
PHYSICAL REVIEW RESEARCH 6, L012032 (2024)
Letter

Nonequilibrium solvent response force: What happens if you push a Brownian particle
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In this Letter we discuss how to add forces to the Langevin equation. We derive an exact generalized Langevin
equation for the dynamics of one particle subject to an external force embedded in a system of many interacting
particles. The external force may depend on time and/or on the phase-space coordinates of the system. We
construct a projection operator such that the drift coefficient, the memory kernel, and the fluctuating force of the
generalized Langevin equation are the same as for the system without external driving. We show that next to
the external force another force term occurs that is caused by the nonequilibrium response of the solvent. The
first contribution to the ensemble average of this force stems from third or higher order terms of the external
force and from sixth or higher order terms of time. We also analyze the additional force term numerically for an
exemplary system.

DOI: 10.1103/PhysRevResearch.6.L012032

Langevin’s description of the motion of a Brownian parti-
cle is a typical example of a coarse-grained model [1]. When
modeling Brownian motion, the effect of the solvent degrees
of freedom is not computed explicitly but replaced by two
effective, coarse-grained quantities: the friction coefficient γ

and the random force f (t ). The velocity of a Brownian parti-
cle of mass m then obeys the equation

m
dv(t )

dt
= −γ v(t ) + f (t ). (1)

The components of f (t ) are related to γ by the fluctuation
dissipation theorem (FDT), 〈 fi(t ) f j (s)〉 = 2γ kBT δi, jδ(t − s),
where kB is Boltzmann’s constant and T is the temperature.

If the Brownian particle is subjected to an external force
Fext, the force often is simply added to Eq. (1). This is com-
mon practice when molecular dynamics (MD) simulations are
carried out with a Langevin thermostat [2], i.e., it is done in
a large number of MD simulation and Brownian Dynamics
(BD) simulation studies of colloidal systems, biomolecular
systems, and polymeric systems.

Two seminal pieces of work are often cited to justify this
approach: the article by Kubo on the fluctuation dissipation
theorem [3] and the article by Zwanzig on the nonlinear gen-
eralized Langevin equation [4]. However, in neither of these
articles is such a statement derived. Kubo explicitly wrote
that he only considered linear effects in the external force,
and Zwanzig considered particles in a bath, i.e., the case in
which the degrees of freedom which are integrated out do

*fabian.glatzel@physik.uni-freiburg.de
†tanja.schiling@physik.uni-freiburg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

not interact with each other. Other derivations like the one by
Batchelor [5] or the one by Hauge and Martin-Löf [6] already
start out from hydrodynamics, thus they contain assumptions
about local thermal averages and do not give a justification
based on the full microscopic description.

In contrast, there is a piece of work in the literature that
proves that forces cannot simply be added: a very readable
article from 1972 by Kim and Oppenheim [7], which un-
fortunately has hardly ever been cited. In this article, the
method famously used by Mazur and Oppenheim to derive the
time-local Langevin equation [8] is extended to the case of an
applied external force. One result of the derivation by Kim
and Oppenheim is that the FDT does not hold if the dynamics
are non-Markovian and there is an external force.

In this Letter we recall why forces cannot simply be added
on the level of the Langevin equation. Then we introduce a
version of the projection operator method [9] (different from
the one used in Ref. [7]) which allows to recover all terms
in Eq. (1) including the FDT and which does produce an
additive force term, however, this comes at the cost of one
additional term in the resulting Langevin equation. We then
discuss the impact of this additional term on the resulting
effective dynamics.

We start by briefly recalling Mori’s work [10]: We consider
the Hamiltonian equations of motion of N interacting parti-
cles and integrate out all degrees of freedom apart from one
component of the momentum of one particle. Under stationary
conditions, the linear projection operator by Mori can be used
for this task and one obtains the linear generalized Langevin
equation:

d pz(t ; �)

dt
= −

∫ t

0
dτK (t − τ )pz(τ ; �) + η(t ; �). (2)

Here pz(t ; �) denotes the momentum in the z direction
at time t given that the entire system was initialized at the
phase-space point � at time zero. K (τ ) is the so-called mem-
ory kernel and η(t ; �) is the (deterministic) fluctuating force.
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The memory kernel and fluctuating force fulfill a fluctuation-
kernel theorem

〈η(t ; �)η(t ′; �)〉 = K (t − t ′)
〈
p2

z

〉
. (3)

[This type of equation is usually called a second
fluctuation-dissipation theorem. However, as the structure
holds generally for linear versions of the generalized Langevin
equation irrespective of whether the kernel can be related to
dissipation, we prefer to call it a fluctuation-kernel theorem
(FKT).]

Now we address the following question: If one considers
the same system but with an additional external force acting
on the particle of interest, could the motion be described by
an equation of the form

d pz(t ; �)

dt
= −

∫ t

0
dτK (t − τ )pz(τ ; �)

+ η(t ; �) + Fext(t ; �)? (4)

In the case of time-scale separation between pz and the other
degrees of freedom, Eq. (1) with an additive force would
follow from Eq. (4). However, Mori’s derivation only holds
under stationary conditions, and it is not obvious that the
effect of the external force can simply be added on the level
of the coarse-grained description.

We first tackle the problem in more general terms and
then treat Eq. (4) as a special case. Given a system which is
described by two Liouvillians, a time-independent Liouvillian
L0 for the interactions within the system and L1(t ) for the
time-dependent external force, the time evolution of an arbi-
trary observable A(�) is given by [11,12]

dA(t ; �)

dt
= U (t, t0)Ltot(t )A(�), (5)

where Ltot(t ) = L0 + L1(t ). Here, U (t, t0) is the time-
evolution operator that can be expressed as a negatively
time-ordered exponential

U (t, t0) = exp−

(∫ t

t0

dτLtot(τ )

)
, (6)

and � denotes the initial point in phase space at time t0. Intro-
ducing a projection operator P and its orthogonal complement
Q := 1 − P , Eq. (5) can be rewritten as

dA(t ; �)

dt
= U (t, t0)PL0A(�) + U (t, t0)QL0A(�)

+ U (t, t0)L1(t )A(�). (7)

We now rewrite second term on the right-hand side using a
modified Dyson decomposition. To this end, we define

Z (t, t0) := U (t, t0)Q (8)

and calculate the time derivative of Z (t, t0) in order to obtain
the differential equations

∂Z (t, t0)

∂t
= U (t, t0)Ltot(t )Q (9)

= Z (t, t0)Ltot(t )Q + U (t, t0)PLtot(t )Q (10)

= Z (t, t0)L0Q + U (t, t0)(PL0 + L1(t ))Q. (11)

In more general cases where the time-dependent part of
the Hamiltonian/Liouvillian cannot be separated from the
time-independent part as easily as here, Eq. (10) is usually
taken as the starting point to derive a generalized Langevin
equation/Dyson decomposition [12,13]. However, as the ho-
mogeneous part of the differential equation,

∂Zhom(t, t0)

∂t
= Zhom(t, t0)Ltot(t )Q, (12)

already contains the external force through Ltot (t ), it is not
suitable to derive a generalized Langevin equation that has
the same memory kernel as the stationary process as well as
a fluctuation-kernel theorem. Instead we use Eq. (11), where
the L1(t ) contribution is shifted from the homogeneous part
of the differential equation to the inhomogeneity. In this case
the solution to the homogeneous differential equation reads

G(t − t0) := exp ((t − t0)L0Q), (13)

which can be used to find the special solution to the inhomo-
geneous equation

Z (t, t0) = U (t ′, t0)QG(t − t ′) +
∫ t

t ′
dτU (τ, t0)(PL0 + L1(τ ))QG(t − τ ). (14)

It is easy to check that this expression solves the differential equation (11) together with the boundary condition Z (t ′, t0) =
U (t ′, t0)Q (cf. Refs. [11,14]) and, hence, one can substitute U (t, t0)Q in Eq. (7) with the new expression. One obtains the
following equation of motion:

dA(t ; �)

dt
= U (t, t0)PL0A(�) +

∫ t

t ′
dτ U (τ, t0)PL0QG(t − τ )L0A(�) + U (t ′, t0)QG(t − t ′)L0A(�)

+ U (t, t0)L1(t )A(�) +
∫ t

t ′
dτ U (τ, t0)L1(τ )QG(t − τ )L0A(�). (15)

To make use of this expression one needs to find a suitable
projection operator. We use a linear Mori projection operator
of the form

PX (�) := (X, A)

(A, A)
A(�), (16)

with

(X,Y ) :=
∫

d� ρ0(�)X (�)Y (�). (17)

Here, ρ0(�) is the phase-space distribution at time t0, which
needs to be stationary under the dynamics L0, but which is
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not stationary under Ltot(t ). Using this projection operator,
Eq. (15) becomes

dA(t ; �)

dt
= cA(t ; �) −

∫ t

t ′
dτ K (t − τ )A(τ ; �) + η(t, t ′; �)

+ U (t, t0)L1(t )A(�) + FNER(t, t ′; �), (18)

with

c := (L0A, A)

(A, A)
, (19)

K (t ) := − (L0QG(t )L0A, A)

(A, A)
, (20)

η(t, t ′; �) := U (t ′, t0)QG(t − t ′)L0A(�), (21)

FNER(t, t ′; �) :=
∫ t

t ′
dτ U (τ, t0)L1(τ )QG(t − τ )L0A(�).

(22)

Note that the drift c does not contain L1(t ). If we set t ′ = t0
[and hence U (t ′, t0) = 1], the memory kernel K (t ) and the
fluctuating force η(t, t0; �) do not depend on L1(t ), either.
Thus, they are defined exactly as in the case of stationary
dynamics under L0. The memory kernel can then be written
in the form

K (t ) = (QG(t )L0A,QL0A)

(A, A)
(23)

= 〈η(t, 0; �)η(0, 0; �)〉
(A, A)

, (24)

i.e., the FKT still holds true.
If now the observable of interest is a component of the mo-

mentum of one particle, A(�) = pz, and the Liouvillian L1(t )
is an external force which acts on this degree of freedom, e.g.,
L1(t ) = Fext(t, z)∂pz , Eq. (18) turns into

d pz(t ; �)

dt
= −

∫ t

0
dτ K (t − τ )pz(τ ; �) + η(t, 0; �)

+ Fext(t, z(t )) + FNER(t, 0; �), (25)

where K and η only contain the propagator L0, while the
variable pz is propagated by L0 + L1. We have thus succeeded
in constructing an exact generalized Langevin equation for
a particle subjected to an external force, which contains the
same memory kernel and fluctuating force as the generalized
Langevin equation for the particle without the external force,
Eq. (2). However, compared to Eq. (4) there is one additional
term: the nonequilibrium response force FNER(t, 0; �). This
force encodes the nonequilibrium response of the solvent to
the driven particle. In general, it will depend on time and
on the history of the process, and, as we will show below, it
cannot be absorbed in the fluctuating force.

If a (quasi)stationary distribution is reached under suffi-
ciently weak driving, one might use known approximations
for the steady distribution to determine statistical properties
of FNER(t, 0; �) [15]. However, in all generality this is not
possible and thus we determine FNER(t, 0; �) numerically. To
this end we make use of the fact that the functions K (t ) and
η(t, 0; �) in the stationary GLE, Eq. (2), and in Eq. (25)
are identical. We first run equilibrium molecular dynamics
simulations of a microscopic N-particle system, “measure”

FIG. 1. The long-time ensemble average of the NER force,
〈FNER(t, 0; �)〉lt, as a function of the external force.

pz of one labeled particle, and compute the memory kernel
of its effective equation of motion by means of the method
described in Ref. [16]. The fluctuating forces for each tra-
jectory then follow from Eq. (2). Then we run simulations
with an external force applied to the particle for the exact
same starting configurations and calculate FNER(t, 0; �) via
Eq. (25).

The simulations contain 1024 particles interacting via a
Lennard-Jones potential. We use Lennard-Jones units and de-
fine a Lennard-Jones force FLJ := mLJσLJ/τ

2
LJ, where mLJ is

the mass of the bath particles. In this Letter, we restrict the dis-
cussion to the case of a constant force applied to one particle
for times t > 0 acting in the z direction Fext(t, z(t )) = Fextθ (t ).
In all our simulations, we found FNER(t, 0; �) to be nonzero.

If there is a force missing in the Langevin equation, under
which nonequilibrium conditions do BD simulations and MD
simulations with a Langevin thermostat work? After all, these
methods are widely used for systems under external forces
(see, e.g., BD simulations of colloidal particles in optical traps
[17], Langevin MD simulations of proteins pulled through
pores [18], or targeted MD simulations in the context of
biomolecular modeling [19]). One conjecture could be that
the stochastic interpretation of the fluctuating force absorbs
the effect, i.e., when the deterministic fluctuating force η is re-
placed by a noise, perhaps the resulting dynamics is the same
as if ζ (t, 0; �) := η(t, 0; �) + FNER(t, 0; �) were replaced by
noise of the same statistical properties. For this to hold, the
sum ζ (t, 0; �) must exhibit the same statistical properties as
η(t, 0; �) itself. We now check if this conjecture holds, i.e., if
〈ζ (t, 0; �)〉 = 0 and if ζ (t, 0; �) fulfills the FKT. Since the
ensemble average is linear and 〈η(t, 0; �)〉 = 0, it suffices
to check if 〈FNER(t, 0; �)〉 vanishes. For all external forces
considered here, we see that the ensemble average of the
NER force converges to a constant. Figure 1 shows this limit,
calculated by taking the time average of 〈FNER(t, 0; �)〉 for
large times (3 � t/τLJ � 25). There is a crossover point when
the external force has the same magnitude as the fluctuating
forces, beyond which 〈FNER(t, 0; �)〉 decreases linearly. Since
the external force was applied in positive z direction, this
plot also shows that, on average, the NER force counteracts
the external force, making it relevant for the calculation of
friction. Next, we test if the FKT holds true for ζ (t, 0; �), cf.
Fig. 2. The correlation functions of ζ (t, 0; �) are calculated in
the long-time limit where the ensemble average of ζ (t, 0; �)
has reached its plateau. For small external forces the FKT
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FIG. 2. The autocorrelation function of ζ (t, 0; �) vs the time
difference �t for different constant external forces.

seems to be fulfilled. However, already at Fext = FLJ a clear
deviation can be seen.

We conclude that, in general, the nonequilibrium response
cannot be absorbed in the noise by a simple rescaling of the
temperature, because the effect of the collisions with the bath
particles does not have a zero average.

If FNER cannot be neglected in general, are there lim-
its in which FNER becomes irrelevant? By definition [cf.
Eq. (22)] FNER(t, 0; �) vanishes for t → 0 or Fext(t, z(t )) →
0 ∀ t . Hence, Eq. (25) allows to analyze an expansion of the
GLE around the well-understood stationary case without driv-
ing. The fact that 〈FNER(t, 0; �)〉 vanishes faster than linearly
with Fext (as seen in the numerical analysis above) can be
derived rigorously:

〈FNER(t, 0; �)〉 =
∫

d� ρ0(�)
∫ t

0
dτ U (τ, 0)Fext(τ )

·∂pη(t − τ, 0; �) (26)

=
∫ t

0
dτFext(τ )

∫
d� ρ0(�)

βp

m
η(t − τ, 0; �)

+O
(
F 2

ext

)
(27)

= O
(
F 2

ext

)
. (28)

From the first to the second line we use that U (τ, 0) =
exp(τL0) + O(Fext ), bring the time-evolution operator over
to the phase-space density, and note that exp(−τL0)ρ0(�) =
ρ0(�) because we start out from a stationary distribution.
Further, we do an integration by parts to also bring the partial
derivative with respect to p over to ρ0(�). Here, we exploit
that we start out from a canonical distribution to calculate the
derivative of ρ0(�). In the last step we use that the fluctuating
force is orthogonal to the observable p by construction. For
the system studied here, we can see from symmetry consid-
erations that 〈FNER(t, 0; �)〉 has to be an odd function of Fext

and thus, 〈FNER(t, 0; �)〉 = O(F 3
ext ).

If we are interested in the onset behavior of 〈FNER(t, 0; �)〉
as a function of time, we can do a similar analysis as above
where we use the series expansions of both U (τ, 0) and
η((t − τ, 0; �)). By doing so we find from simple algebraic
manipulations and symmetry considerations that

〈FNER(t, 0; �)〉 = O(t6). (29)

We see that 〈FNER(t, 0; �)〉 is strongly suppressed at short
times but reaches a nonnegligible plateau within a few
Lennard-Jones times (cf. Fig. 1).

Thus, BD and MD with Langevin thermostats can statis-
tically reproduce the first moment of the true dynamics for
small perturbations out of equilibrium because the statistical
properties of the bath resemble those of an equilibrium fluctu-
ating force.

Note that in case the external force varies with time, FNER

does not necessarily reach a stationary limit and the depen-
dence of FNER on the mass ratio and on the magnitude of
the force will be more complex. Recent work by Español on
the GENERIC framework under external forcing implies that
even in the Markovian limit the dynamics is nontrivial [20].

We conclude that the application of an external driving
force produces an additional force on the level of the Langevin
equation. This additional force, which encodes the nonequi-
librium response of the solvent, is in general nonlocal in
time. Its statistics is different from the statistics of the fluc-
tuating force. It is probably possible to measure this force
in single molecule pulling experiments or in experiments on
tracer particles driven through complex liquids following the
same protocol that we applied in our simulations. Considering
simulations, we stress that the application of a Langevin ther-
mostat to MD simulations of particles which are not subject
to external forces is, of course, perfectly fine, as FNER does
not appear there. However, the application to more complex
systems is less trivial. Regarding simulations of interacting
particles immersed in a solvent, the impact of the potential of
mean force on the structure of the Langevin equation has re-
cently been discussed elsewhere [21–23]. The statement made
in this Letter refers to systems under external driving such as,
e.g., particles in optical traps or biomolecules in constrained
MD simulations. Here, if one wishes to obtain quantitative
results, care is required. In general, it is misleading to interpret
the Langevin equation as a Newtonian equation of motion.
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