PHYSICAL REVIEW RESEARCH 6, L.012033 (2024)

Doubly stochastic continuous time random walk

Maxence Arutkin®!

2" and Shlomi Reuveni

L3.§

1School of Chemistry, Center for the Physics & Chemistry of Living Systems, Tel Aviv University, 6997801 Tel Aviv, Israel
2Service d’Epidémiologie-Data-Biostatistiques, Délégation a la Recherche Clinique et & I’ Innovation, Hopital Foch, 92150 Suresnes, France
3Sackler Center for Computational Molecular & Materials Science, Ratner Institute for Single Molecule Chemistry,
Tel Aviv University, 6997801 Tel Aviv, Israel

M (Received 13 February 2023; accepted 23 January 2024; published 21 February 2024)

Since its introduction some 60 years ago, the Montroll-Weiss continuous time random walk has found numer-
ous applications due its ease of use and ability to describe both regular and anomalous diffusion. Yet, despite
its broad applicability and generality, the model cannot account for effects coming from random diffusivity
fluctuations, which have been observed in the motion of asset prices and molecules. To bridge this gap, we
introduce a doubly stochastic version of the model in which waiting times between jumps are replaced with a
fluctuating jump rate. We show that this newly added layer of randomness gives rise to a rich phenomenology
while keeping the model fully tractable, allowing us to explore general properties and illustrate them with
examples. In particular, we show that the model presented herein provides an alternative pathway to Brownian
yet non-Gaussian diffusion, which has been observed and explained via diffusing diffusivity approaches.
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Introduction. In heterogeneous environments, €.g., porous
media and biological cells, the random motion of molecules
and particles may deviate from normal diffusion in different
ways [1-5]. In particular, a series of recent experiments and
computer simulations exhibit a similar pattern of anomalous
behavior: while the mean-squared displacement is linear at
all timescales, the displacement distribution is Gaussian only
for very long times or not at all (Fickian yet non-Gaussian)
[6-12].

An explanation to this unexpected behavior, which seem-
ingly breaks the central limit theorem, was given through
the concept of superstatistics [13,14]. This idea describes
a complex medium as one which has a distribution of
potential diffusion coefficients. The displacement probabil-
ity distribution of particles is then built by averaging over
many diffusion pathways, each of which draws its particular
diffusion coefficient from a distribution prescribed by the
complex medium. This approach can explain the observed
experimental phenomenon of a system having a mean-square
displacement, which is linear in time, alongside a non-
Gaussian displacement probability distribution. Specifically,
the latter is a weighted average (over the distribution of the
diffusion coefficients) of Gaussian displacement probability
distributions. Yet, the superstatistics approach cannot explain
observed crossovers and transitions, e.g., from non-Gaussian
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distributions at short timescales to a Gaussian distribution at
long timescales [15].

To address this issue, the concept of diffusing diffusivity
was introduced by Chubinsky and Slater [16] and further
developed and explored by many others [17-30]. The basic
idea is to describe the diffusion of particles with a diffusion
equation in which the diffusion coefficient is itself diffusing.
The Gaussian distribution at long timescales is then found to
be universal for a diffusivity that is self-averaging in time.
The displacement distribution at short timescales is, on the
contrary, nonuniversal and depends on the equilibrium dis-
tribution of the diffusion coefficient. We note that similar
phenomenology was observed in the field of quantitative fi-
nance where the log returns of stock prices diffuses with
volatility that is analogous to the diffusion coefficient. As this
volatility also diffuses in time [31-33], the log return exhibits
similar transitions between short- and long-time behavior.

Diffusion can be seen as a continuum limit of a large class
of random walk processes that occur on the microscopic scale.
Yet, a general description of random walks with “diffusing
diffusivity” is currently missing from the physics literature.
To bridge this gap, we introduce a new modeling framework
that sets the foundations for the study of the diffusing diffu-
sivity phenomenology from a random walks perspective. We
start from the widely applied continuous time random walk
(CTRW) [34-37], where the walker jumps instantaneously
from one position to another following a waiting period. In its
simplest form, which gives rise to normal diffusion, waiting
times in the CTRW are taken from an exponential distribution
that is characterized by a constant jump rate A. To introduce
the equivalent of a diffusing diffusivity, we instead consider
a diffusing jump rate A, [38,39], such that the probability
to make a jump during the time interval [z, t 4 d¢] is given
by A.dt. This results in a doubly stochastic continuous time
random walk.
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FIG. 1. The doubly stochastic CTRW has three layers of ran-
domness. The fluctuating jump rate A; in (c) gives the probability
Mdt for a jump to occur in the time interval [z, + df]. When a
jump event occurs, bar coded in (b), the random walker draws a
random step and jumps to a new position as shown in (a). Here, we
illustrate this general modeling framework using a jump rate A, that is
redrawn every 7, = 50 units of time from an exponential distribution
with unit mean. In this example, jumps are assumed symmetric with
equal probability to make a right/left step (£1). The resulting process
exhibits periods of low and high activity, which give rise to deviations
from Gaussian diffusion as observed in heterogeneous environments.

Traditionally, the generalization of the CTRW model to ac-
count for anomalous diffusion relied on broadening the range
of waiting time distributions beyond the exponential, allowing
for a wider spectrum of diffusion behaviors. However, in our
approach, we diverge from this path by introducing variability
in the jump rate. Instead of altering the waiting time distri-
bution to achieve different diffusion regimes, we allow the
jump rate A, to fluctuate over time. This modification offers
a distinct avenue for exploring the dynamics of diffusion pro-
cesses by capturing the essence of diffusing diffusivity within
a random walk framework. Next, we show that the newly
added layer of randomness, which this framework provides,
gives rise to a rich phenomenology of regular and anomalous
diffusion. The analysis brought below will be focused on
transport and first-passage properties, leaving the correlation
structure of the process to future study.

Doubly stochastic continuous time random walk (DSC-
TRW). The DSCTRW is schematized in Fig. 1. A random
walker takes steps at random times, which are determined by a
Poisson process whose jump rate A, is itself a random function
of time. This doubly stochastic Poisson process is also known
as a Cox process [38]. When a jump event occurs, the random
walker takes a step X from a distribution whose characteristic
function is ¢(k) = (¢*X). We note that in actuarial science
an equivalent model, the doubly stochastic compound Poisson
process, has been studied [40—42]. Also, the DSCTRW should
not be confused with the noisy continuous time random walk
[43], which is a different model.

The random walker’s displacement is determined by
P(x, 1), the probability to find it in position x at time ¢. To
compute this probability, let us first assume a given path
for the jump rate process A,. The resulting jump process is
then a time-inhomogeneous Poisson process, and therefore the
number of steps made until time ¢ will be given by the Poisson
distribution with mean A, = fot Apdt’ [44,45]. Letting x,(t)
denote the probability that the random walker made exactly n
steps until time ¢ we thus have ¥, (1) = %e‘/\'. The Fourier
transform of the probability distribution of the displacement,
conditioned on a given path of the diffusing jump rate, reads

+00
Pl t12) = Y xa)plk)" = e~ 1000 (1)
n=0

Note, that this distribution only depends on the diffusing jump
rate A, through its time integral A,. Averaging Eq. (1) with
respect to the distribution of A;, whose density we denote by
f(A;), we obtain

Pk, t) = A, (1 — k), 2)

where A, (1 — §(k)) = [ e 1=0®IA £(A)dA, s the
Laplace transform of the integrated diffusing jump rate A,
evaluated at 1 — qg(k). Equation (2) is the DSCTRW analog
of the Montroll-Weiss formula. We emphasize its generality,
and that it holds for both stochastic and deterministic paths of
A

Long-time behavior. Starting from Eq. (2), we can under-
stand both the short- and long-time behavior of the DSCTRW.
Specifically, under mild assumptions, the long-time behavior
is universally Gaussian. To show this, we need the following
assumptions: (i) the mean and variance of the step distribution
are finite; and (ii) the integrated jump rate has the following
long-time asymptotics: A, = [ Axdt’ = At + ¢, where A is
the long-time average of the fluctuating jump rate and where
¢ is Gaussian with () = 0 and (C,2> = o(t?). In particular,
note that this condition holds for the typical case, (§,2) ~t,
that arises (due to the central limit theorem) for a fluctuating
jump rate that has a finite correlation time and a steady-state
distribution with a finite mean and variance. Under these as-
sumptions, the Fourier transform of the scaled displacement

converges to (eik%) — e’% [46], which is the Fourier
transform of the standard normal. This result is analogous to
the long-time asymptotics that is obtained using the diffusing
diffusivity approach.

The Gaussian limit above is universal given the aforemen-
tioned assumptions. Yet, we note that these can be broken
in several different ways. For example, akin to scaled Brow-
nian motion [47-50], one can think of cases where ()\;)
At%~!. These give (A;) o< At%, which in turn yields subd-
iffusion for o < 1 and superdiffusion for o > 1. However,
unlike scaled Brownian motion, the DSCTRW also allows
one to treat processes where the mean and/or variance of
the step size diverge. Diverging moments of the step distri-
bution prevent moment expansion of ¢(k) and yield, in the
spirit of the generalized central limit theorem [34,51], a-stable
Lévy asymptotics for the displacement. We illustrate this by
taking steps from the Cauchy distribution, which returns a
Cauchy distribution at long times (Fig. S1 in the Supplemental
Material (SM) [46]). A different way in which stable
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distributions may arise is when the jump rate has a steady state
with an infinite mean or variance (for the diffusing diffusivity
analog of this case see Ref. [52]). Such situations give rise to
stable distributions for A,, and the position distribution can
then be computed via Eq. (2). The above-mentioned scenarios
illustrate the richness of the DSCTRW and highlight that this
model can describe scenarios that fall outside the scope of the
diffusing diffusivity model.

Short-time behavior. Contrary to long times, the short-time
displacement distribution is not universal and its shape de-
pends on the steady-state distribution of the diffusing jump
rate. Assuming the latter exists, we consider a case where the
diffusing jump rate has been evolving for a very long time
prior to the start of the experiment, such that it has converged
to its steady state. In the short-time limit r < t,, with 7, being
the typical relaxation time of the diffusing jump rate process,
the integrated rate behaves like A; = [Ot Apdt’ >~ 1), with A,
drawn from the steady-state distribution whose Laplace trans-
form we denote by X.(s) = (e™).

Under these assumptions, the Laplace transform of the
integrated rate can be expressed using the Laplace transform
of the jump rate, A, (s) = A(ts) and together with Eq. (2) we
have

Pk, t) = A (t[1 — p(K)]). 3)

Thus if we study the tail of this distribution in the case of a
symmetric walk, we obtain P(k, 1) ~ X.(tk*>(X?)/2), which is
a symmetric version of the rate probability distribution, which
has no reason of being universal. For example, if A, is expo-
nentially distributed with mean A, which is the case for a jump
rate process that is diffusing on R and with a negative drift
pointing towards the origin, we obtain P(k, 1) ~ HMZIT)/T
which is the Fourier transform of the Laplace distribution, also
known as the biexponential. The probability distribution is
x|

then given by P(x,t) = %@e*?, with o, = /Ar(X2)/2. This
result is not universal, but noteworthy since the central limit
theorem asserts that drift diffusion often provides an excellent
approximation to a host of biased random walk processes that
may govern the fluctuating jump rate. This could, perhaps,
explain the prevalence of exponential tails observed exper-
imentally at short times. For an alternative explanation see
Refs. [53,54].

Moments. Moments in the DSCTRW can be computed
by taking derivatives of Eq. (2): (x}') = limkqo(—i)”%
Specifically, we find that while the displacement probability
distribution displays a non-Gaussian to Gaussian transition,
the MSD of an unbiased walk is linear at all times (xf) =
(X2)(A;) = (X?)At [46], provided A, starts equilibrated and
has a finite mean. More generally, the time dependence of
the MSD is completely determined by the first moment of the
integrated diffusing jump rate process and the second moment
of the jump. The fourth moment of a symmetric DSCTRW is
given by (x}) = (X*)(A,) + 3(X*)2(A?) [46].

When bias is introduced to the random walk, the variance
in position is given by o?(x;) = (X?)(A,) + (X)z((Alz) -
(A;)?) [46]. Thus, when the integrated rate is stochastic, its
variance does not vanish, resulting in additional dispersion.
We illustrated this for a biased version of the toy model in
Fig. 1. There the mean and variance of the integrated jump rate

are both linear in time, which leads to an apparent diffusion
coefficient that can be significantly larger than in the absence
of bias (Fig. S2 in SM [46]). This enhanced dispersion, can be
traced to the inherent coupling between drift and diffusion in
the DSCTRW. Notably, the effect is absent from the diffusing
diffusivity model, where drift and diffusion are completely
decoupled.

An exactly solvable DSCTRW. To further illustrate the
DSCTRW, we return to the model in Fig. 1. There the dif-
fusing jump rate is drawn every 7, from an exponential
distribution with mean jump rate A = 1. The resulting jump
rate is piecewise constant, i.e., changes abruptly when a new
time window starts. This can be seen as a simplified picture of
more complicated diffusing jump rate processes whose auto-
correlation time, 7., is finite. Indeed, in both cases, jump rates
separated more than t, apart may be considered uncorrelated.
The simplified model considered in Fig. 1 can thus provide an
analytically tractable route to better understand the role played
by the jump rate relaxation time.

To get the propagator using Eq. (2), we compute the
Laplace transform of the integrated jump rate, which in
our model is a sum of independent random variables
Ay =300 Mty + A, 8 With g, = L%J and §, =t — n, 7.
Therefore, the Laplace transform in Eq. (2) gives a product
of Laplace transforms of exponentially distributed random
variables

Pk, 1) = Ae([1 = p(O)]T)" Re([1 = (O)IS),  (4)
with X.(s) = 1/(1 + As). Taking the walk to be simple sym-
metric, we have ¢(k) = cos(k), and a Laplace to Gaussian
transition is observed when going from the short-time limit
t KL 7, to the long-time limit # > 7, (Fig. 2).

First-passage statistics. The random time at which a
stochastic process reaches a certain threshold, e.g., the en-
counter time of two molecules or the time a stock hits a certain
price, can trigger a series of events. Thus, understanding the
properties of first-passage times is key to the explanation of
many phenomena in statistical physics, chemistry, and finance
[55-57]. To show how first-passage problems are solved in the
context of the DSCTRW, we continue with the model illus-
trated in Fig. 1 and derive its first-exit time from an interval.
This exit time exhibits interesting phenomenology due to the
competition between different timescales.

To obtain the exit time, we apply two simple steps: we
first calculate the propagator conditioned on the number of
steps taken, and then translate steps to time by summing over
the corresponding probabilities yx,(¢). The propagator of the
simple symmetric random walk inside an interval [0, L] with
absorbing boundaries is given by [58]

L
2 . .
P, nlxo) = = ) sin(vpxo) sin(vp), )
p=0
where x is the initial position, v, = % and 1, = cosv,. In
the following we set u,(xo, x) = sin(v,xo) sin(v,x). Trans-
lating steps to time, averaging over A,, and summing over
all lattice sites inside the interval, we obtain the survival
probability
H Lol L
Stthxo) = - D0 w0, A (1= 1p). ©6)

x=1 p=0
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FIG. 2. Displacement probability distributions for the DSCTRW
illustrated in Fig. 1. Symbols come from simulations and bold lines
give analytical results obtained by inverting the Fourier transform in
Eq. (4). Here, the mean jump rate was set to unity and its relaxation
time to 7, = 10. The distributions are plotted for three different
times: t = (.17, (orange) that exhibits a Laplace distribution, r = 5t,
(cyan) for which we see the beginning of a transition towards the
Gaussian distribution, and ¢+ = 1007, (gray) where the displacement
distribution has converged to the Gaussian.

where A,, which previously appeared in Eq. (2) should now be
evaluated at 1 — 7, instead of 1 — $(k). Taking the negative
time derivative of S(¢|xp), we obtain the probability density of
the exit time

2% 8 o 1 (x0, X)(1 — )AL (1 —7,)
fako) =733 R NG

x=1 p=0

Analyzing the density in Eq. (7) right before and just after
integer multiples of 7,, we analytically show that it experi-
ences jumps whose magnitude increases with t, [46]. This
feature is a manifestation of the sharp transitions experienced
by the diffusing jump rate in our model, see Fig. 1(c). Indeed,
particles that initially drew a smaller than average jump rate
have a higher probability to survive simply by virtue of mov-
ing less. As a result, the system becomes enriched with such
particles, until a new jump rate is redrawn at ¢ = t,.. This leads
to jumps in the first-exit density, which come from slowly
moving particles that become faster moving and perish.

The jump rate relaxation time, t,, also has a profound
impact on the mean first-exit time (MFET) from the interval,
which we obtain by averaging over the density in Eq. (7).
Results are given in Fig. 3, where we distinguish between two
limiting behaviors. When relaxation times are fast, jump rate
fluctuations play a lesser role as they are averaged over. In this
limit, the jump rate can be seen as if it was fixed and equal to
the mean jump rate . The MFET can then be approximated
as >~ (L — xo)xo/A, which is the MFET of a simple CTRW
with a fixed jump rate A. Situation is different for slow relax-
ation times t, > (L — xg)xo /X. In this case, a typical particle
is stuck with its initially drawn jump rate until it leaves the
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FIG. 3. Mean first-exit time (MFET) from the interval [0, 10],
starting at xo = 5, for the DSCTRW illustrated in Fig. 1. For fast
jump rate relaxation (small t,), we recover the MFET of a simple
CTRW (dashed line) with a fixed jump rate corresponding to the
mean jump rate, % = 1, of the DSCTRW. In the other extreme, i.c.,
for slow relaxation times (large t,), the MFET scales as ~ In(z,).
The bold line is plotted by averaging over Eq. (7) and circles denote
MFETs that correspond to the FET distributions in Fig. S3 [46].

interval. The MFET can then be approximated by averaging
(L — x0)xp/A over the initial distribution of the jump rate
A (here assumed equivalent to the steady-state distribution).
Doing so for an exponential distribution of jump rates leads
to a logarithmic divergence, which we regularize by noting
that the relaxation rate, rr‘l, serves as a lower cutoff for
the integration. Indeed, very slow particles that do not leave
the interval by the relaxation time, will consequently draw a
new jump rate. More generally we find that the asymptotic
dependence of the MFET on t, depends on the small rate
asymptotics of the jump rate steady-state distribution [46].

We note that the first-passage results obtained above can
be generalized for many other geometries and boundary con-
ditions. This can be done whenever the propagator in real,
or Fourier space, admits a standard eigenmode expansion of
the form, which appears in Eq. (5). Crucially, when terms
in the series are proportional to 77;,, one can easily translate
steps to time by summing over the corresponding probabilities
Xxn(t) and taking expectations. For additional examples that
can be solved in a similar fashion see Ref. [59], which gives
exact results for propagators of random walks in confined
geometries.

Conclusions. In this Letter, we introduced a doubly
stochastic continuous time random walk. The model allows
for a general description of a random walk, which is driven
by a time-dependent jump rate that fluctuates randomly. De-
spite this added layer of complexity, the model remains fully
tractable and we obtained a general formula for the displace-
ment probability distribution. A rich phenomenology emerged
from the analysis, asserting that the doubly stochastic con-
tinuous time random walk can be used to describe not only
super-, sub-, and normal diffusion, but also the Brownian yet
non-Gaussian diffusion that has recently been observed in
various systems. The tractability of the model further lends
itself to the computation of first-passage times, which—
similar to the displacement distribution—display striking
transitions as a function of the jump rate relaxation time. The
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random walk approach developed herein complements the
diffusing diffusivity approach that was developed for Brow-
nian motion, and further extends it by allowing for unlimited
freedom in the interplay between the distribution of jumps and
the properties of the fluctuating jump rate.
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