground state was identified within a flux
window 0.24 < α < 0.3. Focusing on α = 0.25, we show our
probe’s matrix elements in Fig. 3(a). The absorption spectrum
is consistent with a FQH state whose edge mode is gapped
due to the small size of the box. Releasing the walls of the
4 x 4 box into a 10 x 10 box confirms this interpretation:
the l < 0 edge branch goes down and becomes gapless,
while the l = 2 bulk gap increases; see Fig. 3, with the trap
shape drawn as an inset. Further numerical investigation [61]
shows that in a large box, irrespective of the trap shape,
the FQH droplet recovers a gapless edge mode, and its bulk
gap increases until it reaches its thermodynamic value. Con-
versely, when the size of the box is reduced, the bulk gap
decreases and eventually closes, marking a phase transition.
Overall, our calculations show that increasing the size of the
quantum-simulation box could permit the observation of a
chiral gapless edge mode in ongoing experiments, even in
two-atom droplets.

C. Extracting the edge and bulk modes from
in situ density measurements

We now show how to obtain the absorption spectrum stud-
ied in the previous paragraphs using observables accessible to
cold-atom experiments.

Due to its well-defined angular momentum l , our LG probe
only couples the ground state to a handful of excited states at
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FIG. 3. Absorption spectra for N =2 interacting bosons (U =
8.1J) on a 10 x 10 HBH lattice with flux α = 0.25, and different
trap configurations, keeping V0 =0 in the central 4 x 4 portion of
the lattice. (a) Harvard experiment configuration [24], with infinite
walls around the 4 x 4 box. The inset shows the corresponding
energy spectrum. (b)–(d) Harmonic potential of respective strength
V0 =0.2, 0.1, 0.06. Upon lowering the potential in the outer box,
the bulk gap (l =2 signal) increases, while the edge branch (l < 0)
becomes gapless. The weak signal at l =2, at the same energy as the
l =−2 edge signal is due to the imperfect conservation of l .

most, as observed in our analysis of transition matrix elements
In. As a result, the LG drive induces an effective two-level cou-
pling for each value of l . Using unitary time-evolution of the
FQH ground state subjected to the LG drive, we numerically
observe Rabi oscillations, whose amplitude is maximal at the
resonance frequency ω = ωres [Fig. 4(a)].

FIG. 4. Time evolution of two hardcore bosons on a 10 x 10
HBH lattice with flux α = 1/8 and a harmonic trap of strength V0 =
0.01, upon a LG drive of amplitude ε = 0.05. (a) Excitation frac-
tion Nl,ω(t ) = 1 − |〈ψ (t )|ψ0〉|2 for an injected angular momentum
l =−1. (b) Chiral branch and magnetoroton mode extracted from the
density-transfer protocol (dots). Colored bars indicate the coupling
matrix elements. (c), (d) Density variation at the edge and bulk, for
l =−1 and l =2, representative of the typical resonant coupling to
edge and bulk states.

We propose to detect the resonant excitations through
local density measurements, which are experimentally ac-
cessible using a quantum gas microscope [24,50]. Following
the excitation of edge states, we expect the density profile
to increasingly populate the external rings outside the bulk.
Conversely, we expect transitions to the MRM to result in
a density increase in the bulk due to its nature as a com-
pressibility modulation of the ground state [61] We define the
instantaneous edge density as

	ρedge(t ) =
∑

j∈edge

ρ j (t ) − ρ j (0), (5)

where ρ j is the density on site j, and we have defined the com-
plementary bulk and edge regions [green and purple regions in
the inset of Figs. 4(c) and 4(d)] from the ground-state density
profile [61]. The time-dependent behavior of 	ρedge(t ), as
obtained using numerical time evolution in Figs. 4(c) and 4(d),
confirms the migration of the particle density from bulk to
edge (respectively edge to bulk) for a negative (respectively
positive) injected angular momentum. Figures 4(c) and 4(d)
show the evolution of 	ρedge and 	ρbulk at the resonance
frequency and angular momentum for, respectively, the edge
state at l = 1 and MRM state at l = 2. Iterating this procedure
for different values of the injected angular momentum l , we
retrieve the chiral edge spectrum and MRM in Fig. 4(b). The
observation time at which we extract the resonance frequen-
cies for l < 0 is t∗ = 50h̄/J . We point out that a realistic
observation time t∗ ∼ 10 − 100h̄/J leads to a clear signal
	ρedge(t∗) ∼ 0.1 − 1, which can be detected using a quantum
gas microscope [24]. We also verified the ability of our proto-
col to detect edge signals in the experimental configuration of
Ref. [24]; see Ref. [61]. Lastly, performing a full transfer to
a target edge state would allow to image its hallmark vortex
structure in situ [61].

III. DISCUSSION

Our paper indicates that the chiral edge branch and MRM
of atomic FQH droplets can be probed by measuring the local
density following a LG drive. Our method is well-suited to
probe the few-atom droplets addressed by ongoing exper-
iments. Increasing the lattice size beyond the small boxes
realized so far in experiments [24] would permit the extraction
of a gapless edge mode even in two-particle systems. We
have verified the validity of our results beyond this limit, for
three or four particles, where we can still address very dilute
systems [61]. Beyond experimental purposes, the calculation
of LG matrix elements is a convenient tool to analyze bulk and
edge properties of FQH states, especially in lattice systems
without continuous rotation symmetry. It distinguishes bulk
and edge states, allowing, e.g., the tracking of the bulk gap and
of the velocity of the edge branch upon changing the confining
conditions.

Finally, our method is promising in view of identifying the
fractional statistics of anyonic excitations (see also Ref. [18]).
Indeed, the number of edge states detected by our LG probe
for each value of the angular momentum l matches the CFT
counting for a free chiral boson (with corrections due to the
small particle number [33]), which describes the edge of a
Laughlin droplet. We have verified that a tighter confinement
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of the FQH droplet leads to larger energy splittings, permitting
the resolution of resonances occurring at the same l without
requiring longer observation times [61]. Overall, our scheme
allows us to extract the edge counting at least up to l =−3,
which is enough to distinguish most FQH states [62] The
MRM constitutes an additional topological signature, absent
from integer quantum Hall phases, and whose maximum an-
gular momentum distinguishes between different FQH phases
[63].
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wave functions for the collective modes and the magnetoroton
theory of the fractional quantum Hall effect, Phys. Rev. Lett.
108, 256807 (2012).

[42] B. Yang, Analytic wave functions for neutral bulk excitations
in fractional quantum Hall fluids, Phys. Rev. B 87, 245132
(2013).

[43] T. Jolicoeur, Shape of the magnetoroton at ν = 1/3 and ν =
7/3 in real samples, Phys. Rev. B 95, 075201 (2017).

[44] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte, and
L. Fallani, Observation of chiral edge states with neutral
fermions in synthetic Hall ribbons, Science 349, 1510 (2015).

[45] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Visualizing edge states with an atomic Bose gas in
the quantum Hall regime, Science 349, 1514 (2015).

[46] T. Chalopin, T. Satoor, A. Evrard, V. Makhalov, J. Dalibard, R.
Lopes, and S. Nascimbene, Probing chiral edge dynamics and
bulk topology of a synthetic Hall system, Nat. Phys. 16, 1017
(2020).

[47] C. Braun, R. Saint-Jalm, A. Hesse, J. Arceri, I. Bloch, and
M. Aidelsburger, Real-space detection and manipulation

of topological edge modes with ultracold atoms,
arXiv:2304.01980.

[48] R. Yao, S. Chi, B. Mukherjee, A. Shaffer, M. Zwierlein, and
R. J. Fletcher, Observation of chiral edge transport in a rapidly-
rotating quantum gas, arXiv:2304.10468.

[49] N. Goldman, J. Beugnon, and F. Gerbier, Detecting chiral edge
states in the Hofstadter optical lattice, Phys. Rev. Lett. 108,
255303 (2012).

[50] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke,
Dan Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and
M. Greiner, Microscopy of the interacting Harper-Hofstadter
model in the two-body limit, Nature (London) 546, 519
(2017).

[51] A. S. Sorensen, E. Demler, and M. D. Lukin, Fractional quan-
tum Hall states of atoms in optical lattices, Phys. Rev. Lett. 94,
086803 (2005).

[52] M. Hafezi, A. S. Sørensen, E. Demler, and M. D. Lukin, Frac-
tional quantum Hall effect in optical lattices, Phys. Rev. A 76,
023613 (2007).

[53] M. Gerster, M. Rizzi, P. Silvi, M. Dalmonte, and S.
Montangero, Fractional quantum Hall effect in the interacting
Hofstadter model via tensor networks, Phys. Rev. B 96, 195123
(2017).

[54] D. R. Hofstadter, Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields, Phys. Rev. B
14, 2239 (1976).

[55] A. Nardin, R. Lopes, M. Rizzi, L. Mazza, and S. Nascimbene,
Bisognano-Wichmann Hamiltonian for the entanglement spec-
troscopy of fractional quantum Hall states, arXiv:2312.07604.

[56] For two particles, the counting for a free chiral boson (1, 1, 2,
3, 5, 7 . . .) is truncated down to (1, 1, 2, 2, 3, 3 . . .).

[57] T. Ozawa, H. M. Price, and I. Carusotto, Momentum-space
Harper-Hofstadter model, Phys. Rev. A 92, 023609 (2015).

[58] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-
Dunlop, Direct observation of transfer of angular momentum to
absorptive particles from a laser beam with a phase singularity,
Phys. Rev. Lett. 75, 826 (1995).

[59] B.-Y. Sun, N. Goldman, M. Aidelsburger, and M. Bukov, En-
gineering and probing non-Abelian chiral spin liquids using
periodically driven ultracold atoms, PRX Quantum 4, 020329
(2023).

[60] C. Repellin, T. Neupert, Z. Papić, and N. Regnault, Single-mode
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