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Momentum-space signatures of the Anderson transition in a symplectic,
two-dimensional, disordered ultracold gas
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We study Anderson localization in two-dimensional, disordered, spin-orbit systems belonging to the sym-
plectic symmetry class using momentum-space signatures such as the coherent backscattering antipeak and
the coherent forward-scattering peak. Significantly, these momentum-space features are readily accessible
in ultracold atom experiments through absorption imaging after time-of-flight expansion. Here, the critical
exponent and mobility edge of the metal-insulator transition are successfully obtained through a finite-time
analysis of the coherent backscattering width. An anomalous residual diffusion, unique to two dimensions, is
identified at the transition point where the system changes from a metal to an insulator. A spin localization
phenomenon is also observed in the deep localized regime.
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Introduction. Anderson localization (AL), the disorder-
induced suppression of wave transport by destructive inter-
ference, was first introduced [1] to explain the anomalous
suppression of conductance in mesoscopic electron systems.
It is, in fact, a general phenomenon, and an ubiquitous feature
of any linear waves propagating in bulk random media. Since
its conceptual inception, it has been observed (if indirectly) in
a variety of very different systems [2–18]. Notably, over the
past decade, ultracold atomic gases have provided a uniquely
controllable experimental platform in which to directly ob-
serve and study AL in quantum systems [13,19–24].

In particular, the momentum distribution of the single-
particle wave function has provided a directly observable
signature of both weak localization and strong localization
through the coherent backscattering (CBS) and coherent
forward-scattering (CFS) peaks [28–32]. Their dynamic ob-
servation can be used to quantitatively characterize the
three-dimensional (3D) Anderson transition delineating an
extended metallic regime from an insulating one [31,32].

Historically, the first powerful phenomenological descrip-
tion of AL was the one-parameter scaling theory [33,34]. It
relies on the hypothesis that all transport properties of a disor-
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dered system depend only on the dimensionless conductance
g. The scaling behavior of g with the system size L is encapsu-
lated in the function β(g) = d ln g

d ln L and obtained from a smooth
interpolation between the limiting metallic and insulating ex-
pected asymptotics. This theory predicts the existence of a
metal-insulator transition (MIT) in three dimensions [3,35]. It
was also conjectured that there are distinct universality classes
based on the symmetries of the Hamiltonian: orthogonal,
unitary, and symplectic (see Table I). For example, ultracold
atoms spreading in an optical speckle potential, where both
time and spatial rotational symmetries are present, are well
described by the Gaussian orthogonal ensemble (GOE) of
random matrix theory [36]. It is also well known that disor-
dered systems within this symmetry class are always localized
for any disorder strength in dimension two or less, whereas
they exhibit a metal-insulator transition in dimension three. In
particular, both the mobility edge and critical exponent of this
Anderson transition have been determined through the scaling
behaviors of the CBS width and CFS contrast [31,32].

On the other hand, AL within the unitary and symplectic
symmetry classes has received less experimental attention
in the ultracold atom community [25–27,37]. Here we ad-
dress the symplectic case by considering spin- 1

2 particles in
a two-dimensional (2D) square lattice with on-site disorder
and random spin rotation during hopping. As is well known,
spin-orbit coupling induces a MIT in two dimensions at low
enough disorder [27,38]. We use the scaling properties of the
CBS (anti)peak present in the momentum distribution of the
particles to extract the mobility edge and critical exponent of
this transition. The scaling behavior of the CFS peak contrast
will be addressed in future work.
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TABLE I. Phases in symmetry classes and dimensions. Abbreviations: metal-insulator transition (MIT); localized states (L). Corresponding
review articles are Refs. [25–27].

Dimensionality

Symmetry 1 2 3 >3 System

Orthogonal L L MIT MIT No spin-orbit coupling, no magnetic field
Symplectic L MIT MIT MIT Spin-orbit coupling
Unitary L L MIT MIT Magnetic field

Methods. Our tight-binding Hamiltonian for noninteracting
spin- 1

2 particles reads

H = J
∑
〈i, j〉

ψ
†
i Ui jψ j +

∑
i

wiψ
†
i ψi, (1)

where the sums run over all nearest-neighbor lattice site pairs
〈i, j〉 and lattice sites i, respectively. The field operator ψ

†
i =

(ψ†
i↑, ψ

†
i↓) is the two-component row-spinor built from the

creation operators ψ
†
iσ at site i and spin components σ =↑ and

↓. The on-site disorder potentials wi are independent random
variables uniformly distributed over [−W/2,W/2], where W
is the disorder strength. Hereafter, we set the hopping am-
plitude to J = 1 and the lattice spacing a = 1 and h̄ = 1.
The random spin rotation during hopping is described by the
SU (2) matrix [37]

Ui j =
[

eiαi j cos(βi j ) eiγi j sin(βi j )

−e−iγi j sin(βi j ) e−iαi j cos(βi j )

]
, (2)

where the angles αi j and γi j are independent random variables
uniformly distributed over [0, 2π ), while the angles βi j are
independent random variables distributed over [0, π/2] with
probability density function g(β ) = sin(2β ). Since H is Her-
mitian, Ui j = U †

ji implying αi j = −α ji and similarly for γi j

and βi j .
One recovers the GOE case for βi j = 0 and constant uni-

form angles αi j and γi j . Noticeably, H is invariant under time
reversal, T HT −1 = H , where T is the time reversal opera-
tor for spin- 1

2 systems and satisfying [39] T 2 = −1. As a
consequence, each eigenvalue εn of H is doubly degenerate
(Kramers’ degeneracy) with orthonormal eigenstates of the
form |ϕn〉 and |T ϕn〉.

Importantly, the Hamiltonian dynamics cannot couple
time-reversed states, irrespective of the disorder configura-
tion. Indeed

〈T ψ |e−iHt |ψ〉 =
∑

n

e−iεnt [〈T ψ |ϕn〉〈ϕn|ψ〉

+ 〈T ψ |T ϕn〉〈T ϕn|ψ〉].
Using the 〈T ψ |T ϕn〉 = 〈ϕn|ψ〉 relationship together with
〈T ϕn|ψ〉 = −〈T ϕn|T 2ψ〉 = −〈T ψ |ϕn〉, we see that the
bracketed term in the sum above vanishes. As will be seen
later, this very fact explains why a CBS dip, rather than a CBS
peak, is observed in the momentum distribution for symplectic
systems.

Results. To study the momentum-space signatures of AL,
we consider the initial plane wave state |k0,↑〉 at wave
vector k0 = (0, π/2) that we shape into a wave packet

|ψ0〉 = F (E , δE )|k0,↑〉 at energy E by the filter opera-
tor F (E , δE ) ∝ exp[−(H − E )2/(2δE2)]. We then compute
the disorder-averaged momentum distributions nσ (k, t ) =
|〈k, σ | exp(−iHt )|ψ0〉|2 at energy E (σ =↑,↓). The param-
eter δE that controls the selected energy window around E
should be as narrow as possible to give a high resolution in
energy and simultaneously wide enough to keep a sufficient
number of eigenstates for averaging purposes. This filtering
procedure [40] gives the momentum distribution at energy E
for times t � 1/(2δE ). In all our numerical simulations, we
haven chosen δE = 0.035 (in units of J), allowing to study the
the momentum distribution at energy E for times t � 100. In
the rest of the paper, we have further chosen E = 1 (in units
of J).

Figure 1 shows the momentum distributions obtained at
time t = 100 (in units of h̄/J) for on-site disorder strength
W = 6.8J (localized phase as will be seen later). In the spin-
preserving channel, we observe a CFS peak centered at k0

on top of a flat diffusive background. In the spin-flipping
channel, we observe a CBS antipeak centered at −k0 and
dug into a flat background. Since |−k0,↓〉 = T |k0,↑〉, the dy-
namics cannot connect these two states and n↓(−k0, t ) = 0 at
any time, irrespective of the disorder configuration averaging.
The CBS dip is thus a genuine characteristic of symplectic
systems.

FIG. 1. Momentum distributions n↑(k, t ) and n↓(k, t ) obtained
at time t = 100h̄/J for an initial state |k0,↑〉 with k0 = (0, π/2)
filtered at energy E = 1 (in units of J). The linear size of the lattice is
L = 513 (in units of a) and the on-site disorder strength is W = 6.8
(in units of J). The CFS peak and the CBS dip are clearly seen in
their respective spin channels. At t = 100h̄/J , the backgrounds in
each spin channel have already reached their stationary and equal
values (set to 1

2 by total probability conservation). However, the CFS
contrast has not yet reached the stationary value C∞

F = 2 expected
for GSE systems.
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In addition, we note that both backgrounds in each spin
channel are flat. This can be traced back to the fact that
the disorder-averaged Green’s function G(E ) = (E − H )−1,
which is a diagonal operator in momentum and spin spaces
as disorder average restores translation and rotation invari-
ances, has diagonal elements that do not depend on k and σ

but only on E , i.e., 〈k, σ |G(E )|k, σ 〉 = ḡ(E ). This unusual
property, that we have checked numerically, can be explained
by the fact that the disorder-averaged Hamiltonian van-
ishes (H = 0), amounting to having a trivial k-independent
diagonal disorder-free Green’s function 〈k′σ ′|G0(E )|kσ 〉 =
δkk′δσσ ′/(E + i0+), and by the fact that the various correlators
〈kσ |Hn|kσ 〉, appearing in the Dyson series, are independent
of k for the uncorrelated hopping and on-site independent
disorders that we consider here. A proof, for Gaussian dis-
order, can be found in the Appendix of [41]. This has to
be contrasted with the standard situation of on-site disorder
only where the disorder-averaged Hamiltonian exhibits a well-
defined band structure εk in momentum space. This entails
k-dependent diagonal elements of the free Green’s function
〈kσ |G0(E )|kσ 〉 = (E − εk + i0+)−1. Finally, from both di-
agrammatic approach and numerical computations, one can
show that ḡ(E ) = [E − �(E )]−1, where the complex-valued
scalar �(E ) is the self-energy. Therefore, one expects not only
the backgrounds in each spin channel to be flat in the Brillouin
zone, but also to grow with the same scattering time scale
τs(E ) = h̄/[2|Im(�)|], before reaching the same stationary
values.

Since n↓(−k0, t ) = 0 at any time, the flat diffusive back-
ground in the ↓ channel grows “around” the CBS dip. As
time further increases, the CBS width shrinks and its temporal
behavior depends on whether the system is diffusive, local-
ized, or critical. The CFS peaks develop and grow in the ↑
channel on a time scale given by the localization time τloc. It
reaches a stationary peak-to-background relative contrast C∞

F
at “infinite” times, t � τloc. Based on the statistical proper-
ties of the eigenfunctions in the GSE ensemble, we expect
C∞

F = 2 instead of the C∞
F = 1 for GOE systems. Note that, in

Fig. 1, the momentum distributions are plotted at a time where
the CFS peak has not yet reached its stationary value. Note
also that deviations from the GSE value are expected when
the localization length becomes too small, and comparable to
the lattice constant, at large W values [42,43]. On the other
hand, by definition, the stationary CBS dip-to-background
relative contrast is always C∞

B = 1, like in the GOE case. In
the remainder of this Letter, we focus on the CBS dynamics.

a. CBS width dynamics. We define the CBS width �k as
the momentum size of the dip at half maximum of the diffu-
sive background in the spin-flipping channel. In the metallic
regime, the CBS antipeak continues to shrink in time and
asymptotically tends to zero. At large enough times, its width
is given by [40]

�k(t ) =
√

ln 2

D(E ,W ) t
(metallic phase), (3)

where D(E ,W ) is the diffusion constant at energy E and
disorder strength W . In the insulating regime, the CBS width
decreases until it asymptotically approaches a constant value
which defines the localization length at energy E and disorder

strength W

�k(t → +∞) = 1

ξloc(E ,W )
(insulating phase). (4)

At fixed energy, ξloc ∼ |W − Wc|−ν diverges algebraically
with a critical exponent ν when approaching the critical point
Wc. Thus ξloc quickly exceeds the maximum linear size L
of the lattice that is computationally manageable and the
system appears diffusive (in other words, �k sticks to the
mesh size 2π/L in momentum space). This is the reason
why we resort to finite-time scaling methods [31,32,42,44–
46] of �k and introduce the length scale Lt through t =
2πρ(E )L2

t , where ρ(E ,W ) = (1/L)2 ∑
n δ(E − εn) is the

disorder-averaged density of states (DOS) per unit surface of
the system at energy E and disorder strength W .

b. Finite-time scaling. Following the single-parameter scal-
ing rationale [34], we assume that there exists a single
correlation length ξ subsuming all the microscopic details of
the system. This correlation length identifies with the local-
ization length in the insulating regime. As a consequence, the
inverse of the rescaled CBS width is a continuous and smooth
function of the single variable Lt/ξ that we recast under the
form

� ≡ [�k Lt ]
−1 = F (z), (5)

where z = η(E ,W )L1/ν
t , η(E ,W ) = ξ−1/ν , and F (z) is a

function characteristic of the transition. Working at fixed en-
ergy, we now Taylor expand F (z) and η(E ,W ) up to some
expansion orders [32,47], F (z) = ∑N

n=0 Fnzn and η(E ,W ) =∑M
m=1 bm(W − Wc)m, where we have set M = 2 and N = 2.

For W < Wc we are in the diffusive side and for W > Wc we
have localization. Within this approach, Fn, bm, ν, and Wc are
free parameters that we determine using a least-square fit of
the gathered data for � at sufficiently long times.

We plot in Fig. 2 the numerical points (dots) and the fitted
curves (colored lines) from which we obtain the estimates
Wc = 5.94 ± 0.005 and ν = 2.73 ± 0.04, in good agreement
with the values Wc = 5.95 and ν = 2.73 already reported [37].
Possible corrections due to irrelevant scaling variables [48]
can be neglected since the shortest distance over which the
spin is randomized is the lattice spacing [37]. In Fig. 3, we
plot �(t ) against t for different disorder strengths W . The
insulating and metallic regimes are clearly distinguished by
their different CBS contrast temporal behaviors and the crit-
ical regime is identified by the change in concavity of these
time functions. We note that our numerical results are well
fitted by the scaling function Eq. (5). At large enough times,
according to Eqs. (3) and (4) and the definition of Lt , we
expect �(t ) to be essentially constant in the metallic regime
and to decay like 1/

√
t in the insulating regime. This constant

behavior is indeed observed in the metallic regime for W close
enough to the critical disorder Wc. For smaller W we have
numerically checked the plateaus for longer times than those
shown in the figure. Interestingly, the system still exhibits a
residual diffusive motion at the critical point.

This observation is consistent with Wegner’s law [49], s =
(d − 2)ν, which implies a vanishing critical exponent s = 0
for D ∼ (Wc − W )s in two dimensions and thus a constant
diffusion coefficient. This behavior has also been observed

L012021-3



EHSAN ARABAHMADI et al. PHYSICAL REVIEW RESEARCH 6, L012021 (2024)

FIG. 2. Inverse scaled CBS width �(t ) for times ranging from
t = 102 to t = 103 (in units of h̄/J), as functions of the disorder
strength W (in units of J). The longer times correspond to darker
curves. The energy is fixed at E = 1 (in units of J). All curves
cross at the mobility edge Wc = 5.94 ± 0.005 with critical exponent
ν = 2.73 ± 0.04. These values have been extracted from fitting the
Taylor expansion of F (z) to the numerical data. The inset shows the
smooth behavior of the disorder-average DOS per unit surface area,
ρ(E ,W ), across the transition at energy E = 1.

in [50]. To verify the validity of the one-parameter scaling
hypothesis in this system, we have numerically extracted
ξ (E ,W ) = |η(E ,W )|−ν to collapse all data for �(t ), obtained
at different W and times, in Figs. 2 and 3, on a single scaling
curve [37].

FIG. 3. Solid lines: inverse rescaled CBS width �(t ) as a func-
tion of t for different values of the disorder strength W at fixed energy
E = 1 (in units of J). Curves falling within the metallic and insulator
regimes are plotted with blue and green colors, respectively. The
thick solid black line corresponds to Wc = 5.94 ± 0.005 and critical
exponent ν = 2.73 ± 0.04. At long times (not shown) �(t ) displays
plateaus for W < Wc, whereas for W > Wc, �(t ) behaves like 1/

√
t .

Colored dashed lines: fits obtained using the Taylor expansion of the
one-parameter scaling function F (z), plotted as a function of t .

FIG. 4. Scaling function ln � as a function of ln(ξ/Lt ) at energy
E = 1 (in units of J). The different colored pieces on the scaling
curve correspond to the data obtained at different W (in units of J).
The dashed lines are the fitted curves based on the one-parameter
scaling hypothesis; see text. The horizontal gray dash-dotted line
marks the separation between the extended and localized branches
of the scaling function. The inset shows the correlation length ξ

calculated from the CBS width �k using the numerically extracted
parameters Wc = 5.94 ± 0.005 and ν = 2.73 ± 0.04.

To construct the scaling function, in Fig. 4 ln �(t ) is plotted
as a function of ln(1/Lt ) for different disorder strength W
and then shifted horizontally by some quantity ln ξ (E ,W )
to construct a smooth continuous curve [51] when ln �(t )
is plotted as a function of ln(ξ/Lt ). The correlation length
ξ , central to the one-parameter scaling hypothesis, identifies
with the localization length ξloc in the insulating phase.

Spin localization. Finally (not shown here), we have ob-
served a spin localization phenomenon in the deep localized
regime that we will address in a future work. In this regime,
the CBS and CFS peaks become very wide. By broadening,
the tails of the CBS dip decrease the background in the
spin-flipping channel, while the tails of the CFS peak do the
opposite in the spin-preserving channel leading to an imbal-
anced spin population in the spin channels. Thus the system
tends to retain its initial spin state in the deeply localized
regime.

Discussion. We have analyzed Anderson localization in an
archetypical symplectic system, which is realized in a physical
system if spin-orbit coupling is relevant. We have extracted
the critical exponent and the critical disorder strength using
a finite-time scaling analysis of the coherent backscattering
antipeak. The choice of a Gaussian symplectic ensemble con-
firms the universality of the critical exponent in the symplectic
symmetry class. Such an analysis of this momentum-space
signature of the phase transition is also accessible in ex-
periment through time-of-flight expansion and absorption
imaging.

Furthermore, we have demonstrated that, because the CBS
width scales as t−1/2 at the transition, there is a residual dif-
fusion in this region in contrast to three-dimensional systems
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with a metal-insulator transition. This residual diffusion is a
characteristic of any 2D system in which a metal-insulator
transition is observed.

A convenient platform to realize our system would be
cold atom experiments where Raman transitions are used to
produce a 2D spin-orbit effect in an optical lattice [52] or
in the bulk [53]. To induce random rotations between lattice
sites, we propose to use Raman speckle beams. The on-site
disorder can be easily produced by shining another speckle
beam onto the atoms [54]. In addition, many results presented
here remain true if the hopping terms Ui j are not fully ran-
dom; e.g., if Ui j is replaced by Ti j = α1 + (1 − α)Ui j with
α ∈ [0, 1], then the coefficient α simply controls the area of

the metallic phase in the energy-disorder plane. Future work
will study the Anderson transition by monitoring the CFS
contrast. However, early computations revealed an additional
difficulty in the localized phase: both CBS and CFS peaks
exhibit slowly decaying tails in momentum space, leading to
an imbalance between the two backgrounds and making an
accurate measurement of the CFS contrast troublesome. We
are investigating whether this imbalance is solely due to these
tails or if it is a signature of AL in the spin degrees of freedom.
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