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We present a powerful new approach to compute tree-level higher-point holographic correlators. Our method
only exploits the flat-space limit, where we point out an important simplification, and factorization of amplitudes
in AdS. In particular, it makes minimal use of supersymmetry, crucial in all previous bootstrap methods. We
demonstrate our method by computing the six-point super gluon amplitude of super Yang-Mills in AdS5.
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Introduction. Over the past few decades, there has been
tremendous progress in our understanding and ability to
compute scattering amplitudes in flat space time. The excep-
tional simplicity of the Parke-Taylor formula [1], contrasted
to the complexity of intermediate diagrammatic computa-
tions, pointed at remarkable structures. Since then we have
discovered many extraordinary properties, ranging from the
relation between gravity and gauge theory amplitudes [2] to
the appearance of positive geometry structures [3], and our
understanding of scattering amplitudes keeps growing. Along
the way, we also learned many useful lessons. One such lesson
is that gauge theory amplitudes serve as building blocks for
gravity amplitudes while being much simpler. Another lesson
is that to uncover the full structure behind scattering ampli-
tudes, the computation of higher points is fundamental.

In contrast, progress in AdS has been much slower, even at
tree level, and is mostly restricted to the four-point case [4–8].
While specific higher-point functions are known [9–11], we
lack tools to compute higher-point functions in AdS more gen-
erally. Meanwhile, in [12] a framework to study holographic
gluon amplitudes, through CFT methods, was introduced. Al-
ready with four points, gluon amplitudes in AdS are much
simpler than graviton amplitudes. In this Letter, we present
a powerful new approach to compute tree-level gluon am-
plitudes in AdS, which is tailored for higher points and
systematically goes beyond previous approaches. The method
consists of two steps. First, in the flat-space limit the AdS am-
plitudes reduce to flat-space amplitudes for a specific choice
of polarizations. With this choice, not studied in the flat-space
literature, amplitudes simplify drastically. Furthermore, the
limit works not only for the full amplitude but also for individ-
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ual diagrams, fixing much of the answer in AdS. In the second
step, we go into AdS, demanding the correct factorization of
the AdS amplitude into lower-point amplitudes. It turns out
that this fixes the amplitude completely! We will demonstrate
our method by computing the tree-level six-point amplitude in
AdS5. Note that a distinguishing feature of our new approach
is that we make minimal use of supersymmetry which has
been both the key and the bottleneck of previous methods.
Hence the new method can be applied more generally, as will
be shown in [13].

Kinematics. We consider YM on AdS5 with 4d N = 2 su-
perconformal symmetry in the boundary parlance. While pure
YM might be physically more relevant, the supersymmetric
version is a more suitable testing ground for developing new
technologies because the kinematics is more tractable. The
theory contains a scalar field sa (super gluon) and a spin-1
gauge field va

μ as bosonic fields, transforming in the adjoint
representation of a gauge group GF [a = 1, . . . , dim(GF )], as
well as fermionic super partners. It can also be viewed as a
consistent truncation of 8d N = 1 SYM on AdS5 × S3, which
can be obtained by D3 branes probing an F-theory 7-brane
singularity [14,15] or D3 branes with D7 probes [16]. On the
boundary, the super gluon is dual to a scalar field Oa;α1α2 ,
αi = 1, 2, with dimension � = 2 and transforms in the spin-1
representation of SU (2)R. The gluon is dual to a conserved
flavor current J a

μ which has � = 3 and is an R-symmetry
singlet. From the boundary perspective, GF is a global flavor
symmetry. Our target is to compute the six-point function of
super gluons

G6(xi; vi ) = 〈Oa1 (x1; v1) . . .Oa6 (x6; v6)〉, (1)

where we have absorbed the SU (2)R indices by contracting
them with R-symmetry polarization spinors

Oa(x; v) = Oa;α1α2 (x)vβ1vβ2εα1β1εα2β2 . (2)

Compared to correlators with spinning operator insertions,
the scalar correlator (1) is kinematically simpler but captures
essential features of AdS scattering. We will focus on tree
level in AdS. Then fermionic fields will not be exchanged and
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FIG. 1. Two topologies of cubic tree color diagrams, where σ

denotes a permutation of {a1, a2, a3, a4, a5, a6}.

therefore are irrelevant. As on the LHS of (1), we will often
suppress the color indices to lighten the notation. But the color
structures are described in the same way as in flat-space gluon
amplitudes and are given by cubic tree color diagrams (Fig. 1).
Note that via the Jacobi identity, the snowflake diagrams

S[aσ
1 aσ

2 aσ
3 aσ

4 aσ
5 aσ

6 ] = f aσ
1 aσ

2 b1 f aσ
3 aσ

4 b2 f aσ
5 aσ

6 b3 f b1b2b3 (3)

can be expressed in terms of the comb diagrams

T[aσ
1 aσ

2 aσ
3 aσ

4 aσ
5 aσ

6 ] = f aσ
1 aσ

2 b1 f b1aσ
3 b2 f b2aσ

4 b3 f b3aσ
5 aσ

6 . (4)

In fact, T[a1aσ
2 aσ

3 aσ
4 aσ

5 a6] with σ being a permutation of
{a2, a3, a4, a5} form a basis [17]. While our perspective will
be entirely from the bulk, we digress here to briefly comment
on the boundary interpretation. The operators Oa are mesons
in the dual gauge theory [18]. The correlator (1) at AdS tree
level computes the leading 1/N contribution to the connected
six-point meson correlator in a large N gauge theory at infinite
’t Hooft coupling.

Mellin and factorization. The best way to describe these
holographic correlators is to use the Mellin space formalism
[19,20], which defines a scattering amplitude in AdS. In this
formalism, we write

G6 =
∫

[dδi j]

( ∏
i< j

x
−2δi j

i j �[δi j]

)
M(δi j ; vi ), (5)

where M(δi j ; vi ) is the Mellin amplitude,
and the Mellin variables satisfy the con-
straints δi j = δ ji, δii = −�i,

∑
j �=i δi j = 0.

It is most convenient to think of δi j as the Mandelstam
variables formed from a set of fictitious flat-space momenta
δi j = k̄i · k̄ j satisfying momentum conservation and on-shell
condition k̄2

i = −�i. Then the constraints are automatically
solved. Moreover, much of the flat-space intuition also
extends to the Mellin amplitude. For example, Mellin
amplitudes also enjoy factorization properties similar to
flat-space amplitudes.

More precisely, Mellin amplitudes are meromorphic
functions with simple poles at δLR = � − J + 2m, m =
0, 1, 2, . . . , that are associated with the exchange of an op-
erator with dimension � and spin J . Here the propagator
divides the n-point function into a (k + 1)- and a (n − k + 1)-
point functions as in Fig. 2, and δLR = ∑k

a=1

∑n
i=k+1 δai. The

residues are controlled by lower-point amplitudes involving
both the external and the exchanged operators [21,22]. This is
the CFT analog of the well known factorization property of
flat-space amplitudes. The simplest example is the exchange
of a super gluon between two operators, say O1, O2, and the
remaining ones. For this case the Mellin amplitude has a pole

FIG. 2. The Mellin amplitude factorizes into the product of two
lower-point amplitudes at a pole.

at δ12 = 1 given by

M(δi j ; vi ) ⊃ M3M5

δ12 − 1
, (6)

where M3, M5 are three- and five-point Mellin amplitudes
of super gluons, respectively. Similar formulas also exist for
the exchange of spinning operators, as well as for residues at
satellite poles (m > 0) [22].

Simplification at flat space limit. The Mellin amplitude
contains information about flat space in the high energy limit.
More precisely, the six-point scattering amplitude A	 of spin-
1 gluons in flat space is related to the Mellin amplitude by
[12,20]

lim
β→∞

βM(βsi j ; vi ) ∼ A	(si j ; ei ), (7)

where si j = ki · k j are the flat-space Mandelstam variables.
But coming from an AdS amplitude, the polarization vectors
ei are restricted to a special configuration where they are
orthogonal to all momenta [12]

ei · k j = 0. (8)

In fact, they lie within a four dimensional subspace and are
related to the SU (2)R polarization spinors by

eA
i = i√

2
σ A

αβvα
i v

β
i , A = 0, 1, 2, 3, (9)

where σ A
αβ are the Pauli matrices. This subspace is orthogonal

to the subspace where ki live, which ensures the condition
(8). Note that the scalar super gluons and the spin-1 gluons
in AdS lose their difference in the flat-space limit. They both
become spin-1 gluons but with different polarizations. The
flat-space amplitude A	 with polarizations obeying (8) can be
viewed as the dimensional reduction of the eight dimensional
gluon amplitude into a scalar amplitude, in agreement with the
picture of consistent truncation into AdS5 SYM before taking
the limit.

The orthogonality constraint (8) leads to significant sim-
plifications to the flat-space amplitudes which already can
be seen at the level of Feynman rules. For example, the cu-
bic vertices in Fig. 3 are just i f abc(−(k2 + k3)μe2,ν + (k2 −
k1)νe2,μ) and i f abc(e1 · e2)(k2 − k1)μ. As a result, the con-
tributing Feynman diagrams, listed in Fig. 4, can all be easily
computed and have a very simple form. For instance, the
diagram F1 (with σ = 1 in comb diagram of Fig. 1) is simply

F1 = T[a1a2a3a4a5a6]
e12e34e56(s23 − s13)(s45 − s46)

2s12(s12 + s13 + s23)s56
, (10)

where ei j = ei · e j . The other diagrams also have a similar
level of complexity. This should be contrasted with Feynman
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FIG. 3. Cubic vertices in flat space. The black dots are used to
emphasize the contraction with the polarization vector e.

diagrams with generic polarizations, where already for four
points the expressions are quite cumbersome. The full flat-
space amplitude is

A	 =
5∑

i=1

CiFi + permutations, (11)

where Ci are symmetry factors determined by combinatorics.
However, one can also show that by imposing color-kinematic
duality [23] on A	 all the Ci coefficients are fixed up to an
overall factor. The result fully agrees with the field theory
limit of the six-point open string amplitude obtained from
using pure spinor techniques [24,25], by further imposing the
orthogonality condition (8). However, it is worth emphasizing
again that the simplification from the configuration (8) is
drastic, allowing even for a diagrammatic evaluation by hand.

Taxonomy of witten diagrams. The AdS amplitude essen-
tially is a collection of Witten diagrams. As we mentioned in
(7), the Mellin amplitude reduces to the flat-space amplitude
in the high energy limit. But this mapping is in fact more
refined and holds at the level of individual diagrams. It is not
difficult to check that the five Feynman diagrams in Fig. 4
correspond to the Witten diagrams in the first row of Fig. 5,
respectively (see, e.g., [20,21,26] for computation of Witten
diagrams in Mellin space). For example, the Mellin amplitude
of diagram I(a) is

MIa =
1∑

m=0

T[a1a2a3a4a5a6]e12e34e56(δ13 − δ23)(δ45 − δ46)

(δ12 − 1)(δ12 + δ13 + δ23 + m − 2)(δ56 − 1)
,

which reduces to (10) in the flat-space limit. The finite sum
over m can be understood in terms of the truncation properties
observed in [11].

Note that the Mellin amplitudes of the Witten diagrams
I(a) to I(e) all scale as β−1, as required by (7). Diagrams
with a slower decaying behavior are disallowed as they violate
the flat-space limit. For example, D1 and D2 in Fig. 6 decay
as β0 and are therefore excluded. Note that the exclusion of
D1 implies the nonexistence of quartic vertices with three
scalars and one vector. This in turn implies that diagrams D3

and D4 do not exist and also decay as β−1 [27]. But in the
opposite direction, diagrams with faster decaying rates are
not detected by the flat-space limit (7) and are not prohibited.
These diagrams are cataloged in the second and third rows of
Fig. 5 and are obtained from the first row by changing some
vector internal lines into scalar lines. Note that some replace-
ments violate R symmetry [e.g., replacing only one v by s
in diagram I(b)] and are therefore not listed. To summarize,
Fig. 5 contains all possible six-point Witten diagrams up to
permutations.

Bootstrapping six-point amplitude. Using these ingredi-
ents, we can now formulate an efficient algorithm to compute
the six-point Mellin amplitude. This comes in two steps. The
flat-space limit A	 clearly allows us to fix the coefficient of
each diagram in the first row of Fig. 4. For the rest of the
Witten diagrams, we observe that they have at least one inter-
nal scalar line which separates the diagram into a five-point
diagram and a three-point diagram. Although these Witten
diagrams are not captured by the flat-space limit, they are
detected by the AdS amplitude factorization. We can there-
fore fix all their contributions in terms of the five-point and
three-point Mellin amplitudes of super gluons. To see how
the strategy works in detail, it is instructive to first look at an
explicit example where we reproduce the four-point function
[12]. By different large β scalings, we have

M4pt
ansatz = ML + MSL. (12)

The leading part consists of the gluon exchange diagrams and
the contact diagrams

ML = cs

[
λv

e12e34(t − u)

s − 2
+ λc,1e13e24 + λc,2e14e23

]

+ (t and u channels),

where cs = T[a1a2a3a4] and δ12 = δ34 = 4−s
2 , δ14 = δ23 = 4−t

2 ,
δ13 = δ24 = 4−u

2 . The relative coefficient between the ex-
change and contact diagrams is fixed by the flat-space limit
to be λc,1/λv = −1, λc,2/λv = 1. The subleading part is pro-
portional to the scalar exchange

MSL = csλs
e12e34 − 2v13v24v12v34

s − 2
+ (t and u channels),

where vi j = vα
i v

β
j εαβ . By factorizing the ansatz on the scalar

internal line, we get a product of two super gluon three-point
functions and this gives λs/λv = 2.

The six-point function case is essentially the same, except
for more complicated technical details which will be relegated
to a separate publication [12]. Instead of starting from a sum
of all the Witten diagrams in Fig. 5 with unfixed coefficients,
it is more convenient to write an ansatz with the same analytic

FIG. 4. All six-point Feynman diagrams in flat space.
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FIG. 5. Tree level Witten diagrams. Straight lines represent scalar super gluons (s) and wavy lines are spin-1 gluons (v). Diagrams in the
ith row decay as β−i in the large β limit. Diagrams grouped together by the orange dashed line are related by replacing v with s.

structure to avoid calculating the diagrams

Mansatz = P(2)
12;34;56(δkl , v)

(δ12 − 1)(δ34 − 1)(δ56 − 1)
+ P(1)

12;34(δkl , v)

(δ12 − 1)(δ34 − 1)

+ P(0)
12 (δkl , v)

(δ12 − 1)
+

1∑
m=0

C(2)
123,m

(δ12 + δ13 + δ23) + m − 2

+ perm. (13)

Here P(n)
... are polynomials of degree n in the Mellin variables

and C(2)
... are rational functions with the same analytic struc-

ture as the four-point Mellin amplitude. The highest degree
terms in the polynomials P(n) are easily fixed by matching
with the flat-space scattering amplitude. In fact, the flat-space
limit fixes completely P(0)

12 and leaves eight undetermined
coefficients inside the polynomials P(2)

12;34;56 and P(1)
12;34. These

remaining coefficients, as well as those in C(2)
123,m, are deter-

mined by the factorization of Mellin amplitudes [28].
Consistency checks. The six-point Mellin amplitude

passes several nontrivial checks. The first check is that it
factorizes correctly into a spinning five-point amplitude and a
spinning three-point amplitude on an internal gluon line. Note
that this condition was not part of the constraints imposed in
our algorithm. More precisely, this factorization requires the

six-point amplitude to contain a contribution

M(δi j ; vi ) ⊃ δaiMa
3Mi

5

δ12 − 1
, (14)

where the lower-point spinning amplitudes carry additional
indices a = 1, 2, i = 3, 4, 5, 6, see the Appendix. As we will
discuss in more detail, the five-point spinning amplitudes can
be fixed up to two undetermined coefficients by imposing
only basic consistency conditions which include permutation
symmetry, transversality, conservation, and factorization. The
three-point amplitude is determined by these conditions up
to an overall constant. The compatibility with our six-point
amplitude provides a strong consistency check of our results.

Another independent check is the chiral algebra condition.
In position space, superconformal symmetry imposes strong
constraints on the form of holographic correlators, requiring
them to satisfy certain meromorphy conditions when the R-
symmetry polarizations are twisted [29,30]. This condition
is highly nontrivial and has been essential in previous ap-
proaches [4–7,9,10,12]. At the same time, the chiral algebra
condition is also practically very cumbersome to implement,
especially at higher points. We will show that this property
holds in [13]. But this condition is not needed in our algo-

FIG. 6. Examples of disallowed Witten diagrams.
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rithm, which is one of the reasons why the new algorithm is
more powerful and efficient.

Discussion. In this Letter we presented an intriguing ap-
proach to compute higher-point holographic correlators. The
algorithm relies on the flat-space limit and factorization,
making only minimal use of superconformal symmetry. This
greatly extends the range of holographic correlators which
we can compute, including for instance SYM on AdS7 × S3,
where a chiral algebra structure is not available. This method
can also be used to compute the super graviton six-point am-
plitude in AdS5. The six-graviton amplitude in the orthogonal
configuration can be readily obtained by using the flat-space
double copy relation [2]. Meanwhile, the super graviton five-
point amplitude has also been computed in [9]. This provides
the two necessary ingredients of our method for the super
graviton six-point amplitude. It would also be interesting to
further explore color-kinematic duality and double copy rela-
tion in Mellin space, extending previous observations at lower
points [10,12,31]. The appearance of subleading poles in (13)
suggests a generalized version of the duality in this case.

The remarkable simple structure of the results in this Letter
make it plausible that a recursive method can be developed
to compute higher-point correlators. On the one hand, the
simplification of the flat-space amplitude in the orthogonal
configuration certainly warrants more attention. It should be
possible to obtain the all multiplicity result by adapting on-
shell techniques. On the other hand, it can be checked that
the five-point amplitude of super gluons [10] can also be fixed
from factorization if the four-point function with one spinning
leg is used. Therefore, it would be important to systematically
extend our analysis to spinning amplitudes after further de-
veloping the spinning Mellin formalism [22]. In particular,
this will allow us to apply the strategy to spinning gluon
amplitudes in pure YM in AdS. Combining these elements,
we can hope to generate higher-point AdS amplitudes directly
from lower-point amplitudes.
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Appendix:
Spinning mellin amplitudes. Spinning Mellin amplitudes

are most convenient to define using the embedding space for-
malism where the action of the conformal group is linearized.

Each point xμ ∈ Rd is lifted to a null ray PA ∈ R1,d+1,

P · P = 0, P ∼ λP. (A1)

Using the rescaling symmetry, we can gauge fix P to be

P =
(

1 + x2

2
,

1 − x2

2
, xμ

)
. (A2)

Operators of dimension �, spin J are homogeneous functions
of P and Z,

O(λP, αZ ) = λ−�αJO(P, Z ), (A3)

where the polarization ZA ∈ R1,d+1 encodes tensor structures
and satisfies P · Z = 0. We further impose the transversality
condition

O(P, Z + βP) = O(P, Z ). (A4)

For a correlator with n scalars and one spinning (focusing on
J = 1) operator, the generalization of (5) is [22]

Gn,1(P1, . . . , Pn; P0, Z ) =
n∑

a=1

(Z · Pa)
∫

[dδ]Ma
n

×
n∏

i, j=1,i< j

�(δi j )

(−2Pi · Pj )δi j

n∏
i=1

�(δ0i + δa
i )

(−2Pi · P0)δ0i+δa
i
, (A5)

where δa
i is the Kronecker delta and the Mandelstam variables

satisfy

δi0 = −
n∑

j=1

δi j, δi j = δ ji, δii = −�i,

n∑
i=1

δi0 = � − 1.

The spinning Mellin amplitude is now a collection of partial
amplitudes labeled by an index a = 1, . . . , n because of the
different structures Z · Pa. When the current is conserved, we
further have

∂

∂P0
· ∂

∂Z
Gn,1(P1, . . . , Pn; P0, Z ) = 0. (A6)

In Mellin space, transversality and conservation translate to
the constraints

n∑
a=1

δa0Ma
n = 0,

n∑
p,q=1,p�=q

δpq
[
Ma

n

]pq = 0, (A7)

where

[ f (δi j )]
pq = f

(
δi j + δ

p
i δ

q
j + δ

q
i δ

p
j

)
. (A8)

To perform the first check mentioned in the main text, we
need to consider the five-point spinning amplitude Ma

5. The
amplitude has poles at

δi j = 1, δ0i = 0, 1, (A9)

which correspond to the exchange of AdS fields in the OPE.
Note that the appearance of two poles in δ0i is a distin-
guishing feature compared to the scalar five-point amplitude
where there is only one. However, this can be inferred from
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the structure of the OPE between the scalar and the cur-
rent. Alternatively, the appearance of the additional pole can
be expected from the consistency with the pole structure of
the super gluon six-point amplitude. The five-point spinning
Mellin amplitude is then just a rational function with finitely
many poles. Moreover, this rational function should be con-
sistent with the flat-space limit which in turn constrains the
degree of the numerator. We can make an ansatz where we
also restore the R-symmetry polarizations and color structures
which have been suppressed in (19). Note that the Mellin
amplitude should have permutation symmetry among the four

super gluon operators. Taking this into account, we arrive at
an ansatz with 67 unfixed coefficients. Imposing transversal-
ity leaves 27 coefficients while conservation further reduces
the number to nine. By using the fact that the residues at
the δ0i poles are related to the known four-point spinning
amplitude, we eventually have just two unfixed coefficients.
Let us also comment that spinning four-point and three-point
amplitudes can also be bootstrapped in the same way. The
difference is that they are fully determined by permutation
symmetry, transversality, and conservation, up to an overall
constant.
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