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Electrons driven coherently by laser light can exhibit nonperturbative geometric effects. Drastic deformation
and gap openings of the electrons’ Floquet bands occur at one-photon resonances since the electron and hole
bands hybridize through their replicas at the lowest-order photon exchange. We study the evolution of Floquet
bands in three-dimensional (3D) materials driven by circularly polarized light (CPL) using the Dirac model. We
find that the light-induced gap closes at a select few points in the momentum space where Floquet Weyl points
are formed. The Weyl points are protected by their monopole charge and can merge, separate, or pair annihilate
depending on the anisotropy of electrons and the ellipticity of the incident light. In isotropic 3D Dirac electrons
driven by CPL, the Weyl points merge to form Floquet double-Weyl points with topological charge ±2. Our
results reveal a universal aspect of light-matter interactions in 3D quantum materials and open a route towards
controllable versatile electromagnetic responses associated with light-induced Floquet Weyl states.
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Introduction. Exploring the nonthermal control of quan-
tum materials using coherent and intensive laser light is an
active field of research [1–4]. It is a challenge to under-
stand the nonequilibrium dynamics of driven electrons due
to the concurrent occurrence of multiple nonlinear phenom-
ena [5–10]. When electrons are driven time-periodically by
laser fields, they become photodressed and are described by
Floquet states [4,11–13]. Experimental investigations in two-
dimensional systems have revealed the critical role of Floquet
bands and the modification of their gaps in understanding
the optical response in the nonperturbative regime [5–7]. No-
tably, the Berry curvature (BC) associated with the Floquet
states [8] can result in a light-induced anomalous Hall re-
sponse [6]. Currently, research is expanding into the study of
the light-induced anomalous Hall effect in three-dimensional
(3D) quantum materials [14–16], motivated partly by the
hypothesis of Floquet Weyl points. This hypothesis posits
that circularly polarized light (CPL) effectively generates
a light-induced chiral gauge field, thereby converting 3D
Dirac electrons into Weyl electrons with broken time-reversal
symmetry [17–20].

However, recent studies on the light-induced anomalous
Hall effect in bismuth suggest that the light-induced chiral
gauge field scenario does not fully account for all the observed
phenomena [14]. Bismuth features a small gap at the Dirac
point, and the light-induced chiral gauge field can only barely
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close this gap and facilitate the transformation into Weyl
electrons. This realization compels us to search for alternative
sources of BC, prompting a more detailed reexamination of
Floquet bands.

In this Letter, we demonstrate that the emergence of Weyl
states is an even more general feature of 3D Dirac electrons
when they are resonantly driven, independent of the mass gap
size and the driving field strength. By analyzing CPL-driven
3D Dirac electrons based on Floquet theory, we find pairs of
Weyl states to appear at the one-photon resonant positions
in the quasienergy spectrum (i.e., at the Floquet zone bound-
aries). These resonant Weyl states carry the topological charge
of ±2 for strictly isotropic 3D Dirac electrons, which are twice
that of ordinary Weyl points, and hence we call them Floquet
double-Weyl points (FDWPs). We systematically investigate
the effects of the Dirac mass, anisotropy of Dirac electrons,
and ellipticity of the driving fields. We find that the double-
Weyl state is sensitive to such conditions and may split into
ordinary Weyl points, but their existence appears robust due
to topological protection. Given that the Dirac Hamiltonian
expresses a wide range of materials with spin-orbit cou-
pling [21], our results reveal a general and so-far-overlooked
topological aspect of the light-matter interaction.

Floquet analysis of isotropic 3D Dirac electrons. We denote
the single-body 3D Dirac Hamiltonian as

HDirac(p) = γ 0(� + vxγ
x px + vyγ

y py + vzγ
z pz

)
, (1)

where p, �, and v are the electron momentum, mass term,
and the velocity matrix element, respectively. γ μ are the
gamma matrices which satisfy {γ μ, γ ν} = 2ημν . We will tem-
porarily limit the argument to isotropic 3D Dirac electrons,
which assumes vx = vy = vz. The coupling between the Dirac
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FIG. 1. (a) Massive 3D Dirac electrons driven by CPL and (b) the
equivalent Floquet quasienergy band structure. The chiral gauge
field strength β is smaller than the mass term �. (c) The Floquet
quasienergy band structure for massless Dirac electrons. The color
scale in (b) and (c) indicates the z component of BC. Cuts containing
the node near pz = �/2 are displayed in (d) and (e) for the z and x
directions, respectively (solid lines). The red dashed lines in (d) and
(e) show the quasienergy dispersions of H+

eff [see Eq. (4)].

electrons and optical driving fields is implemented by
minimum coupling p → p + A(t ), where A(t ) is the time-
dependent vector potential (we have chosen the unit system so
that e = h̄ = 1). If the optical driving field is CPL propagating
in the z direction, the explicit form of A(t ) is given as A(t ) =
(A cos �t, A sin �t, 0), where � is the angular frequency of
the CPL. This leads to a time-dependent Hamiltonian

H(p, t ) = γ 0� + γ 0γ · p + γ 0γ · A(t ), (2)

which possesses the time periodicity H(p, t + T ) = H(p, t ),
where T = 2π/� is the period of the optical drive. This time-
periodic nature of the Hamiltonian enables the application of
Floquet theory [4,11,12].

The building blocks of Floquet theory are the Fourier
transforms of the time-periodic Hamiltonian, defined by
H(p, t ) = ∑

m e−im�tHm(p). Floquet theory translates the
original time-dependent finite-dimension eigenvalue problem
into a time-independent infinite-dimension eigenvalue prob-
lem, with the Hamiltonian now being the Floquet Hamiltonian
HF defined as

HF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .
. . . H0 + � H1 H2 . . .
. . . H−1 H0 H1 . . .
. . . H−2 H−1 H0 − �

.. .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

In Fig. 1(b), we display the Floquet quasienergy band
structure calculated based on Eq. (3) for massive (� > 0)
Dirac electrons alongside the band structure of its nondriven
counterpart [Fig. 1(a)]. The complex band structure can be
understood as replicas of the original Dirac band overlaid
onto each other with the energy interval of �, followed by

gap openings where the replica bands intersect. The overall
quasienergy band structure is periodic with the period of �

and the minimal unit of −�/2 � ε � �/2, which is in ac-
cordance with Floquet theory. For comparison, we have also
displayed the Floquet quasienergy band structure for massless
(� = 0) Dirac electrons in Fig. 1(c). Near the original Dirac
point, one can see a pair of linear dispersions accompanied
by the concentration of BC. These are the Floquet Weyl states
at zero energy [17–20], which arise when the CPL-induced
chiral gauge field strength β = A2/� is greater than the mass
term �. This condition is always satisfied for massless Dirac
electrons [Fig. 1(c)] but not necessarily satisfied for massive
Dirac electrons [Fig. 1(b)].

Floquet Weyl states at one-photon resonance. In the Floquet
spectrum [Figs. 1(b) and 1(c)], we notice that a gap is formed
in a ring-shaped region at the Floquet zone boundaries ε =
±�/2 and BC emerges along it. This gap is a 3D analog of the
topological gap discussed in Ref. [9] for a two-dimensional
(2D) system, and its maximum size is given by 2A for � = 0.
This gap is formed by hybridization between the electron and
hole bands by a one-photon absorption process. Unlike the
2D case, the gap closes at two points in momentum space,
forming a pair of FDWPs. They show linear dispersions in the
z direction [Fig. 1(d), solid lines] while showing a quadratic
band touching in the x and y direction [Fig. 1(e), solid lines].
Surprisingly, the FDWPs at one-photon resonance are present
even in the massive case without any threshold field strength,
which is in contrast to the Floquet Weyl points at zero en-
ergy that emerge only for strong fields realizing β > �. The
characterization of the Floquet Weyl states at one-photon res-
onances will be the main content of this Letter.

Effective model and Berry curvature. To gain insight into
the FDWPs at one-photon resonance, we limit ourselves
to the massless case and construct an effective two-band
model around p = (0, 0,±�/2) [22]. The resultant two-by-
two effective Hamiltonian accounting for the node at p =
(0, 0,±�/2) is

H±
eff = −�

2
∓ kzσz − 1

A2 + �2

(
�|k|2 ∓Ak2

∓Ak∗2 −�|k|2
)

, (4)

where k is the momentum defined from each node and k =
kx + iky. The band structure based on H+

eff is displayed in
Figs. 1(d) and 1(e) as red dashed lines. The effective Hamilto-
nian faithfully reproduces the Floquet band structure around
the gap closure.

The two-by-two form of the effective Hamiltonian enables
insightful calculations regarding the topological nature of
these Floquet Weyl points. In particular, the BC distribution
can be calculated analytically as [23]

F±
x,y = ∓ kx,y

(E±)3

A2(k2
x + k2

y

)
(A2 + �2)2

, (5)

F±
z = ∓ 2kz

(E±)3

A2
(
k2

x + k2
y

)
(A2 + �2)2

(6)

where −�/2 + E± is the larger eigenenergy of H±
eff . The

BC and normalized BC are displayed in Figs. 2(a) and 2(b),
respectively. The node under discussion acts as a source/sink
of BC, which means the node is topological. The associated
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FIG. 2. (a) BC and (b) normalized BC distribution based on H+
eff .

The node represented by H+
eff acts as a sink of BC, and the associated

topological charge is χ = −2.

topological charge is ±2, which is defined by

χ = 1

2π

∫
�

dS · F , (7)

where � is a closed surface surrounding one of the topological
nodes. This confirms that the node is what could be called a
FDWP. It is worth noting that though double-Weyl semimetals
have been theoretically debated [24–26] and also predicted
for some specific materials in equilibrium [27–29], they have
not yet been experimentally realized in solid-state systems.
Our results provide a way of realizing double-Weyl semimetal
states through Floquet engineering.

Effect of anisotropy and ellipticity. We further consider
anisotropic 3D Dirac electrons under the irradiation of el-
liptically polarized light (EPL). In fact, we can show that
introducing finite ellipticity is equivalent to introducing
anisotropy to the 3D Dirac electrons while keeping the light
circularly polarized [22]. Therefore, we focus on CPL-driven
anisotropic 3D Dirac electrons. The degree of anisotropy is
quantified by v− = (vx − vy)/2.

Figures 3(a)–3(c) show the evolution of the nodal structure
under finite CPL amplitude and finite anisotropy. The nodal
sphere [Fig. 3(a)] that is formed due to the intersection be-
tween the hole band and the h̄�-shifted electron band gaps
out by driving it with finite CPL amplitude [Fig. 3(b)], ex-
cept for the two FDWPs. Introducing finite anisotropy splits
each FDWP into two separate nodes [Fig. 3(c)]. A cut of
the quasienergy band structure along the z direction and the
density of states (DoS) are shown in Figs. 3(d) and 3(e). The
DoS distribution for the isotropic case shows a linear behavior
against the quasienergy around the FDWPs and shows ad-
ditional peaks near the gapped-out bands. After introducing
finite anisotropy, kinks appear in the DoS distribution due
to additional critical points where the FDWPs used to be.
The most important feature, however, is the transition from
the linear to the quadratic behavior to the quasienergy at the
nodal position. This quadratic behavior of the quasienergy
indicates that the four nodes depicted in Fig. 3(c) possess
linear dispersions [22], which suggest that they are all normal
Weyl points.

(a) (b) (c)

CPL anisotropy
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FIG. 3. (a)–(c) The evolution of quasienergy band structure un-
der finite CPL amplitude and finite anisotropy. (d) Cut of the
quasienergy band structure in the z direction. The Pz > 0 (Pz < 0) re-
gion shows the results for anisotropic (isotropic) 3D Dirac electrons.
(e) DoS distribution for the isotropic and anisotropic case. A = 0.2
and v− = 0.0, 0.5 are used to obtain (d) and (e).

To further confirm the split from FDWPs into two normal
Weyl points, we have calculated the BC distribution for both
the isotropic and the anisotropic cases, which are shown in
Figs. 4(a) and 4(b) (we have redefined the momentum as
Pi = vi pi). The BC near the four nodal positions in Fig. 4(b)
shows diverging structures just as those near the FDWPs in
Fig. 4(a), which indicates that the nodes carry nonzero topo-
logical charges. The fact that the nodes originate from the
split of FDWPs, the linear dispersion around each node, and
the diverging BC distribution indicate that the four nodes that
emerge in anisotropic 3D Dirac electrons are all normal Weyl
points.

Having established the topology associated with the nodal
structure, we show the Weyl point positions for various de-
grees of anisotropy (v−) and CPL amplitude (A) in Fig. 4(c).
We have only shown the results for v− > 0 in Fig. 4(a), but
identical results hold for v− < 0 as well, the only difference
being that for the latter case nodes only appear in the y-z plane
instead of the x-z plane. The shift of the Weyl point position
due to increasing CPL amplitude is a feature not observed for
FDWPs. Note that the CPL amplitude only moves the Weyl
points in the x or y direction and not the z direction.

As we have already mentioned, the effect of EPL driving
can be absorbed into the anisotropy of the Dirac electrons,
which leads to several interesting implications. First, one can
effectively tune the anisotropy of Dirac electrons by varying
the ellipticity. This is advantageous for practical experiments
since the latter is easier to control than the former during
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FIG. 4. (a), (b) The BC distribution for CPL-driven isotropic/
anisotropic 3D Dirac electrons. The diverging structure of BC indi-
cates that the nodes all have nonzero topological charges. (c) Node
positions at one-photon resonances for CPL-driven anisotropic 3D
Dirac electrons. The degree of anisotropy (v−) and CPL amplitude
(A) are represented by the symbol shape and color scale, respectively
[v+ = (vx + vy )/2 is set to unity]. The red and blue colors of the
node indicate the sign of the associated topological charge χ .

optical measurements. Second, one can adjust the ellipticity
of EPL so that the Floquet system is equivalent to isotropic
Dirac electrons driven by CPL, even for anisotropic Dirac
electrons. This is important since the isotropic nature is crucial
for the emergence of FDWPs, though it is rare in realistic
materials [21,30–33]. Third, this theoretical framework pro-
vides continuity between CPL-driven and linearly polarized
light-driven Dirac electrons. The only difference between
them is the ellipticity, and the linearly polarized light-driven
state can be seen as CPL-driven Dirac electrons that are in-
finitely anisotropic. Under this condition, the four topological
nodes reside at Pz = 0, resulting in annihilation and possibly a
gap-out.

Experimental realization. Finally, we would like to discuss
the possibility of experimental realizations of this double-
Weyl state. Figure 3(e) indicates a finite quasienergy window
where the band structure is well described by FDWP pairs,
which is the region between the two peaks in the DoS. The
size of the energy window is 2vA for isotropic 3D Dirac
electrons, where vx = vy = vz = v [we have assumed v = 1
for the construction of Eq. (4)].

As a typical example of a realistic material hosting 3D
Dirac electrons, we consider the group-V semimetal bismuth.
The Dirac electrons in bismuth are extremely anisotropic
(vx = vz = 8.1 × 105 m/s and vy = 6.6 × 104 m/s) [30],
which requires |Ay|/|Ax| � 12 for the FDWPs to form. Using
the redefined velocity for this ellipticity, v = 0.93 × 105 m/s,
and typical electric field strengths and midinfrared photon
energies of E = 0.7 MV/cm and h̄� = 0.3 eV, respectively,
we obtain the quasienergy window size of 2vE/� � 29 meV,
which is comparable to the energy corresponding to room
temperature (26 meV). Additional caution is necessary when
considering realistic materials, however, since it is typical for
such materials to have multiple electron (or hole) pockets
that host Dirac electrons, which orient themselves in different
directions.

How the emergence of FDWPs can be experimentally
demonstrated is a fascinating issue. Aside from the direct
observation of Floquet-Bloch quasienergy bands, e.g., by
angle-resolved photoemission spectroscopy measurements,
conventional signatures of Weyl semimetals such as the in-
trinsic anomalous Hall effect, negative magnetoresistance by
chiral anomaly, and emergence of Fermi-arc surface states
may provide fingerprints of the Floquet double-Weyl state.
At the same time, we also point out that further theoreti-
cal investigation is necessary to determine how the above
phenomena known for equilibrium Weyl semimetals mani-
fest themselves in nonequilibrium cases. This is because of
the nonequilibrium and nonuniform nature of the occupancy
distribution, which depends on the details of dissipation mech-
anisms within the system [34,35]. Other nonlinear optical
effects including high-harmonic generation, shift currents,
and injection currents are also promising probes for experi-
mentally demonstrating the emergence of FDWPs [36,37].

Conclusion. In this Letter, we examined 3D Dirac electrons
driven by resonant laser light and analyzed their topolog-
ical properties. Two pairs of Weyl points emerge at the
Floquet zone boundaries due to one-photon resonance and
merge into one pair of FDWPs depending on the anisotropy
and ellipticity. The emergence of these Weyl points is an
extremely general and universal feature and happens as
long as the following three conditions are met: The driv-
ing field is one-photon resonant with the Dirac electrons,
the Dirac electrons are 3D, and the driving field breaks
time-reversal symmetry. The results also do not depend on
the size of the Dirac mass [22] nor do they rely on the
high-frequency expansion, which make our results appli-
cable to and feasible to realize for a wide variation of
materials with spin-orbit coupling [21]. Our results reveal
a link between Weyl physics and light-matter interactions,
as well as open a route towards highly controllable electro-
magnetic responses associated with the light-induced Weyl
states.
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