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Entangled spin squeezed states generated via dipolar interactions in lattice models provide unique opportu-
nities for quantum enhanced sensing and are now within reach of current experiments. A critical question in
this context is which parameter regimes offer the best prospects under realistic conditions. Light scattering in
deep lattices can induce significant decoherence and strong Stark shifts, while shallow lattices face motional
decoherence as a fundamental obstacle. Here we analyze the interplay between motion and spin squeezing
in itinerant fermionic dipoles in one dimensional chains using exact matrix product state simulations. We
demonstrate that shallow lattices can achieve more than 5 dB of squeezing, outperforming deep lattices by
up to more than 3 dB, even in the presence of low filling, loss, and decoherence. We relate this finding to
SU(2)-symmetric superexchange interactions, which keep spins aligned and protect collective correlations. We
show that the optimal regime is achieved for small repulsive off-site interactions, with a trade-off between
maximal squeezing and optimal squeezing time.
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Introduction. Dipolar quantum gases made from polar
molecules, Rydberg atoms, or magnetic atoms are emerging
as promising platforms for near-term quantum technologies
[1–6]. These systems are now routinely cooled to ultralow
temperatures [7–18], and recently pushed into a new regime
where individual particles can be controlled and measured
using, e.g., quantum gas microscopes or optical tweezers
[19–24].

Taking advantage of these impressive developments de-
fines a new frontier for quantum enhanced sensing. Of
particular importance in this context is spin squeezing [25,26],
which quantifies the reduction of uncertainty along a measure-
ment axis due to quantum correlations [27] and also serves
as a probe for many-body entanglement [27–29]. While spin
squeezing used to be exclusively generated using collective
interactions accessible via photon or phonon mediated inter-
actions or effectively in Bose-Einstein condensates [30–44],
a new frontier [45–48] is the generation of spin squeezing in
systems with power-law decaying interactions [19,21–24,49–
54]. In this new paradigm, while spin squeezing up to 4 dB
has been recently reported in systems with frozen particles
[55–58], the generation of spin squeezing in itinerant systems
can open new important opportunities, since it could help
overcome the low filling fraction constraints and additional
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dephasing introduced by the tight trapping conditions needed
to suppress motion.

Itinerant systems of polar molecules, confined in stacks of
2D pancakes already realized experimentally [59], have been
considered as a promising setting for entanglement generation
[60]. However, at currently achievable temperatures, inelastic
and lossy collisions in the pancakes [61–67] give rise to mo-
tional dephasing and particle loss [59]. The latter could be
significantly mitigated by imposing additional lattices along
the 2D pancakes resulting in effective 1D arrays, which we
investigate in this work.

Specifically, we study the exact quantum dynamics of
fermionic itinerant dipoles trapped in a 1D chain using matrix
product states (MPS). In all cases considered, which start
with an initial spin coherent state, we find that spin squeezing
and coherence times can be increased by reducing the lattice
depth. For shallow lattices, particles remain itinerant [68,69],
reducing positional disorder at nonunit filling fractions, 0 <

f < 1, while undesirable on-site lossy collisions can be sup-
pressed by the quantum Zeno effect [49,70,71]. Figure 1(c)
summarizes these main results. We further find that squeezing
is enhanced when the signs of nearest neighbor dipole-dipole
interactions and on-site interactions match, such that superex-
change and dipole-dipole interactions add up. Smaller dipolar
interactions give rise to larger squeezing, albeit at the cost of
slower dynamics. We qualitatively explain these effects in a
spin model valid for unit filling and sufficiently small tunnel-
ing. We also find that dephasing noise, e.g., due to differential
lattice polarizability, can be echoed away, as observed in re-
cent experiments [59], without affecting squeezing dynamics.
Even though we focus the analysis on polar molecules, our
predictions apply to generic itinerant fermionic systems fea-
turing both contact and short-range off-site interactions.
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FIG. 1. (a) Schematic of the system (see text). (b) Top: Ram-
sey pulse sequence. Bottom: Schematic illustration of squeezing
dynamics in the Sy-Sz plane. (c) Maximal squeezing ξ 2 for t < 10
ms versus filling fraction f and lattice depth. In x and y/z di-
rections (Vlatt,x,Vlatt,⊥)/ER = (3, 3), (3, 40), (5, 40), (40, 40) [ER =
2π 2 h̄2/(mλ2) is the recoil energy] (top to bottom, see the Supplemen-
tal Material for detailed parameters [72]). The black line indicates
where the system can be approximated by a spin model. The striped
area indicates where squeezing is growing past 10 ms.

Model. We consider an infinite 1D chain of fermionic
dipoles trapped in an optical lattice with a spin-1/2 degree
of freedom, which can, for example, be realized in the ro-
tational states of molecules as |↑〉 = |N = 1,NZ = 0〉 and
|↓〉 = |N = 0,NZ = 0〉, where a weak external field (electric
field �E or magnetic field �B) defines a preferred polarization
axis [see Fig. 1(a)]. The system is modeled as an extended
Fermi-Hubbard (FH) model with Hamiltonian Ĥ = ĤFH +
Ĥdip [73,74].

Here, ĤFH is the single-band FH Hamiltonian describing
tunneling and on-site dipolar and contact interactions. It reads

ĤFH = −
∑

j,σ

Jσ (b̂†
j,σ b̂ j+1,σ + H.c.) + U

∑

j

n̂ j↑n̂ j↓, (1)

with fermionic annihilation operators on site j with spin σ ,
b̂ j,σ , and number operators n̂ jσ = b̂†

j,σ b̂ j,σ . The tunneling rates
Jσ and the contact interaction Ucontact are controlled by the
optical lattice depth, while the on-site dipolar interactions
Udd can be tuned via lattice depth, lattice anisotropy, and
electric field (U = Ucontact + Udd). Even for shallow lattices
considered here, the interaction-induced cross-band coupling
is weak, justifying a single band approximation [72]. In gen-
eral, a differential polarizability of the rotational states leads
to spin-dependent tunneling rates, which can be tuned by
the lattice polarization axis and are equal at a magic angle
[75]. Close to zero field, the states |↑〉 and |↓〉 do not fea-
ture induced dipole moments and the interactions between
dipoles on different lattice sites are characterized by a pure ex-
change Hamiltonian Ĥdip = ∑

i> j
1

| j−i|3 V⊥(ŝx
i ŝx

j + ŝy
i ŝy

j ). In 1D

geometries for the parameters considered, the 1/r3 tail of the
interactions speeds up the dynamics, but leaves the maximum
attainable squeezing unchanged within numerical precision
[72]. Because of that we approximate the Hamiltonian by the

simpler nearest neighbor model:

Ĥdip = V⊥
∑

j

(
ŝx

j ŝ
x
j+1 + ŝy

j ŝ
y
j+1

)
. (2)

Here, the spin-operators ŝα
j = σ̂ α

j /2 with Pauli matrices σ̂ α

are defined by σ̂−
j = b̂†

j,↓b̂ j,↑. The interaction strength V⊥ ∝
[1 − 3 cos2(θ )] is controlled by the angle θ between the field
and the orientation of the 1D chain [Fig. 1(a)].

We assume that particles are prepared in their ground state
|↓〉 and uniformly distributed along the lattice such that each
lattice site is occupied with probability 0 < f � 1. Subse-
quently, a π/2 pulse prepares the dipoles in an x-polarized
product state [see Fig. 1(b)] with density matrix ρ̂(t = 0) =⊗

j[(1 − f ) |0〉 〈0| j + f |→〉 〈→| j], where |0〉 denotes an

empty lattice site and |→〉 = (|↑〉 + |↓〉)/
√

2.
The system’s dynamics is described by the Lindblad master

equation

∂t ρ̂ = Lρ̂ = −i[Ĥ , ρ̂] +
∑

j

D[L̂ j]ρ̂, (3)

with D[L̂]ρ̂ = 2L̂ρ̂L̂† − L̂†L̂ρ̂ − ρ̂L̂†L̂. On-site two-body
losses, e.g., due to chemical reactions are described by Lind-
blad operators of the form L̂ j = √


/2b̂ j,↓b̂ j,↑, where the
loss rate 
 increases with lattice depth [71,72]. We numer-
ically simulate the dynamics of Eq. (3) by representing the
vectorized density matrix as an infinite MPS directly in the
thermodynamic limit, which we time-evolve with an infinite
time evolving block-decimation algorithm [72,76–78]. We
measure squeezing by the Wineland squeezing parameter,
which quantifies the precision gain in a Ramsey spectroscopy
experiment [25–27]

ξ 2 = N (�S⊥)2
min

〈�S〉2
. (4)

Here, �S = {Ŝx, Ŝy, Ŝz} with Ŝα=x,y,z = ∑
j ŝα

j is the Bloch vec-

tor, 4〈�S〉2/N2 = 4〈Ŝx〉2/N2 is the square of the contrast (since
〈Ŝy〉 = 〈Ŝz〉 = 0), and (�S⊥)2

min is the minimal spin vari-
ance perpendicular to the Bloch vector [see illustration in
Fig. 1(b)]. We use a method to compute squeezing from
infinite MPSs directly in the thermodynamic limit, details
of which are given in the Supplemental Material [72]. We
confirm numerical convergence by generating all plots for
successively increasing bond dimension up to a maximum of
χ = 2048 until convergence is reached [72].

In all figures, we use parameter values for fermionic KRb
molecules in a magnetic field of ∼500 G at which the hy-
perfine splitting is �100 kHz, which allows to energetically
isolate a single hyperfine and rotational state pair [72]. In
most of our analysis, we consider an angle θ ≈ 59◦ close
to the magic angle. This reduces in-chain dipolar interac-
tions by [1 − 3 cos2(θ )] and makes it possible to tune the
tunneling from much smaller to much larger than the dipolar
interactions J � V⊥/J � V⊥. In the intermediate regime J ∼
V⊥, coupling between spin and motional degrees of freedom
can introduce additional spin-motional entanglement, which
would go beyond the scope of this paper.

Optimal parameter regimes. We start by discussing the
numerical findings for J↑ = J↓ = J , and give an analytical
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FIG. 2. Full system dynamics. Time evolution of (a) squeez-
ing ξ 2 and (b) contrast for various lattice depths [from light to
dark, (Vlatt,x,Vlatt,⊥)/ER = (3, 3), (3, 40), (5, 40), (40, 40)]. Parame-
ters: V⊥/h = 40 Hz, f = 0.8, 
 = Ucontact/h̄. (c), (d) Same as (a) and
(b) for varying dipolar interaction strength V⊥, while keeping the on-
site interaction, U , and loss rate, 
, fixed, and (Vlatt,x,Vlatt,⊥)/ER =
(3, 40). See the Supplemental Material for lattice and MPS parame-
ters [72].

understanding in the following section. The maximal squeez-
ing achieved within the first 10 ms is shown in Fig. 1(c)
as a function of initial filling fraction and lattice depth. For
all filling fractions, decreasing the lattice depth increases the
squeezing. This is the main result of our paper and will be
discussed below by considering time traces for parameters
along the indicated arrows. We can see that while for deep
lattices with frozen molecules (J/U < 10−3), even for unit
filling f = 1, squeezing is limited to around 3 dB, which
constitutes a global maximum [see Fig. 3(a) below], shallow
lattices can match and even out-perform these results for
f � 0.4. As will be discussed below in Fig. 4(b), for such
small filling fractions squeezing is limited by the evolution
time and does not constitute a global maximum, as indicated
by the grey striped area. This implies that if times longer than
10 ms were considered, the results would shift even more
in favor of shallow lattices at low filling since the apparent
saturation with lattice depth for small f is limited only by the

FIG. 3. Analytic models. (a) Spin squeezing dynamics for the
FH model (symbols, size encodes doublon population), real-space
spin-model (continuous lines), and the OAT limit (dotted line).
(b) Contrast at 10 ms for spin-wave analysis (continuous lines; blue:
f = 1; red: f = 0.6), spin model (gray x’s; f = 1), and FH model
(colored symbols; f = 1 without losses; f = 0.6 with losses). Verti-
cal lines and text indicate stability of spin waves (see text).

FIG. 4. Spin squeezing ξ 2 in the presence of imperfections. (a) X
pulses with different pulse spacing τ protect against dephasing due
to spin-dependent tunneling. We consider J↑/h = 153 Hz, J↓/h =
131 Hz compared to the no anisotropy reference with J↓/h = J↑/h =
142 Hz. Other parameters f = 0.8, Ucontact/h = 529 Hz, Udd/h =
−273 Hz, 
 = Ucontact/h̄, and V⊥/h = 40 Hz. (b) Dynamics for
different filling fractions f . Inset shows the contrast decay. Param-
eters: J/h = 153 Hz, U/h = 239 Hz, 
 = 2π × 512s−1, and V⊥/h =
40 Hz.

short-time growth, which we will show to be independent of
lattice depth [Figs. 2(a) and 3(a)].

Figures 2(a) and 2(b) show the dynamics for different
lattice depths at fixed filling f = 0.8. Changing the lattice
depth modifies both tunneling rate and on-site interaction,
such that a shallower lattice leads to a larger value of J/U .
At short times, squeezing is generated at a rate independent
of the lattice depth. For deep lattices, squeezing peaks at
ξ 2 ≈ 2 dB. In contrast, for shallower lattices when molecules
are itinerant, the growth persists longer, leading to larger max-
imal squeezing at later times. This is mirrored in the contrast
decay in panel (b). While for deep lattices the contrast decays
quickly, it remains much larger for shallower lattices. One
might expect that the larger on-site loss rate and faster contrast
decay, and thus reduced Pauli blockade in deep lattices result
in increased molecule loss. However, due to a combination
of Zeno blockade and energetically suppressed doublon for-
mation, the molecule loss is actually slowest in the deepest
lattice. As a consequence, losses remain below 15% at all
lattice depths [72].

Figures 2(c) and 2(d) show the squeezing dynamics for
a range of dipolar interaction strengths V⊥. First, focusing
on the results for V⊥/h = 40 Hz and V⊥/h = −40 Hz, it is
clear that positive values of V⊥ are preferable; The growth of
squeezing persists and the coherence is maintained longer. In
order to observe the dependence on |V⊥|, consider the curves
for V⊥/h = (20, 40, 80) Hz. We find that increasing the inter-
action strength leads to a speed up of the dynamics, however
at the cost of reducing the maximal squeezing. Maximum
squeezing is thus achieved for shallow lattices and repulsive
interactions. The optimal value of |V⊥| is then determined by
any dephasing mechanisms, which set a time scale limiting
how slow the dynamics can be made.

Analytical explanation. In order to gain insight into the
underlying physics driving the results presented above, we
now consider the lossless model with 
 = 0 in two compli-
mentary limits. In the limit J � U , the dominant term in the
Hamiltonian is the single-body term, which is diagonalized
by Bloch waves, while scattering of Bloch waves can be
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ignored to lowest order. In this case, for a finite number of
lattice sites L, the dipole exchange interactions are projected
into the Bloch wave basis, giving rise to all-to-all interactions
described by a one-axis twisting Hamiltonian (V⊥/L)(Ŝz )2

[72,79]. This Hamiltonian can be solved analytically and gives
rise to squeezing limited only by finite Bloch sphere curvature
effects, and unbounded squeezing in the limit N → ∞ [27].

In the complementary limit J � U , f = 1, a combination
of Pauli and interaction blockade mechanisms at small tun-
neling rates freezes dipole motion. In this regime, we can
define an effective spin model by treating dipoles as localized
spins [see Fig. 1(c)] [80]. The spins’ interactions are governed
by Eq. (2) and additional superexchange interactions from
virtual hopping processes. The resulting Hamiltonian is an
XXZ model given by:

Ĥsm = Vsym,eff

∑

j

�s j · �s j+1 + Vz,eff

∑

j

ŝz
j ŝ

z
j+1 (5)

with Vsym,eff = (4J2/U ) + V⊥ and Vz,eff = −V⊥ [72]. The
term proportional to Vz,eff generates spin squeezing identical
to one-axis twisting at short times, but leads to dephasing on
longer time scales. In contrast, the term proportional Vsym,eff in
Eq. (5) is SU(2) symmetric and thus cannot generate squeez-
ing by itself, but favors spin alignment, thus suppressing
dephasing introduced by Vz,eff .

The resulting squeezing as predicted by both spin models is
compared to the FH model in Fig. 3(a). While at short times all
descriptions predict identical squeezing, at later times the real-
space spin model predicts reduced squeezing compared to the
fully collective momentum space spin model, and matches the
full model for J/U � 0.3. For shallower lattices squeezing
is reduced compared to the spin models. This breakdown of
the spin model coincides with a rise in doubly occupied sites
[Fig. 3(a) size of blue symbols], which moves the system out
of the spin model manifold, and direct motion of molecules is
nonnegligible. We note that for all parameters analyzed here,
the real-space spin model gives more accurate results than the
momentum-space spin model, which is only accurate at short
times.

In the regime of validity of the spin model, squeezing is
limited by loss of contrast. To shed light on this effect, we
solve the dynamics of spin-waves at short times. We map each
spin to a hard-core boson according to the mapping: |→〉n =
|0〉n and |←〉n = |1〉n for |0〉n and |1〉n states representing
zero and one bosons on site n, respectively. This allows for
the reduction of the spin model to a quadratic Hamiltonian
that can be solved by a Bogoliubov transformation [72]. The
resulting dynamics describes pair creation of spin waves with
momenta k and −k, which maps for |k| �= 0 to contrast decay
proportional to the number of spin-wave excitations.

The predicted contrast after 10 ms is shown in
Fig. 3(b) (red line). We find that the contrast remains
large for V⊥U/(4J2) > 0, and quickly approaches one as
V⊥U/(4J2) → 0. While the spin-wave analysis accurately
predicts the contrast for V⊥U/(4J2) > 0, the contrast is
slightly underestimated for V⊥U/(4J2) < 0. The quantitative
discrepancy is caused by the terms neglected under the spin-
wave approximation. To lowest order, we can account for
subunit filling by re-scaling all interaction constants with the

filling fraction Vsym,eff → f Vsym,eff and Vz,eff → f Vz,eff due to
a reduction of the average (mean-field) interactions. The blue
line and symbols in Fig. 3(b) show that this rescaling accu-
rately captures the contrast, even when losses are included in
the full model.

The asymmetry around V⊥U/(4J2) = 0 can be under-
stood from a stability analysis of the spin waves [72]. For
V⊥U/(4J2) > 0 and V⊥U/(4J2) < −2, all modes are stable,
such that pair creation remains small and contrast remains
large. In contrast, for −2 < V⊥U/(4J2) < 0, some modes be-
come unstable and contrast decays quickly. In line with prior
work [45,48], we can draw a connection between contrast
protection and the relevant phase diagram close to negative
zero temperature, i.e., the ground state phase diagram of
the negative Hamiltonian. In the stable regime, the ground
state has short-range XY-order, forcing spins to stay aligned.
In contrast, for −1 < V⊥U/(4J2) < 0, the ground state has
short-range ferromagnetic Ising order, and modes close to k =
0 are unstable, and for −2 < V⊥U/(4J2) < −1 the ground
state has short-range antiferromagnetic Ising order, and modes
with quasimomentum 2πk/N ≈ π are unstable.

Experimental considerations. Finally, we consider the im-
pact of experimental imperfections on the generation of
squeezing in Fig. 4. Panel (a) shows the effect of spin-
dependent tunneling rates, and panel (b) shows different
filling fractions. Spin dephasing naturally arises due to the
distinct polarizabilities of the spin states and the resulting
state-dependent trapping potentials and tunneling rates J↑ �=
J↓. Typical values for KRb at a lattice depth of 3ER for the |↑〉
state are J↑/h = 153 Hz and J↓/h = 131 Hz [72]. In Fig. 4(a)
we find that this leads to a reduction of spin squeezing from
∼4 dB to ∼2 dB. The tunneling anisotropy can in principle be
removed by a dynamical decoupling sequence, which effec-
tively averages the tunneling rates of both states [23,24,59].
Here, we consider a sequence of (infinitely fast) π pulses
along x, exp(iπ Ŝx ), spaced by a time τ, and find that pulses
with a pulse spacing of τ = 500 μs are sufficient to almost
fully recover the peak squeezing.

Panel (b) shows the squeezing dynamics at different fill-
ing fractions, corresponding to a horizontal cut through the
diagram in Fig. 1(c), versus time scaled by the initial fill-
ing fraction. In experiments, the filling fraction is limited
by the temperature of the gas before loading it into a lat-
tice. We can compute the maximal achievable filling fraction
by matching the entropy of free space gases to the entropy
in the respective optical lattice. While so far experiments
in optical lattices have achieved filling fractions up to f =
0.25 [81], for T/TF = 0.3 as reported in Ref. [11], filling
fractions up to f = 0.9 should be reachable in near term
experiments [82].

We observe a collapse of all curves when plotted as a
function of the rescaled time t × f . The slowdown of the
dynamics is due to the reduction of the average interactions
∝ f . At later times, systems with lower filling fractions have
reduced squeezing compared to the f = 1 case, indicating that
small filling fractions reduce the maximal attainable squeez-
ing. Since the contrast is barely affected, the reduction in
squeezing is due to an increase in the variance in Eq. (4),
which may be, e.g., due to enhanced motion at lower filling or
disorder in the initial state. Nevertheless, the most important
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reduction of the maximally reported spin squeezing for
smaller filling fractions in Fig. 1(c) is imposed by the run-
time of the dynamics, which here we set to 10 ms, but will
ultimately be limited by additional sources of spin dephas-
ing in an experiment. Previous experiments in pancakes had
coherence times limited by collisions [59] which are already
included in our analysis. In a lattice, interaction-limited spin
coherence times can be larger than 400 ms [22], leading to
negligible coherence loss on the 10 ms time scales considered
here [72], thus supporting the possibility to generate several
dB squeezing in current experiments.

We nevertheless emphasize that the contrast stabilization
due to superexchange is potentially reduced at low filling
fractions. The reason behind this is that for very low filling
fractions, the spin dynamics become increasingly dominated
by pairs of closeby dipoles isolated from the rest of the
system. For such pairs, superexchange and spin-exchange in-
teractions commute [�si · �s j, ŝ+

i ŝ−
j + H.c.] = 0, and therefore,

superexchange cannot modify the contrast decay induced by
dipolar spin-exchange interactions. For example, filling frac-
tions larger than 15% are required to stabilize the contrast of
frozen dipoles in 2D [83].

Conclusion. Our results demonstrate that spin squeezing
is maximal in shallow lattices. While our study is focused
on 1D due to the availability of exact numerical methods,
we note that the derivation of the spin-model is indepen-
dent of the dimensionality, suggesting that our results remain
true for higher dimensions as long as the interactions are

isotropic. This is relevant for future experiments, where two-
dimensional systems may be more natural to implement.
Furthermore, previous studies have shown that spin squeezing
in higher dimensions is much larger and can scale with system
size [45,48], but is also limited by low filling fractions [83].
Larger �E fields and Floquet engineering provide additional
tuning knobs, which can turn the XY into an XXZ model
[74,84], and thus further control Vz,eff . Additional density-spin
interaction terms [73] for large �E fields may constitute an
additional source of dephasing, which can however be re-
moved by the pulse sequence discussed in Fig. 4(a). While we
focused on fermionic dipoles, it is an interesting prospect to
consider if our results can be further extended to bosons [85],
and how they ultimately translate when pushing to even shal-
lower lattices when corrections to the Fermi-Hubbard model
become important [86,87].
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Y. Xiao, and V. Vuletić, Near-unitary spin squeezing in 171Yb,
Phys. Rev. Lett. 122, 223203 (2019).

[43] H. Bao, J. Duan, S. Jin, X. Lu, P. Li, W. Qu, M. Wang, I.
Novikova, E. E. Mikhailov, K.-F. Zhao, K. Mølmer, H. Shen,
and Y. Xiao, Spin squeezing of 1011 atoms by prediction and
retrodiction measurements, Nature (London) 581, 159 (2020).

[44] E. Pedrozo-Peñafiel, S. Colombo, C. Shu, A. F. Adiyatullin, Z.
Li, E. Mendez, B. Braverman, A. Kawasaki, D. Akamatsu, Y.
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