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Accurately finding and predicting dynamics based on the observational data with noise perturbations is of
paramount significance but still a major challenge presently. Here, for the Hamiltonian mechanics, we propose
the Hamiltonian neural Koopman operator (HNKO), integrating the knowledge of mathematical physics in
learning the Koopman operator, and making it automatically sustain and even discover the conservation laws.
We demonstrate the outperformance of the HNKO and its extension using a number of representative physical
systems even with hundreds or thousands of freedoms. Our results suggest that feeding the prior knowledge of
the underlying system and the mathematical theory appropriately to the learning framework can reinforce the
capability of machine learning in solving physical problems.
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Introduction. Accurate reconstruction of nonlinear dynam-
ical systems solely based on the observational data with noise
perturbations is a focal challenge in many fields of physics and
engineering. The neural networks (NNs) equipped with the
induced biases have remarkable abilities in learning and gen-
eralizing the intrinsic kinetics of the underlying systems from
the noisy data, such as the Hamiltonian NNs [1,2], the La-
grangian NNs [3], the neural differential equations [4–6], the
physics-informed NNs [7–15], and the reservoir computing
[16–18]. These frameworks have been applied successfully to
many tasks (e.g., the generative tasks [19], the dynamics re-
construction [20–23], the intelligent control problems [24,25],
and the tipping point detection [26,27]), sharing the com-
mon idea in design utilization of an appropriate loss function
enforcing the model to nearly obey the physical principles.
Although progresses have been outstandingly achieved, these
frameworks, which either enlarge the network complexity or
overfit the noisy data during the training stage to decrease
the loss, are suffered from the poor generalization abilities.
Recently, endowing NNs with natural physics priors becomes
an effective approach to promote the sample efficiency, ro-
bustness, and generalization ability of NNs [28–31].

Recent advances in the Koopman operator theory pave
a direct way to identify intrinsic kinetics using infinite-
dimensional linear representations for strongly nonlinear
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systems [32–37]. Several algorithms using observational data
have been developed for approximating such an operator, in-
cluding the dynamic mode decomposition (DMD) [34,38,39]
and the extending dynamic mode decomposition (EDMD)
[40,41]. Although all these algorithms try to obtain parsimo-
nious models and maintain accurate reconstructions of the
unknown systems, either conservation properties or the accu-
rate prediction cannot be obtained surely.

In this Letter, inspired by the advances of physics-informed
learning and the Koopman operator theory, we articulate
a framework to efficiently and robustly learn the Hamilto-
nian dynamics based solely on the observational data even
with noise perturbations. Noticing the unitary property of
the Koopman operator for the Hamiltonian dynamics, we use
an orthogonal neural network to approximate the Koopman
operator, so that the learned operator naturally sustains the
conservation laws. Also, we include an autoencoder structure
in the NNs to identify the nonlinear coordinate transforma-
tion, mapping the original data to a low-dimensional manifold
on a sphere. We test the proposed HNKO framework on a
group of representative Hamiltonian systems and show its
advantages over many mainstream methods in several aspects
including robust preservation of the conservation laws and
accurate prediction of the dynamical behaviors.

Method. To begin with, we consider a dynamical sys-
tem whose state vector x = (x1, . . . , xn)� ∈ M ⊂ Rn evolves
along some smooth symplectic vector field f (x). The flow
mappings produced by this Hamiltonian dynamical sys-
tem form an operator group, denoted by {Ft : Ft (x) = x +∫ t

0 f [x(s)]ds, x ∈ M, t > 0}. The Koopman operator Kt with
regard to any flow Ft is an infinite-dimensional linear operator,
acting on the function space F = {g : M → R} and satisfy-
ing Kt g = g ◦ Ft for g ∈ F . Specifically, if the time interval
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�t and the initial state x0 ∈ M are given, a state trajectory
is generated by this flow, denoted as {xk : xk = Fk�t x0}m

k=0.
Thus, K�t g(xk ) = g[F�t (xk )] = g(xk+1). For the sake of sim-
plicity, we use K for K�t if �t is given. Since, in practice, the
observational data {xi}m

i=0 often contain noise perturbations, it
is really difficult for the existing methods to achieve a robust
and accurate approximation of K and simultaneously preserve
the energylike quantity in the considered Hamiltonian dynam-
ics. It thus motivates us to find a framework owning all these
capabilities.

The DMD algorithm [34,38,39] constructs two data ma-
trices X and X ′ from the observational data by X =
(x0, x2, . . . , xm−1) and X ′ = (x1, x2, . . . , xm) for X , X ′ ∈
Rn×m. Then, according to Ref. [38], the optimal linear op-
erator K = X ′X+ ∈ Rn×n satisfying KX ≈ X ′ is regarded as
an approximation for K, where X+ = (X�X )−1X� is the
Moore-Penrose pseudoinverse. Particularly, since the Koop-
man operator for the conservative Hamiltonian dynamics is
unitary, we should restrict the candidate K in the special
orthogonal group SO(n) = {B ∈ Rn×n | BB� = I, det(B) =
1}. Then, the DMD actually solves the vanilla optimal prob-
lem: arg minK∈O(n) ‖KX − X ′‖F, where ‖ · ‖F is the Frobenius
norm. The vanilla surrogate of the DMD has two major weak-
nesses: (i) the size of K is limited by the system’s dimension
n, which is not large enough to approximate the intrinsically
infinite-dimensional operator K, and (ii) the orthogonal trans-
formation preserves the norm of the state and hence induces
its dynamics {K ix0}m

i=0 embedded on a sphere, while the con-
served orbit of the original Hamiltonian dynamics may not be
on some n-dimensional sphere.

To overcome the first weakness, the EDMD was developed
in Refs. [40,41] to lift the dimension of K by introducing a
dictionary of nonlinear observational functions {gi}p

i=1 and ob-
taining the augmented state y = [g1(x), g2(x), . . . , gp(x)]� ∈
Rp, p > n. Analogous to the DMD, the two data matrices
are constructed as Y = (y0, . . . , ym−1) and Y ′ = (y1, . . . , ym),
which gives an approximated Koopman operator as K =
Y ′Y + ∈ Rp×p. However, the EDMD uses the dictionary
{gi}p

i=1 as a basis of F and, in practice, it requires an
extremely large dictionary to approximate the coordinate
function, which makes the accurate approximation inefficient
and even impossible. To reduce the computational cost and
promote the representation ability, we adopt an autoencoder
NN to encode y = [g1(x), . . . , gp(x)]� as y = φθ1 (x), and de-
code the coordinates as x = φ−1

θ2
(y), as shown in Fig. 1(a). We

train the weights θ = (θ1, θ2) in this autoencoder using the
loss function as Ldict(θ) = ∑m

i=0 ‖xi − φ−1
θ2

[φθ1 (xi )]‖2
with

the data.
To conquer the second weakness, we in this work embed

the augmented state y to some higher-dimensional sphere,
denoted by Sp(r) = {y ∈ Rp | ‖y‖2 = r2}, and obtain a con-
strained optimization problem as arg minK ‖KY − Y ′‖F such
that K ∈ SO(p), r2 � max0�i�m ‖xi‖2, and yi = φθ1 (xi ) ∈
Sp(r), 0 � i � m. Actually, it is still difficult to solve this op-
timization problem because of its highly nonconvex property
induced by the orthogonality constraint.

To solve this problem efficiently, we first notice the fact
that the Lie exponent map A 
→ exp(A) = I + A + 1

2 A2 +
. . . from the skew-symmetric group so(n) = {A ∈ Rn×n :
A + A� = 0} to SO(n) is surjective [30]. There exists an
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FIG. 1. A sketch for the HNKO framework. (a) A combination
of the autoencoder with the orthogonal Koopman matrix K using
NNs. (b) Geometrically, the encoder embeds the original data in Rn

to some low-dimensional manifold on p-dimensional sphere, and the
decoder reverses this process, where K maps the trajectory on the
embedded manifold.

isomorphism α from Rn(n−1)/2 to so(n) as α(A) = A − A�

where A ∈ Rn(n−1)/2 is identified as an upper triangular matrix
with the zero diagonal elements. Thus, in our framework,
we represent the orthogonal Koopman operator approxi-
mately as a parameterized form K = exp[α(A)], where A
owns n(n − 1)/2 learnable parameters. Hence, we train K
using the loss function as Lkoop(K ) = ∑m−1

i=0 ‖Kyi − yi+1‖2 =
∑m−1

i=0 ‖ exp[α(A)]φθ1 (xi ) − φθ1 (xi+1)‖2. Significantly, our
framework does not require this uninterpretable regulariza-
tion term in the loss function while all the conventional
methods always use it [1,3], and, indeed, the above con-
figurations of mathematical physics automatically guarantee
the orthogonality of the operator K during its training
procedure.

To further ensure the augmented state trajectory {yi}m
i=0

on some p-dimensional sphere, we set r, the radius of the
embedded sphere, as a learnable parameter and simply set the
distance to the origin as another loss function Lsphere(θ, r) =
∑m

i=0 (‖yi‖2 − r2)
2 = ∑m

i=0 (‖φθ1 (xi )‖2 − r2)
2
. We prove

that the trajectory generated by K ∈ SO(p) belongs to a
manifold of dimension at most �p/2� (see Supplemental
Material (SM) [42]). Hence, the freedom degree of the
trajectory {yi}m

i=0 is lower than �p/2�. Notice that once the
hyperplane equation 〈v, y〉 = 0 is satisfied for any nonzero
vector v, the freedom degree for y decreases by one order.
Thus, to restrict the freedom degree of the augmented states,
we introduce a loss as: Ldeg(q) = ∑q

k=1

∑m
i=0 〈 vk

‖vk‖ , yi〉2 =
∑q

k=1

∑m
i=0 〈 vk

‖vk‖ , φθ1 (xi )〉2
, where V = (v1, . . . , vq) are

learnable parameters with vk ∈ Rp, k = 1, 2, . . . , q � p − 2,
and q ∈ Z+. To guarantee the linear independence of
the column vectors in V , we introduce an orthogonal
regularization term as Lind = ∑

k �= j 〈vk, v j〉2.
Finally, we train the parameters {θ, K, r,V } in a delicately

designed framework of NNs, integrating the prior knowledge
of mathematical physics and using a comprehensive loss func-
tion as: L(θ, K, r,V ) = Ldict(θ) + Lkoop(K ) + Lsphere(θ, r) +
Ldeg(q, θ,V ) + Lind(V ), where Lsphere with Ldeg embeds the
original n-dimensional data to the (p − q − 1)-dimensional
manifold on Sp(r), and the adjustable hyperparameter q satis-
fies p − �p/2� − 1 � q � p − 2. Significantly, the extracted
features {gi(x)}p

i=1 from the encoder span the Koopman invari-
ant subspace. The eigenvector c = (c1, . . . , cp)� associated
with the eigenvalue 1 of the orthogonal Koopman matirx K
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induces the analytical Hamiltonian of the original system,
gc(x) = ∑p

i=1 cigi(x) (see SM [42]).
Scalability for high-dimensional systems. To reduce the

computational complexity of the Lie exponent operation when
applying the current HNKO to any high-dimensional system,
we approximate the p-dimensional Koopman matrix K via
K1 ⊗ K2, where (K i )pi×pi (i = 1, 2) are the two orthogonal
matrices with p1 p2 = p, implying the orthogonality of K
[43], and ⊗ is the Kronecker product. We name this ex-
tension as HNKO∗. As such, by applying the HNKO∗ with
p1,2 = √

p, we reduce the computational cost of the learn-
able parameters from O(p2) to O(p) (see Appendix for more
illustrations).

Next, we numerically show several advantages of our
framework, and validate the natural existence of the conser-
vation in our operator. This makes the framework extremely
suitable for dealing with the noise-perturbed data produced
by the Hamiltonian dynamics. Indeed, we take a number
of representative nonlinear Hamiltonian systems of physical
significance, including the many-body problem, the stiff-
spring oscillator, and the Korteweg-de Vries (KdV) equation.
Throughout, the noise-perturbed data are set as {x̃i = xi +
ξi}m

i=0, where the information of the used noise {ξi} is provided
in SM [42].

Many-body problem. We consider the classic n-body prob-
lem. First, we focus on the case of n = 3, where the canon-
ical Hamiltonian dynamics [44]: q̇i = Hpi

, ṗi = −Hqi
with

pi, qi ∈ R2 (i = 1, 2, 3) representing the space coordinates
and the momenta, respectively. Here, H = ∑3

i=1
mi
2 ‖pi‖2

2 −
g
∑

i< j mimj (‖qi − q j‖2)−1 is the total conserved energy with
mass mi and gravitational constant g. The three bodies interact
with the others through an attractive force from gravity, and
the force tends to infinity when the two particles get close
to each other. As shown in Fig. 2(a), the orbits of the three
bodies evolve in a higher-dimensional spatiotemporal space,
which results in a challenge for accurate prediction based on
the noise-perturbed observational data.

We show the prediction performance using the HNKO
framework. Particularly, we train the NNs with the noise-
perturbed data on the time interval [0,5], less than a period,
and produce the trajectories using the trained model on the
interval [0,50]. As shown in Fig. 2(b), the reconstructed and
the predicted dynamics are preserved in high fidelity and
for a fairly long time.1 We also test the methods of the
EDMD with a dictionary of at most second-order Hermite
polynomials [40], the HNN [1], the SympNets [45], the deep-
learning Koopman operator (DLKO) [35], the CNN-LSTM
[46,47], the Hamiltonian ODE graph networks (HOGN) [21],

1The predicted trajectories by the HNKO framework seem to be a
bit jagged, which reflects a peculiar ability of our framework in sus-
taining the feature of noise perturbations. In fact, using the technique
of embedding the original data to the manifold on Sp(r) not only
extracts maximally the conservation law rooted in the original data,
but also withstands the noise effect efficiently. All these indicate the
necessity and importance of integrating the priors of mathematical
physics in reconstructing and predicting a system.

FIG. 2. Comparison studies on the three-body problem. (a) The
original and noise-free dynamics for the interacted bodies. Here, the
motion qi = (q1

i , q2
i ), and the trajectories are the projections from

the original spatiotemporal space q1
i − q2

i − t to the phase plane with
a normal vector as [sin(− π

50 ) cos π

4 , sin(− π

50 ) sin π

4 , cos(− π

50 )]. The
gray direct line indicates the time direction and the terminal positions
of the three bodies are highlighted by blue, purple, and orange colors,
respectively. The reconstructed and the predicted dynamics using
the HNKO (b) and the other the most advanced machine learning
techniques (c)–(i) are shown, respectively. (j) The temporal variance
in the logarithm scale [log(var)] of the features and the discov-
ered Hamiltonian. (k) The system’s energies using different methods
change over the time. Here, we set m1,2,3 = g = 1.

and the reservoir computing (RC) [48,49] on the same gen-
erated noise-perturbed data. The produced trajectories [see
Figs. 2(c)–2(i)]either cannot sustain the conservation laws
or diverge extremely fast. Figure 2(j) displays a successful
discovery of the Hamiltonian using the HNKO. Additional
comparisons in Fig. 2(k) suggest that the HNKO framework
attains the least prediction errors and only has the ability of
maintaining the conservation law. In SM [42], we further show
successful examples using our framework when the length of
the training data within a period is even shorter, and also show
the reconstruction ability of the HNKO in dealing with the
chaotic dynamics of the three-body system.

Next, we test our framework for a specific case: n = 1,
the classic Kepler problem as: q̇ = Hp, ṗ = Hq with H =
m
2 ‖p‖2

2 − gm2‖q‖−1
2 [50]. We also compare this framework

FIG. 3. Comparison studies on the Kepler problem. (a) The orig-
inal dynamics and the predicted phase orbits using different methods
and the coordinate q = (q1, q2). The changes of the kinetic energy
Ek (b), the potential energy Ep (c), and the total energy E (d) over
the time for different methods. (e) Prediction errors of the state
and the energy change with the noise variance σ 2, using HNKO.
Here, m = g = 1. (f) log(var) of the features and the discovered
Hamiltonian.
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FIG. 4. Comparison studies on the stiff mass-spring system.
(a) The mean-square error (MSEdata) between the normalized tra-
jectories and the vertical line segment under different SCs. The
subfigures show the trajectories in the least and the stiffest cases.
(b) The mean prediction MSE on time interval [0,9] of different
methods over SCs. The prediction error (c) and the energy (d) over
the time for different methods.

with the other methods. As shown in Figs. 3(a)–3(d), the
HNKO framework obtains the best prediction result and main-
tains the conservative law perfectly, while the corresponding
results obtained by the EDMD and the HNN are far away
from the original dynamics and energies. Notice that, for
this case, the results by the EDMD seem to be better than
those in Fig. 2(c) obtained for the above case n = 3. This
suggests that the EDMD method using a second-order dictio-
nary could provide acceptable prediction results for complex
systems of lower dimensions. However, due to the curse of
dimensionality, it cannot directly use a dictionary of higher-
order polynomials to deal with the data produced from even
a three-body problem, which thus impacts its practical useful-
ness. In SM [42], we further show the efficacy of the HNKO
framework in reconstruction and prediction for the chaotic
three-body case and for the n-body problem with n � 3 as
well. Particularly, to show the advantages of the HNKO over
the existing methods, we reconstruct the periodic solution,
previously-found in Ref. [51], of the 24-body problem in the
three-dimensional space (see Appendix, Table I). In addition,
the robustness of the HNKO against the noise perturbation is
demonstrated from the view of state and energy predictions, as
shown in Fig. 3(e). Significantly, Fig. 3(f) shows a compelling
and successful identification of the Hamiltonian using the
HNKO.

Stiff mass-spring system. We consider the friction-free
mass-spring system: q̇ = p/m, ṗ = −kq, where (q, p) ∈ R2

are the canonical coordinates representing the position and the
momentum, m is the mass, and k is the elastic coefficient [52].
With large k and m, the system becomes a typical slow-fast
system with the stiffness coefficient (SC) as

√
km [53]. The

system’s conservative total energy 1
2 kq2 + 1

2m p2 corresponds
to the elliptic phase orbits with an eccentricity going to 1
as the SC goes to infinity. In Fig. 4(a), under a high SC,
the trajectory looks like noise series wandering along the
line segment, which leads to a failure of reconstruction and
prediction using the ODE solver-based learners [53].

We compare the prediction performance of HNKO under
different SCs, with existing methods including the STEER,
a better method for solving stiff ODEs problems [54]. Fig-
ures 4(b)–4(d) show the HNKO alleviates the effects of

FIG. 5. Comparison studies on the KdV equation. (a) The dy-
namics produced by the KdV equation and perturbed with the
Gaussian noise N (0, 0.03I). The predicted trajectories using the
DMD (b), the NODE (c), and the HNKO (d). Different solitary waves
produced by using different methods at t = 400 (e), the prediction
error for the state (f), the total mass (g), and the total energy (h)
over the time using different methods. The inset in (g) zoom in the
changes of mass using the NODE and the HNKO. Here, we introduce
the discretization to u(t, ·) on [0,50] by 64 predefined grid points.

stiffness while the other methods perform unstably and di-
verge fast as SC grows.

KDV equation. We finally consider the KdV equation ut +
uxxx − 6uux = 0, a Hamiltonian partial differential equa-
tion with infinitely many integrals of motion (IOM) [55].
This equation is used to describe the behavior of shallow
water waves with periodic solitary wave phenomenon [56],
as shown in Fig. 5(a). Two low-order IOMs of the system—∫

udx and
∫

u2dx, corresponding to the mass and the energy
conservation—are selected as the indexes to evaluate the pre-
diction performance.

We conduct comparison studies using respective methods:
the HNKO, the DMD, and the neural ordinary differential
equation (NODE), a recently developed and widely used
framework [4]. The HNN and EDMD cannot work here.2

As shown in Figs. 5(a)–5(d), the HNKO robustly keeps the
periodicity and the consistency of solitary wave solutions for
a long time, while the DMD only holds a short-term forecast,
showing a rapid decay and the trained NODE shows high fluc-
tuations due to its less robustness against noise interference.
After a sufficiently long time evolution, the required solitary
wave behavior is only observed in the trained model using the
HNKO, as shown in Fig. 5(e). More significantly, due to the
orthogonality rooted in the HNKO, the conservation laws of
both mass and energy are sustained only in the trained model
using the HNKO [see Figs. 5(f)–5(h)]. In Appendix, Table II,
we further successfully apply the HNKO∗ to cope effectively
with the high-dimensional tasks with the number of the grid
points even as 1024.

Concluding remarks. We have proposed a machine learn-
ing framework to approximate the Koopman operator for the
Hamiltonian dynamics. Different from the mainstream NN

2Since the KdV equation cannot be formulated in a canonical form
with space coordinates and momenta, the symplectic structure-based
methods including the HNN are not applicable to prediction task.
The EDMD is not applicable because n64, the size of the nth-order
Hermite polynomials dictionary, incurs unbearable computational
cost.
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TABLE I. Comparison studies of different methods on the
24-body problem using full (144-dimensional) and partial (72-
dimensional) observational data. Here, the performance (Perf.) is
shown in terms of the 2-Wasserstein distance (2WD) and the time
average of the MSE, denoted by 〈MSE〉, between the real data and
the prediction data.

Model

Data Perf. ↓ HNKO DLKO DMD SympNets HNN

Full 〈MSE〉 3.63 12.89 10.13 1341.94 48.95
2WD 3.66 26.34 9.48 1080.75 49.17

Partial 〈MSE〉 0.54 0.97 0.97 – –
2WD 0.48 0.94 0.98 – –

methods [1,3,57], our framework integrates typical mathe-
matical physical structures of orthogonality and flexibility
and thus has natural advantages in accurately reconstructing
the Hamiltonian dynamics from the noise-perturbed data, and
achieving accurate prediction simultaneously and perfectly
with energy conservation [58,59]. Therefore, it can be applied
to reconstruction and prediction problems in the real-world
scenarios where the conservation laws are persistent but the
collected data are more or less shuffled and contaminated.
More importantly, based on the Koopman invariant space
spanned by the features in the encoder and the orthogonal
spectral decomposition of the Koopman matrix, we show that
our HNKO owns an ability of discovering the conservation
laws with analytical expression, which makes an essential step
towards solving the critical problem of discovering conserva-
tion laws [29,57,60,61].
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Appendix A: Reducing computational cost by Kronecker
product. Since the Kronecker product of two orthogonal ma-
trices is still an orthogonal matrix [43], one can reduce the
computational complexity for computing the p-dimensional
orthogonal matrix K by replacing it with the Kronecker
product of two low-order orthogonal matrices (K1)p1×p1

and (K2)p2×p2 . Originally, obtaining the orthogonal ma-
trix K involved calculating the Lie exponent exp(A) of a
skew-symmetric matrix A, which results in a computational
complexity of O(p3) due to the high power of A in the
expansion. However, with the Kronecker method, the com-
putational cost can be reduced to O(p3

1 + p3
2). Since p1 p2 =

p and it can be easily verified that the minimum of the
function p3

1 + p3/p3
1 is 2p3/2. Thus, the Kronecker product

operation can reduce the original computational cost to at least
O(p3/2). Additionally, for extremely high-dimensional tasks,
the order of the computational cost can be further reduced by
repeating the Kronecker operation. For instance, by designing
K = (K1)p1×p1 ⊗ . . . ⊗ (Km)pm×pm in an order of O(

∑m
i=1 p3

i )
with p1 × . . . × pm = p and p1 ≈ . . . ≈ pm ≈ p1/m, the com-
putational cost of the matrix product in calculating the Lie
exponent is reduced to O(m · p3/m). For brevity, we only
consider the most simple case of the Kronecker operation K =
(K1)p1×p1 ⊗ (K2)p2×p2 , with p1 ≈ p2 ≈ √

p, in this work. No-
tably, this condition is easily satisfied by choosing p as a
square number.

Appendix B: Comparison studies. We present the compari-
son studies on different reconstruction and prediction tasks in
Tables I and II, using the HNKO, its extension HNKO∗, and
other mainstream methods.

TABLE II. Comparison studies of different methods on the KdV equation. Here, s is the uniform discretization in the space. The prediction
MSE and the training time (Tt) are shown, respectively, illustrating the high performance using the HNKO and its extension.

〈MSE〉 ↓ Tt (No. of Seconds) ↓
Model s = 64 144 256 576 1024 64 144 256 576 1024

DMD 0.52 7.3×104 2.93 2.55 1.68 – – – – –
DLKO 10.73 33.07 2.22 4.55 8.40 37 87 254 866 2449
NODE 0.52 1.18 14.34 4.9×106 1.8×108 595 8943 1.4×104 2.9×104 1.8×105

HNKO 0.42 0.50 1.71 2.79 10.56 62 262 646 8280 3.7×104

HNKO∗ 1.09 2.43 6.21 1.07 0.93 46 59 64 175 426
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