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The emergence of chiral anomaly entails various fascinating phenomena such as anomalous quantum Hall
effect and chiral magnetic effect in different branches of (non-)Hermitian physics. While in the single-particle
picture, anomalous currents merely appear due to the coupling of massless particles with background fields,
many-body interactions can also be responsible for anomalous transport in interacting systems. In this Letter, we
study anomalous chiral currents in systems where interacting massless fermions with complex Fermi velocities
are coupled to complex gauge fields. Our results reveal that incorporating non-Hermiticity and many-body
interactions gives rise to additional terms in anomalous relations beyond their Hermitian counterparts. We
further present that many-body corrections in the subsequent non-Hermitian chiral magnetic field or anomalous
Hall effect are nonvanishing in nonequilibrium or inhomogeneous systems. Our findings advance efforts in
understanding anomalous transport in interacting non-Hermitian systems.
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Introduction. The chiral anomaly emerges due to the vio-
lation of classical chiral symmetry by quantum fluctuations
in odd spatial dimensions. This quantum anomaly has given
rise to a plethora of exotic phenomena, including anomalous
decay of neutral pion in high-energy physics [1-5], anomaly-
induced charges in baryons in quantum chromodynamics [6],
anomalous transport in condensed matter physics [7-13], and
the magnetic helicity transfer in the early universe due to
chiral asymmetry in cosmology [14,15]. Aside from deep-
ening our understanding and their experimental realizations
[16-20], chiral anomalies are proposed to be used in advanc-
ing quantum computing, e.g., as chiral qubits [21,22].

While chiral anomaly in condensed matter physics usually
describes noninteracting massless fermions under electromag-
netic fields, generalizations of this theory allow incorporating
Weyl node-mixing terms [23] and treating short-range inter-
actions between fermions [24-26]. The latter unveils novel
contributions to the anomaly equations through its nonper-
turbative formulation [27]. This differs from the traditional
convention of perturbative treatment of interactions in high-
energy physics to explore the chiral anomaly [3]. These
perturbative studies reported the cancellation of higher-order
corrections upon respecting Lorentz and chiral symmetries
[28] and concluded the universality of chiral anomaly. As
Lorentz and chiral symmetries are usually broken in inter-
acting condensed matter systems [23,25,28], violating the
chiral symmetry by many-body interactions in the absence of
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background fields opens new directions to explore chiral
anomaly in interacting lattice models [29].

Condensed matter systems with different constituent par-
ticles, e.g., electrons and phonons, can be studied as closed
or open quantum systems. While in the framework of closed
systems, all degrees of freedom are treated self-consistently,
the formulation of open quantum systems takes advantage
of tracing out some degrees of freedom with the expense of
losing unitarity. It has been shown that the path-integral for-
mulations for open or closed systems can provide an effective
non-Hermitian description for these systems [30-36]. Here,
non-Hermiticity originates from the dissipative nature of open
quantum systems or the imaginary parts of self-energies ac-
counting for interactions between different subsystems in
closed quantum systems.

Upon constructing non-Hermitian models, the underlying
physics of open/closed systems can be unraveled using meth-
ods in non-Hermitian physics and their unique properties with
no counterparts in Hermitian physics [37—41]. The emergence
of defective [42—47] and nondefective [48-50] degeneracies
and the occurrence of exotic boundaries modes [51] exemplify
the fascinating features of non-Hermitian models. While most
studies focus on exploring noninteracting systems, investi-
gating non-Hermitian many-body physics and their dynamics
have gained momentum in recent years [52-66]. Despite
these studies, the rich transport properties of interacting non-
Hermitian models are mainly unexplored. Addressing the
anomalous chiral response of interacting Dirac fermions in
non-Hermitian models is the primary goal of this work.

In this Letter, we explore the chiral anomaly in (1 4 1) and
(3 + 1) dimensions for non-Hermitian Dirac fermions with
complex Fermi velocities coupled to complex background
gauge fields. By introducing a unified notation, we bring the
non-Hermitian model and its symmetrized version under the
same umbrella, enabling us to identify purely non-Hermitian
contributions in anomalous currents. We further present the
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TABLE L. Mapping f, A, and F from the unified notation into
Hermitianized and non-Hermitian notation. A stands for gauge fields
V and W. F is presented for two and four dimensions. The matrix B
for non-Hermitian models is given in Eq. (11). The elements of the
diagonal matrix M are complex-valued Fermi velocities.

S f;lj AM -7?2 -7?4
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Re[M}A,]
MJA,

47| Re[ve]|
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physical consequences of the non-Hermitian chiral anomaly
in non-Hermitian systems and discuss plausible platforms to
realize them.

Non-Hermitian chiral anomaly in many-body systems.
We consider a non-Hermitian model of interacting massless
fermions W, with complex Fermi velocities, in the presence
of non-Hermitian gauge fields (V, W) in even d dimensions.
To facilitate later comparison of our non-Hermitian results
with previous Hermitian calculations, we employ a notation,
shown by a tilde, which unifies non-Hermitian (nh) and its
symmetrized form, a.k.a., Hermitionized (h), models [67].

In this notation, the partition function (Z), the Euclidean-
space action (S), and the Dirac operator & for our model in
the units where c = e = i = 1 read

Z x /D\mﬁes, with & = &) + Sine. (1)
So=i / dxVy" 9, v, )

< A2, Az
Sint = /d‘%c(—%j”jv - —5; ]'S’M]'S’v), 3)
‘@ZVM-@;L :y“czﬂ—iy“vu —iy“ySWM, 4

with c?u = f, 9,. The mapping between elements of the uni-
fied notation and their counterparts in the Hermitionized and
non-Hermitian models is introduced in Table I. The gamma
matrices y* satisfy the Clifford algebra {y*, y¥} = 2g¢"” with
the Euclidean metric being g’ = —3§*” and Greek indices
run from 1 to d. The Hermitian fifth gamma matrix reads
Y =— Hu y* and y° =iy? used in obtaining the Dirac
adjoint W = W'y The Fermi velocities are elements of the
rank d diagonal matrix M = diag[vy, ..., vg] withv; = 1 and
v;q are in general complex-valued Fermi velocities [68].
The interacting action S consists of short-range four-
fermion interactions between currents (j* = Wy*W) and
chiral currents (j>* = Wy*y W) with real-valued interaction
strengths A7, = A,oAl and A3, = As e, respectively
[69]. The current-current interaction with interaction strengths
)lew =12 8ud8va describes a density-density interaction. Sim-

ilarly, the interaction between chiral currents with A3 w =

A%gﬂdgud in d = 4 dimensions embed the spin-spin interac-
tion in its spatial part [26].

The action § respects Ux (1) x Uy (1) symmetry classically
[25,26], where Ua(v)(1) denotes the chiral (vector) symmetry.
However, this classical symmetry does not hold in the pres-
ence of quantum fluctuations, resulting in the emergence of
the chiral anomaly. In the following, we present the covariant

form of this anomaly using Fujikawa’s path integral approach
[70-74].

We start with introducing two auxiliary fields a and s which
brings the interaction action S in Eq. (1) into a free-fermion
action Sa,s through a Hubbard-Stratonovich transformation
such that

/ DYDWeS = / DUDUDaDs > = Z,,,  (5)

. o 1 1
Sa,s = /ddx|:1 \pyuga,s,ﬂqj + Eaﬂ.aﬂ + Esusﬂi|v (6)
Dasp =dy =iV, —iy W, —idwa” —irswy s, (7)

Integration over a and s fields in the above equations repro-
duces S in Eq. (1). Performing an infinitesimal chiral transfor-
mation with angle 8 on the spinor W, = exp[—i V3BV,
keeps the action invariant but gives rise to an anomalous term
due to a change in the Jacobian of the path integral measure
such that

D, DV, = i/ 4 PO DYDY, (8)

To evaluate this anomalous contribution, we express W
and W in terms of eigenbasis of the Hermitian Laplacian

operators @a,s@;s and @ ;,s@a,s [24,25], and employ the
Heat-kernel method [73-75] to regularize the divergent sum
in the exponent of the Jacobian; see Ref. [67] for further
details on a similar approach. Introducing V,, =V, + A,,a"
and W, = W, + As.s”, A3 | in d = 2 dimensions and up to

the first order in fields, casts
—ghv

75
'Aa,s -

—[i(Fu[V']1— ELLIVD]. ©)
2
In d = 4 dimensions and up to the second-order in the fields,
A3 | reads

s ghvné o~ —t SO —
A = J-T[F””[V 1BV 1+ E,IVIE V]

v
+ L IWIEL W] + FulW1E, W 1. (10)

Here, F,,[A]=d,A, —d,A, and FJU[Z] = J;KV —diA,
with 67; = — f:"av. ]:'d for Hermitionized and non-Hermitian
models in d = 2, 4 dimensions are presented in Table I, where
it is written in terms of the determinant of a matrix B given in
Euclidean space, with matrix elements

il i
2

Carrying out the same steps for an infinitesimal vec-
tor transformation Wy, = exp[— i k (x)]¥ with DW,,; DY, =
exp[ifddx/c(x)fla,s]D\I/D\Tl in d = 2 dimensions and up to
the first order in the fields, results in

1
Baﬂ — (Sﬂvf:aff _ z[yﬂ’ y (]1)

nv P ~ R
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Au,s =

and in d = 4 dimensions and up to the second order in fields,

A, s reads

_ —ghvng
-Aa,s = =
F

4

(Fu VB W'+ ELIVIEL WL (13)
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When A,, and As,, are zero, fla,s and flf,
results of Ref. [67].

Combining all results, the rotated generalized action in
Eq. (6) under the vector and chiral transformation casts

reproduce the

,8

S =Sy =— / Px[—B@)d,jot — k(x)d,jr ] (14)

Enforcing the invariance of the partition function Z, in
Eq. (5) under the vector and chiral transformations, results
in satisfying A | = —id,j3/ and A, = —id, j* . To ob-
tain the anomalous relations for the interacting model, we
should shift the auxiliary fields by their on-shell values as
a, — a, — Ay j ands, — s, — Asuej>® and integrate over
Hubbard-Stratonovich fields a and s [26]. The subsequent
anomalous equation in the Euclidean space in d = 2 dimen-
sions is

- e L P .
d " = = (B V1= ELIVI— 4Re [£1]05[A14.0%])
2
15)
and in d = 4 dimensions reads
8,75 = L PV V) + B IVIEL [
W= (FwlVIE V14 E £, V]
4

+ B IWIEL W] + o W E, W]
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When the gauge field V is real, W is absent and M = 1.4,
the above 57# j>* are in agreement with the Hermitian results
[25,26]. We note that in the absence of interactions, the above
relations reproduce results of Ref. [67].

In the Minkowski space, the divergence of chiral currents
in Egs. (15) and (16) read

. 2 . .
d,j>" = E(E]T + Ei — 4Re[v,,16"73,[22, j*1) in
d=1+1, 17)

- 8 —t —+ =5t — = 5 T B
duJ'S”L=]:T4(ET.BT+E5 B'+E -B+E B)in

d=3+1. (18)
Here, the generalized electric and magnetic fields cast
E, = vi8"E, — (d0h), — vi8"3AG,) % (19)
=5 * LT * L 5,0
E, = viME] — (00A3 4 — v8"0A30,) 0% (20)
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2D
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The complex electric fields are also given by E;=
(exp[21¢;19;V; — 9;Vp), and E; = (exp[2i¢;19,;W; — 9;Wp)
with i, j, k # t. Similarly, the complex magnetic fields cast

B' = &*Bj; and B> = siﬂ‘E;k with B, = expl2i ¢ ]0;Vi —
exp[2i¢;19,V; and E;k = expl2i¢]0;Wi — expl2i ;] W;.
The phase ¢; with j being a spatial index satisfies exp[i ¢;] =
vj/1vjl-

Our main results in Egs. (17) and (18) retain the gen-
eral forms of chiral anomaly, namely J,L J* o Ein (14 1)
dimensions and JH 7" o« E.B in (3 4 1) dimensions, in Her-
mitian systems [25,26,70,73]. We emphasize that anomalous
relations carry additional terms originating from complex
Fermi velocities and complex gauge fields not present in
Hermitionized anomalous equations. Note also that the terms
proportional to interaction strengths can be written as total
derivatives of physical quantities. The prefactors of F, in
non-Hermitian systems with complex Fermi velocities also
differ from their counterparts in Hermitionized models.

The complex generalized fields in Egs. (19)—(22) can be
viewed as complex background fields screened by interactions
between currents and densities of spinors. These screened
fields are then responsible for breaking the chiral symmetry
and giving rise to the chiral anomaly. In other words, anoma-
lous relations in Egs. (17) and (18) account for violating
the chiral symmetry by the gauge fields (V, W) and also by
the induced contributions from interactions between different
constituents of our systems.

Considering (1 + 1)-dimensional systems with real Fermi
velocities and AMY = AZ8MY with A being a constant, we
rewrite Eq. (17) as

- i,

1+ 4)\.2/]:2 F>
where we use the relation between the chiral and vector cur-
rents j>* = €*” j, to obtain the above relation. In the absence
of the axial W field in (3 + 1) dimensions, keeping M € R,
A = A28V and setting E = E,2 and B = B.Z results in

1 8 i s o
—  _(E'B'+E.B.),
| 4 BBl F e T

i (23)

(24)

with the relation &'V j, = j>*. We note that the current-
current contributions, e.g., the last two terms in Eq. (16), do
not appear in the above relation. This is due to the transla-
tional and rotational symmetry on the x-y plane, with fields
along the z direction. We can interpret our results in Egs. (23)
and (24) as renormalization of (E, B) fields by interactions.
These equations coincide with the Hermitian results in (1 4+ 1)
[26,76] and (3 + 1) [25,26] dimensions upon imposing (E, B)
to be real fields.

Physical consequences in non-Hermitian Weyl semimetals.
To obtain physical phenomena stemming from the non-
Hermitian chiral anomaly in interacting systems, we proceed
with presenting the Chern-Simons description of our (3 + 1)
dimensional model in the absence of the axial field W and
without interactions between chiral currents [77]. In this case,
the change of action S under an infinitesimal rotation 8 reads

S =8 = / dtd*xp(t. 0[d " —As),  (25)
where the first term in the r.h.s. of the above relation is due
to the classical shift of the action, and the anomalous second
term (S°) accounts for the change of measure and should
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satisfy As = d,, j>* as we discussed in the previous section.
The anomaly induced action after performing integration by
parts and neglecting a total derivative term can be rewritten as
the Chern-Simons action in the Minkowski spacetime as

{ehvng

$318] =—/dtd3x _

Fy

[dyjcd, BV, +d) j.d} BV,]

3 881“”1{ K ol v 1
+ [ dtd’x 7 Re[f, ;10 Bjv0.J;

5 4ehvnd SR
+ | did’x—=—d,pV,d,V,
Fy

3 4ghvné St T
+ f dtd’x 7 d,pv,d Ve, (26)
where j, = 7, j¢. The associated currents for the above ac-
tion are then evaluated by summing the functional derivatives
of §3 with respect to V and V7. These currents are given by

Rehvit §
M} ) = T(S'B R
v
B 168“~”§35,6 R
Fy

Imposing the V field to be real, and M = 1444 in Eq. (27)
recovers the Hermitian chiral magnetic effect when § = 0 and
the Hermitian anomalous Hall effect with § being a spatial
index [7]. We note that the interaction-induced terms, sec-
ond line in Eq. (27), are merely present in nonequilibrium
systems (9, j, # 0 with v # ¢ = 0) or in inhomogeneous sys-
tems with 9, jo # 0 with ¢ % 0. Hence, in nonequilibrium or
inhomogeneous systems, Eq. (27) describes the interacting
non-Hermitian chiral magnetic effect when the temporal com-
ponent of B (6 = 0) is nonzero and when a spatial component
of B with § € {1, 2, 3} is nonvanishing, Eq. (27) results in the

interacting non-Hermitian anomalous Hall effect.
dopB and 058 are related to the complex-valued energy
and spatial separation of the Weyl nodes in non-Hermitian
Weyl semimetals [67]. We emphasize that these Weyl points
should be nondefective degeneracies. This is because the co-
alescence of eigenvectors in defective degeneracies prevents
introducing a well-defined basis to express the Laplacian
operators for Fujikawa’s path integral method. As all nonde-
fective degeneracies are symmetry protected [49], respecting
their underlying symmetry maintains nodal intersections and

e [M)MMIM;*5,V,]

e [M,M)M;*]0,j;.  (27)

offers platforms to realize non-Hermitian chiral anomalies.
One approach for constructing non-Hermitian Weyl semimet-
als is the effective non-Hermitian description of open quantum
systems. Starting from a Hermitian model for Weyl semimet-
als and allowing the coupling of this system with external
environments, e.g., by a Boltzmann factor (see Refs. [78,79]
for further details), results in an effective Hamiltonian whose
imaginary part of the spectrum is nonpositive [80].

Conclusion and outlook. In conclusion, we have presented
how non-Hermitian chiral anomalies for massless fermions
with complex Fermi velocities coupled to complex back-
ground fields are modified in the presence of four-particle
interactions. We have shown that anomalous relations cast the
same form as the chiral anomaly in Hermitian (non)interacting
systems. Despite the similar structure, the embedded terms
in the presented non-Hermitian chiral anomaly exceed those
in the Hermitianized model. Our results show that non-
perturbative interaction corrections to chiral anomalies are
nonvanishing in nonequilibrium or inhomogeneous systems.
This can be seen in the presented non-Hermitian chiral mag-
netic effect and non-Hermitian anomalous Hall effect.

An experimental study on light-driven anomalous Hall
effect in graphene reported that the Hall conductance is un-
quantized, despite the theoretical expectation of quantized
conductivity in Hermitian systems [81]. Theoretical efforts to
explain this observation revealed the essential roles played
by out-of-equilibrium and dissipative properties of the ex-
perimental system [78,82]. As these two factors are well
incorporated within our theory and measuring additional
terms proportional to currents in Eqs. (15) and (16) are experi-
mentally feasible, we expect to find signatures of our findings
in light-driven Weyl semimetals with a similar experimental
setup as in Ref. [81]. In addition, combining circuits to explore
real-time chiral dynamics [83] with algorithms to simulate
open quantum systems [84] may also pave the way to realize
our findings digitally.

Finally, extending these results to understand the paritylike
anomaly [85,86], the axial-torsional anomaly [87], and axial-
gravitational anomaly [88,89] in non-Hermitian interacting
systems is also of interest which we leave for future studies.
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