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Parrondo’s paradox in network communication: A routing strategy
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The throughput and latency bottleneck in accessing system resources is prevalent in all communication
systems. Likewise, communication overhead in modern computer systems is a vital limiting factor in their
performance. In this Letter, we propose a routing strategy to improve communication in networks based on
Parrondo’s paradox. We show that random switching between the shortest-path algorithm and making the local
optimum choice (greedy algorithm) yields a significant reduction in total transmission weight compared to when
the shortest-path and greedy algorithms are operated separately. This effect recapitulates Parrondo’s paradox,
where two games/strategies are losing when played alone but create a winning outcome or optimum results
when combined in a certain manner. The performance of the switching strategy is further validated under various
parameters, and the results indicate that the effect is more remarkable with an increase in the number of packets
and the number of nodes in the system. The proposed routing strategy enhances efficiency and scalability in
modern computer and communication systems.
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Network science serves as a powerful tool to replicate real-
world complex systems ranging from technological to social
systems [1–4]. In general, the constituent elements of the
system in the network’s framework are represented as nodes,
and the interactions between them are depicted as links. Over
the past two decades, communication networks, including the
internet, have become indispensable components of both the
national economy and individual lives [5]. In communication
networks, nodes represent the physical devices like comput-
ers, routers, or servers, and the links are akin to the connection
between the devices. Further, with the increasing growth of
network traffic, the internet capacity often becomes insuffi-
cient to deal with large numbers of data packets. The problem
of improving communication networks involves increasing
the number of packets generated per unit time to travel in
a congestion-free state, minimizing travel costs and time,
and reducing packet loss. It can be addressed via two ways:
redesigning the network topology or advancing the routing
strategy. However, the former approach demands a higher cost
compared to the latter, making the advancement of the routing
strategy more preferable.

In order to enhance network communication through op-
timizing routing strategy, a simple model of communication
in networks with hierarchical branching [6] was proposed,
where continuous phase transition between the free-flow and
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the congested regime was described by an order parameter.
Packet transmission was subsequently studied by the notion
of load, capacities, and overload in networks [7–9]. Yan et al.
[10] then proposed an efficient routing strategy in which the
path between two nodes is defined as

∑l
i=1 k(xi )β where β is a

tunable parameter, l is the path length, and k(xi ) represents the
degree of the ith node in the path. Notably, the most efficient
path is achieved when β is set to one. Recently, algorithms like
random walk [11,12], integrating shortest-path and local rout-
ing strategy [13], next-nearest-neighbor [14], local routing
strategy [15,16], link closing strategy [17], and edge-adding
strategy [18] have been put forward by researchers to find
the best routing strategy to enhance network communication.
Efficient routing strategy has also been investigated in dif-
ferent types of network setup such as spatial networks [19],
multilayer networks [20,21], and quantum networks [22,23].

In current network protocols, such as the transmission
control protocol (TCP) and user datagram protocol (UDP),
it is common practice to split data into numerous packets.
This practice is employed when the packet size exceeds the
maximum segment size (MSS) or maximum transmission unit
(MTU) of the underlying network. The MSS is associated
with the transmission control protocol (TCP) while the MTU
constrains the size of data packets in both TCP and user data-
gram protocol (UDP). Hence, transmitting large-sized data
involves fragmenting it into numerous smaller packets, which
are subsequently transmitted separately across the network.
These individual packets are later reassembled at the receiving
end to reconstruct the original data [24–28]. Another rea-
son for splitting data packets is the possibility of packet
loss caused by device failures, disconnection, or data time
out. In these scenarios, sending data again will incur addi-
tional latency and hence sending multiple packets tends to
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minimize the computational overhead [29–34]. Therefore, we
are motivated to analyze multipacket data packet transmission
instead of single-packet data transmission. In this work, we
propose a routing strategy to enhance network communication
based on Parrondo’s paradox. It is well known that the la-
tency bottleneck in data transmission is prevalent in almost all
modern communication systems. We demonstrate that while
individual constituent algorithms for packet transmission are
suboptimal individually, switching between them randomly
can lead to latency suppression and ultimately produce opti-
mal results. This recapitulates the Parrondo effect, where two
losing games can be combined in a certain manner to create a
winning outcome or optimal results. Parrondo’s paradox has
been applied in different areas of research, including quantum
game theory [35,36], computer science [37], social sciences
[38,39], and evolutionary dynamics [40] among others [41].

We consider weighted random networks G = {V, E}, con-
sisting of a set of nodes V = {v1, v2, v3, . . . , vN } and links
E = {e1, e2, e3, . . . , eM}, where N and M are sizes of V and
E , respectively. Each link ei hasa resting weight w

φ
i which

represents the latency factor or time delay incurred when a
single data packet is transmitted through the link in an un-
loaded state [42–44]. The weights of the links are taken from
the uniform distribution over the interval [0,1]. Suppose n
packets are sent from a randomly chosen source and all are
intended for a common destination. They are sent �T times
apart regulated by the source node with a common destination
and each packet moves one step ahead toward the destination
at each time step. As the number of packets increases with
time, the links in the network become overloaded and the
latency factor over the links increases. The load of a link
directly correlates with the time delay, as discussed in [45,46].
Let wi(t ) be the weight of the link ei at time t , and it equals
wi(t ) = w

φ
i , until one packet is transmitted through the link.

Whenever the next packet passes through, the link experiences
an increment in the latency by an amount εi. It is not difficult
to argue that the links are subject to recovery from the load
after sufficient time. Let βi be the relaxation factor or decay
constant associated with link ei which describes the rate at
which the link recovers from the load. Hence, the dynamics
can be described by the following equation:

dwi(t )

dt
= −βi

(
wi(t ) − w

φ
i

)
. (1)

The weight of the link at time t can obtained by solving
Eq. (1),

wi(t ) = w
φ
i + exp(−βi(t − t ′))

(
wi(t

′) − w
φ
i

)
, (2)

where t ′ is the time at which the last packet was transmitted
through the link ei. For simplicity, we consider βi = εi =
0.1∀i and �T = 0.05. Equation (1) draws inspiration from
the concept of delay gradient, a crucial element employed
in congestion control mechanisms [47,48], where monitoring
and responding to the derivatives of queuing with respect to
time could aid in reducing latency. Furthermore, by examining
Eq. (2), it becomes evident that the time delay experienced by
packets when traveling across a particular link varies accord-
ing to the link’s state at a specific time, resembling the notion
of delay variation [46,49].

The exact expression of the link weight for the nth packet
passing through it can be analytically derived in terms of
model parameters. When the time delay between two con-
secutive packets is �T , t − t ′ equals to m�T where m is
an integer. Let t1, t2, . . . , tn be the time at which n packets
pass through the link, respectively. Therefore, ti+1 − ti is the
time lag between the ith and (i + 1)th packets, and mi =
(ti+1−ti )

�T ∀i ∈ {1, 2, 3, . . . , n − 1} is associated with ih and (i +
1)th packets. Through Eq. (1), it is easy to obtain wi(1) = w

φ
i ,

wi(2) = w
φ
i + ε, and wi(3) = w

φ
i + ε(1 + exp(−βm2�T )).

In this case, the weight wi(n) of link when the nth packet
passes through it is given by

w
φ
i + ε ×

(
1 + exp(−β�T mn−1) + exp

(
− β�T

n−1∑
i=n−2

mi

)

+ · · · + exp

(
− β�T

n−1∑
i=3

mi

)
+ exp

(
− β�T

n−1∑
i=2

mi

))
.

Let Si(n) be the weight when all the packets pass through the
same link in consecutive time steps (m1 = m2 = m3 = · · · =
mn = 1). The above expression then becomes a geometric
series and can be simplified as

Si(n) = w
φ
i + ε × 1 − exp(−(n − 1)β�T )

1 − exp(−β�T )
. (3)

The path followed by the packet originates from
node vi and destined to reach node v j is represented by
L(vi → v j ) : vi ≡ x1 → x2 → · · · → xl → · · · → xk ≡ v j ,
where (xl , xl+1) ∈ E and xl ∈ V . The weight of the path can
be obtained by W (L) = ∑k−1

l=1 wl , where wl is the weight of
the link (xl , xl+1). In communication networks, the shortest
path is one of the most popular routing strategies, because the
packet is forwarded along the path which minimizes the sum
of the weight of the constituents links, that is, min(W (L)).
However, it is not always feasible to obtain the shortest path
between two nodes because of the large size of the real-world
communication networks [50]. Taking this into account, a
routing strategy based on the local topological structural
information of the network [50] was proposed. The packet
is being forwarded based on the probability proportional to
some tunable parameter over the degree of nodes.

Here, we introduce a routing strategy that enhances net-
work communication by dynamically alternating between
transmitting packets via the shortest path and making locally
optimal choices. Specifically, the packet can follow the short-
est path with probability γ or make the local optimum choice
with probability 1 − γ at each time step. To make the local
optimum choice, the packet makes a transition from the
current node vi to one of its neighbors v j with the probability

P(vi → v j ) = w−1
i j∑

j w
−1
i j

, (4)

where the sum is taken over the neighbors of node i excluding
the previously visited node. The approach is popularly known
as the greedy algorithm in which the best available option
is selected. We also assume that while following the shortest
path, the packets have a global awareness of the network and
follow the minimum weight path which is fixed for all pairs of
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FIG. 1. Normalized total transmission weight W (n)∗ for various
values of γ and n. There are N = 100 devices, and the results are
averaged over 100 realizations of random networks with connection
probability p = 0.5.

nodes at the initial construction of networks and the same for
all the packets. Notably, routing protocols on the internet are
inherently dynamic, allowing routers to update their routing
tables in response to network events such as congestion and
device failures. The dynamic feature through greedy algo-
rithm involved in this work refers to forwarding packets to
neighboring nodes stochastically, without considering optimal
paths or network conditions.

The outcome of the switching strategy, quantified by the
total transmission weight W (n) of n packets accumulated
while traveling from source to destination, is explored across
a range of values of γ . The normalized total transmission
weight W (n)∗ = W (n)

min(W (n)) for various n is shown in Fig. 1. It
is found that the stochastic switching between the shortest-
path approach (γ = 1) and making the locally optimal choice
(γ = 0) could yield a significant reduction in total transmis-
sion weight compared to that of any individual strategy. The
effect is more remarkable with a larger number of packets
n because of the fixed shortest path between any two nodes,
which remains the same for all packets transmitted from the
source to the destination. Hence, the links along the path get
congested, leading to accretion in W (n) with increasing n. On
the contrary, the greedy algorithm performs poorly for both
small and large n and accumulates a large value of W (n).
Therefore, under the switching strategy, the packets randomly
take different paths along the shortest path, thereby bringing
down the congestion and minimizing the value of W (n). At the
optimal value γ ∗, where W (n) takes possible minimum value,
W (n, γ = γ ∗) is at least two times lower than W (n, γ = 0)
and W (n, γ = 1) (Fig. 1). Overall, the stochastic switching
between the two losing strategies could yield a lower W (n)
for any values of γ � 0.2, thereby improving network com-
munication.

Importantly, it is not possible to reduce or scale W (n)
indefinitely at γ ∗ for a fixed N . This is because the alternate
paths available to the packets are also subject to congestion
and there is a limit to W (n,γ=0)

W (n,γ=γ ∗ ) and W (n,γ=1)
W (n,γ=γ ∗ ) . We refer to

the above observations as the Parrondo effect where both the
shortest path approach (γ = 1) and greedy algorithm (γ = 0)
are “losing” due to their large value of W (n) when they are

followed separately. However, the best possible results that
can be considered as the winning outcome can be obtained if
the two losing strategies are switched based on a stochastic
scheme, which recapitulates the game-theoretic Parrondo’s
paradox. Let l be the average number of hops between any
pair of nodes along the shortest path. The exact expression for
total transmission weight of n packets following the shortest-
path approach (γ = 1) can be expressed as

W (n) =
l∑

i=1

Si(1) +
l∑

i=1

Si(2) + · · · +
l∑

i=1

Si(n), (5)

and it can be rewritten based on Eq. (3),

W (n) = n
l∑

i=1

w
φ
i + εl

1 − exp(−β�T )

×
(

n − 1 −
n−1∑
i=1

exp(−iβ�T )

)
.

The equation can be further simplified as,

W (n) =
(

n
i=l∑
i=1

w
φ
i + εl

1 − exp(−β�T )

×
(

n − 1 − exp(−β�T ) − exp(−nβ�T )

1 − exp(−β�T )

))
.

(6)

It has been found that l scales as l ∼ ln(N ) for both un-
weighted and weak disordered random networks [51]. Thus,
we expect no significant change in W (n) with a change in
network size N for fixed n, which will be verified later.

For a fixed network size N , there exists a total of
(N

2

)
possible pairs of source and destination nodes. As the network
size increases, the number of possible pairs grows proportion-
ally with N2. Consequently, for γ < 1, the value of the total
transmission weight W (n) can exhibit significant fluctuations
depending on the specific source and destination pairs and the
configurations of the network. To illustrate this phenomenon,
we present the probability distribution of W (n) in Fig. 2 for
random realizations of source-destination pairs and network
configurations. It can be found that the probability distribu-
tion P(W (n)) follows a heavy-tailed pattern, with significant
probabilities assigned to large values of W (n). Hence, the
optimal value of γ , denoted as γ ∗, may vary from one re-
alization to another. We also discovered that for values of
γ ′ = {0.4, 0.5, 0.6}, W (n, γ = γ ′) is smaller than W (n, γ )
when n 	 100. Therefore, γ ′ = {0.4, 0.5, 0.6} represents the
optimal solution for the switching strategy. In order to deter-
mine the optimal γ ∗, the expected value of W (n), denoted as
〈W (n)〉, is obtained through

∫
W (n)P(W (n))dW . It is note-

worthy that 〈W (n, γ = 0.6)〉 is smaller than 〈W (n, γ )〉 for
n 	 100, where γ ∈ (0, 1)/0.6. This finding suggests that
γ = 0.6 is the preferable choice for optimizing the total trans-
mission weight in packet transmission.

The impact of increasing the network size N on W (n) is
then explored under γ ∈ {0, 0.6, 1} and n ∈ {50, 500, 2000}
in Fig. 3. For the greedy algorithm (γ = 0), W (n) shows
an increasing trend and fits well linearly with N for all n.
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FIG. 2. Probability distribution of W (n) for γ ∈ {0.4, 0.5, 0.6}
in three columns and (a)–(c) n = 200, (d)–(f) n = 500, and (g)–(i)
n = 2000. Results are averaged over 2500 realizations.

In order to quantify the increment in W (n) with N , that
is, �W (n)/�N , the log-log curve fitting log(W (n)) = m ×
log(N ) + C is performed. Since W (n) increases significantly
with n, we normalize it by dividing it by its maximum value to
ensure a consistent scale across different values of N . In this
case, it can be easily obtained that m = 0.73 ± 0.02 for all n.
Hence, �W (n)/�N remains the same for all n. For the short-
est path approach (γ = 1), W (n) ≈ c where c is the constant
which is in accordance with Eq. (6). Intriguingly, for γ = 0.6,
W (n) does not display significant change when N < 1000, but
shows a decreasing trend after N > 1000 for all n. Further-
more, W (n, γ = 0)∗ and W (n, γ = 1)∗ against N are applied
to quantify the degree of enhancement of the proposed random
switching strategy with the system size in Fig. 4. It is evident
that W (n, γ = 0)∗ increases drastically with the increase in
network size, especially for N � 1000, and W (n, γ = γ ∗) is
at least ten times smaller than W (n, γ = 0) for all n. Thus,
with the increase in network size, the greedy algorithm be-
comes more inefficient. In addition, W (n, γ = 1)∗ depicts an
increasing trend with the increase in N , and W (n, γ = γ ∗)
is six times smaller than W (n, γ = 1) for large N and n.
We expect that further increment in N and n can lead to a
significant improvement in the reduction of total transmission
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FIG. 3. W (n) against N for γ ∈ {0, 0.6, 1} and (a) n = 50,

(b) n = 500, and (c) n = 2000. The results are averaged over 100
realizations for N < 1000 and 30 realizations for N � 1000. For all
N , p = 0.5 remains fixed.
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FIG. 4. W (n)∗ against N for γ = 0 (upper panel) and 1 (lower
panel) when (a), (b) n = 50; (c), (d) n = 500; and (e), (f) n = 2000.
The results are averaged over 100 realizations for N < 1000 and 30
realizations for N � 1000. For all N , p = 0.5 remains fixed.

weight even of an order of magnitude compared to the two
losing approaches. Overall, network communication can be
greatly enhanced by switching between two losing strategies
for large values of N and n.

The robustness of these results with the change in model
parameters is then explored. The results of W (n)∗ against γ

for various connection probabilities p are presented in Fig. 5.
With the increase in p, W (n, γ = 0)∗ shows a decreasing
trend due to the denser network and a larger number of avail-
able paths for packets from source to destination. Therefore,
the greedy algorithm significantly increases the transmission
weights due to the random movements of packets and con-
gestion caused by the smaller number of available paths,
rendering it to be increasingly inefficient with the decrease in
p. On the contrary, there is no significant impact of change in
p on W (n, γ = 1)∗. Nevertheless, Parrondo’s paradox is still
in play.

The impact of change in time delay (�T ) on W (n)∗ is
discussed (Fig. 6). Apparently, W (n, γ ) will decrease with the
increase in �T because the links have longer time intervals to
relax from the congestion. However, we are more interested in
W (n, γ = 0, 1)∗ to envisage and quantify the efficacy of the
switching strategy. It can be found that W (n, γ = 0)∗ shows
an increasing trend for �T > 0.05. This is because the links
along the shortest path get free from congestion and it is not
pragmatic to choose the greedy algorithm over the switching
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FIG. 5. W (n)∗ against γ for various values of connection proba-
bilities when (a) p = 0.1, (b) p = 0.2, and (c) p = 0.3. The results
are averaged over 100 realizations.
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FIG. 6. W (n)∗ against �T for γ = {0, 1} when (a) n = 200,
(b) n = 500, and (c) n = 2000. The results are averaged over 100
realizations.

strategy for large �T . On the other hand, the change of
�T has no significant impact on W (n, γ = 1)∗. However,
the switching strategy still remains the more favorable ap-
proach with 2 − c � W (n, γ = 1)∗ � 2 + c, where c ≈ 0.5
for 0.01 � �T � 0.5.

In physical situations, links may recover faster or slower
compared to the increment in the latency due to the conges-
tion, leading to different relaxation factors β. Therefore, the
parameter η = β/ε is defined to further study the effect of
inequalities between β and ε on W (n).

Specifically, the links recover slower when η < 1 and faster
when η > 1 as compared to the increment in latency. The
results of W (n)∗ against γ for various values of η < 1 and
η > 1 are presented in Fig. 7. For η < 1, it can be found
that Parrondo’s paradox is still in play, where W (n) takes a
possible minimum value and is at least two times smaller
than W (n, γ = 0, 1). In addition, there is no significant impact
of η on W (n)∗ when η < 1. W (n, γ = 0)∗ increases as links
recover faster (η > 1), because it is always feasible for pack-
ets to consider the shortest path while the greedy algorithm
becomes increasingly inefficient for η > 1. Remarkably, the
switching strategy maintains its superiority over the shortest-
path approach within the range 1 < η � 6, even in scenarios
where link recovery is expedited.

We have proposed a routing strategy to enhance network
communication based on Parrondo’s paradox. We have shown
that stochastic switching between the shortest-path and greedy
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FIG. 7. W (n)∗ against γ for various values of η when (a) η

= 0.5, (b) η = 0.25, (c) η = 0.16, (d) η = 2, (e) η = 4, and (f)
η = 6. The results are averaged over 100 realizations.

approaches in the routing strategy of packet transmission
can result in a significant reduction in the total transmission
weight. Both algorithms are “losing” as they do not yield
optimal results individually. If the two strategies are combined
in a certain manner, the best possible winning outcome can
then be obtained. In addition, we have found that the effect
is more notable with the increase in the number of packets as
well as the number of nodes in the system. We have also val-
idated the performance of the approach under many different
parameters. It is noteworthy that the predominant majority of
existing literature has been constructed with a singular focus
on the properties of nodes but our work presents an distinctive
approach: a model built fundamentally upon the attributes of
links. This perspective has presented a profound shift in our
understanding and design of packet transmission frameworks.
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