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Hybrid coherent control of magnons in a ferromagnetic phononic resonator excited by laser pulses
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We propose and demonstrate the concept of hybrid coherent control (CC) whereby a quantum or classical
harmonic oscillator is excited by two excitations: one is quasiharmonic (i.e., harmonic with a finite lifetime)
and the other is a pulsed broadband excitation. Depending on the phase relation between the two excitations,
controlled by the detuning of the oscillator eigenfrequencies and the wave forms of the quasiharmonic and
broadband excitations, it is possible to observe Fano-like spectra of the harmonic oscillator due to the interference
of the two responses to the simultaneously acting excitations. Experimentally, as an example, the hybrid CC is
implemented for magnons in a ferromagnetic grating where GHz coherent phonons act as the quasiharmonic
excitation and the broadband impact arises from pulsed optical excitation followed by spin dynamics in the
ferromagnetic nanostructure.

DOI: 10.1103/PhysRevResearch.6.L012019

Coherent control (CC) is well established as a powerful
method to manipulate the amplitude and phase of quan-
tum states. First used for chemical reactions [1,2], CC has
been demonstrated for single electrons [3], spins [4,5], na-
noelectromechanical oscillators [6], magnons [7,8], and other
systems [9]. The basic phenomenon governing CC is the in-
terference of the responses of a quantum system to specific
excitations, which determine the phase of the wave func-
tion. One of the common technical solutions for realizing
CC is to use two optical pulses from ultrafast lasers with
adjustable time separation or more sophisticated laser pulse
shaping [10]. For CC of magnons, two microwave pulses
may be used [11]. Traditionally, the excitations that lead to
the interfering responses have the same origin, e.g., transi-
tions between the ground and an excited quantum state are
induced by a resonant electromagnetic field. However, there
are quantum systems that may be excited by a pair of excita-
tions of different origins. For example, one excitation may be
broadband and the other harmonic. Exploiting a combination
of various types of excitations for hybrid CC would broaden
a diversity of CC applications for quantum computing and
communications.

The idea of hybrid CC in the spectral domain is illus-
trated in Figs. 1(a) and 1(b) for a linear tunable quantum
or classical oscillator with eigenfrequency ω0 and finite life-
time. Figures 1(a) and 1(b) show the amplitude spectra of the
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oscillator’s responses to two types of excitation: (1) quasi-
harmonic (i.e., harmonic with finite lifetime) excitation with
central frequency ωR detuned relative to ω0, and (2) broad-
band excitation. Two cases of detuning are considered:
negative (ω0 < ωR) in Fig. 1(a) and positive (ω0 > ωR) in
Fig. 1(b). The top blue curves show the spectra when only
quasiharmonic excitation is present. In this case the phase φ

of the oscillator at ω = ω0 changes by π when the oscillator
eigenfrequency is tuned through the resonance ω = ωR, say
from −π/2 to π/2 as demonstrated in the comparison of the
blue spectra in Figs. 1(a) and 1(b). The middle red curves are
spectral responses when the oscillator is excited by a broad-
band excitation (2). The oscillator’s phase φ, e.g., φ = π/2,
at ω = ω0 in this case does not depend on ω0. The lower
black curves are the spectra when the two excitations, (1) and
(2), operate together. Clearly, we get destructive [Fig. 1(a)]
or constructive [Fig. 1(b)] interference of the oscillator’s re-
sponses at ω = ω0 depending on the detuning of the oscillator
eigenfrequency relative to the central frequency of the quasi-
harmonic excitation, ω0 < ωR or ω0 > ωR, respectively. For
negative detuning (ω0 < ωR) the response is almost zero,
while at positive detuning (ω0 > ωR) the spectral amplitude at
ω = ω0 increases by a factor of two. The interference effects
represent an example of hybrid CC where two excitations have
different spectra and are of different nature; for example (1)
could be a coherent phonon wave packet and (2) could be
a short microwave or laser pulse. By varying the detuning,
amplitudes, and phases of excitations (1) and (2), it is possible
to model various Fano-like spectral shapes similar to Fano
spectra which appear as a result of interference of broad- and
narrow-band eigenstates [12].

In the present Letter we demonstrate an example where
CC is realized for the case of magnons. Magnons are a typ-
ical example for which a diversity of quantum excitations
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FIG. 1. (a), (b) Concept of hybrid coherent control. Model spec-
tra of an oscillator with eigenfrequency ω0 excited by quasiharmonic
(1) and broadband (2) excitations with negative (a) and positive
(b) detuning; upper, middle, and lower spectra correspond to separate
excitations (1), (2), and the result of joint excitation, respectively. (c),
(d) Temporal signals (left, background subtracted in the inset) and
their FFT (right) for the probe intensity (c) and polarization rotation
angle (d).

exists [13]. The quasiharmonic excitation of magnons is com-
ing from quasi-monochromatic surface phonons. They drive
the spectrally isolated magnon mode at the frequency ωR.
The broadband excitation is based on ultrafast modulation
of the ferromagnet magnetization. Both excitations are trig-
gered optically by a femtosecond laser pulse. The magnon
eigenfrequency ω0 is tuned by the external magnetic field B.
Monitoring the magnon spectrum, we observe destructive or
constructive interference in the responses to the joint excita-
tions, depending on the magnon-phonon detuning and relative
phases of the excitations.

The sample studied consists of a 20-nm-thick ferromag-
netic metallic layer (we chose the Fe0.81Ga0.19 alloy known as
galfenol [14]) grown on a GaAs (001) substrate. The surface
of the ferromagnetic layer is patterned in the form of a one-
dimensional lateral nanograting (NG) with a period d = 120
nm. The parallel grooves of 7-nm depth and 48-nm width
are milled by focused Ga+ ion beam parallel to the [010]
crystallographic direction. The periodic spatial profile and
modulated magnetic properties [15–17] determine the spectra
and spatial profiles of the phonon and magnon modes [18–20]
(see Supplemental Material [21] for the details).

The ferromagnetic layer is excited from the substrate side
by pump pulses from a Yb-doped fiber-based laser oscillator
(1050-nm wavelength, 80-MHz repetition rate, 150-fs pulse
duration) with maximum fluence J0 ∼ 10 mJ/cm2 in a spot of
3-µm diameter. The pump pulse excites coherent phonons and
magnons in the ferromagnet [22,23]. To monitor the coherent
phonons and magnons in the time domain we measure the
intensity changes �I (t ) and the polarization rotation �ψ (t )
of the linearly polarized probe pulses (780-nm wavelength,
150-fs pulse duration, 1-µm spot size) reflected from the
NG surface [22,24]. We use asynchronous optical sampling
(ASOPS [25]) to measure the transient signals with 1-ps
time resolution in a 12.5-ns time window (see Supplemental
Material [21] for the details). The sample is mounted at
ambient temperature in a magnetic field B applied in the

plane of the ferromagnetic layer at 45 degrees to the direction
of the grooves.

Figures 1(c) and 1(d) show the signals �I (t ) and �ψ (t ),
respectively, and their power spectra. The intensity signal
�I (t ) in Fig. 1(c) oscillates on a slowly decaying thermal
background. The oscillations are characterized by two fre-
quencies: 45 GHz and 20.1 GHz. The fast-decaying 45-GHz
oscillations are due to Brillouin oscillations of the probe
pulse reflection at the phonon wave packet injected into the
GaAs substrate [26]. The oscillations at 20.1 GHz corre-
spond to the generalized Rayleigh wave in the NG [18].
Its spectral line in the fast Fourier transform (FFT) of the
transient signal has a width of 0.2 GHz, which corresponds
to a Q factor Q ∼ 100. The transient polarization rotation
signal �ψ (t ), shown in Fig. 1(d) for B = 100 mT (far from
the magnon-phonon resonance), is dominated by the lowest
magnon mode corresponding to the quasiuniform spin preces-
sion with eigenfrequency f0 = 13.2 GHz. A second magnon
mode with eigenfrequency f (1)

0 = 17.4 GHz is also detected
in the magnon spectrum [see the right panel in Fig. 1(d)]. In
the used range of external magnetic field the magnon eigenfre-
quencies depend linearly on B, and the resonance of the lowest
magnon mode and the Rayleigh phonon mode ( f0 = fR) is
observed at Bres = 280 mT.

The studied system has similarities with the model linear
oscillator presented in Figs. 1(a) and 1(b) to demonstrate the
idea of hybrid CC. Indeed, the magnons with eigenfrequency
f0 = ω0/2π are the analog of the linear quantum oscillator
the eigenfrequency of which is controlled by the external
magnetic field. The Rayleigh phonons with frequency fR =
ωR/2π are the analog of the quasiharmonic excitation (1)
which drives magnons at fR [27]. The laser pulse triggers
spin precession taking the role of the broadband excitation for
magnons (2).

The contribution of the quasiharmonic phonon driving at
the frequency fR = 20.1 GHz leading to the expected in-
terference effects becomes noticeable at a smaller detuning
( fR ∼ f0), which is achievable by the external magnetic field
B. Figure 2 presents the results for the B dependencies of
the measured magnon spectra at two pump fluences J . Fig-
ures 2(a) and 2(b) show the spectra measured at maximum
fluence J = J0. It is seen that in the chosen range of B, the
magnon spectrum consists of three spectral lines: the line at
f ≈ fR, and two lines centered at the field-dependent magnon
eigenfrequencies f0 and f (1)

0 . The spectral amplitude at f ≈
fR has a maximum at B = 270 mT, close to the magnon-
phonon resonance, f0 = fR, that happens at Bres = 280 mT.
The magnon spectra in the vicinity of the magnon-phonon
resonance are strongly asymmetric, similar to Fano resonance
spectra [12]. The typical feature of the obtained spectrum
is a dip at the low-frequency side relative to the magnon-
phonon resonance. This dip is found in the spectra in the
range of B marked by the dashed circle in Fig. 2(b). Another
interesting feature is a higher magnon spectral amplitude at
B > Bres relative to that at B < Bres. This feature, together
with the aforementioned nulling of the magnon amplitude,
is clearly demonstrated in Fig. 2(c), where the amplitude
A0 at the magnon eigenfrequency f = f0 is plotted vs B.
The nulling of the magnon amplitude takes place at detuning
fR − f0 = 0.4 GHz and the corresponding magnon spectrum
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FIG. 2. The measured spectra of magnons. [(a)–(d)] High pump
fluence J = J0. (e)–(h) Low pump fluence J = 0.1J0. [(a), (e)]
Magnon spectra for various B. (b), (f) The spectra as color maps;
the dashed circle in (b) marks the area around the magnon-phonon
resonance and the vertical arrow points at the B corresponding to
destructive interference. (c), (g) The dependencies of the amplitude
A0 at the magnon eigenfrequency f0 on B; the vertical arrow in
(c) points at the field where the nulling of A0 takes place. (d), (h) The
magnon spectra for the same detuning fR − f0 = 0.4 GHz, which
corresponds to B = 270 mT (d) and 250 mT (h), respectively.

shown in Fig. 2(d) has only one spectral line with a maximum
at f = 20.3 GHz, which is 0.2 GHz higher than the frequency
of phonon excitation.

The Fano-like spectra are not observed for low fluence
J ∼ 0.1J0 for which the spectra and a color map are presented
in Figs. 2(e) and 2(f). There is no nulling of A0 at any B
and the amplitude A0 is higher at B < Bres than at B > Bres

[see Fig. 2(g)], contrary to what is obtained at high J . The
magnon spectrum at the detuning fR − f0 = 0.4 GHz shown
in Fig. 2(h) possesses an asymmetry that has completely dif-
ferent features from the case of high J [compare with the
spectrum in Fig. 2(d)].

The results presented in Fig. 2 for high J [panels (a)–(d)]
show qualitative agreement with the concept of hybrid CC
demonstrated in Figs. 1(a) and 1(b). Indeed, magnons excited
by two different kinds of excitation show destructive interfer-
ence resulting in nulling of the magnon amplitude at a certain
value of negative detuning. Constructive interference results
in an increase of the magnon amplitude for positive detuning.
The interference effects at low J [panels (e)–(h) in Fig. 2] are
not as pronounced as at high J , which points to a dependence
of the phase and amplitude relations of the two excitations on
the pump fluence.

To understand the physics of hybrid CC for magnons we
have to consider the magnon wave function as a quantum
oscillator excited by two types of excitations. It is possible
to show [21,28–30] that this task may be converted to the

consideration of a classical oscillator and, thus, to the solution
of the Landau-Lifshitz-Gilbert equation [13] for the nor-
malized magnetization, m, precessing in the time-dependent
effective field, Beff (t ), altered by ultrashort optical excitation
and driven by coherent phonons. The phonon driving is mod-
eled as a small perturbation in Beff (t ) through the ac field
δBR(t ): Beff (t ) = B0 + δBR(t ), where B0 is a stationary com-
ponent of the effective field. Due to the in-plane orientation
of B0, for a Rayleigh wave with the wave vector along the x
axis (perpendicular to the grooves) only the longitudinal strain
component εxx contributes to δBR(t ) [21,31]. Thus, only the
x projection of δBR(t ) is nonzero: δBRx(t ) = −2b1εxx(t )m0x,
where b1 is the magnetoelastic coefficient and m0x is the x
projection of the stationary normalized magnetization. The
dynamical strain εxx(t ) excited by the pump pulse at t = 0
is

εxx(t ) = −ε0 sin(ωRt ) exp(−	Rt/2), (1)

where εo, ωR = 2π fR, and ΓR are the strain ampli-
tude, the phonon eigenfrequency, and the decay rate,
respectively.

The broadband excitation of magnons is a result of the ul-
trafast electron and lattice heating of the ferromagnet induced
by the laser pulse. It leads to the decrease of the saturation
magnetization M0 affecting the demagnetizing fields [23].
Because the heating is nonuniform with temperature gra-
dients between the grooves and ridges of the NG [21], it
results also in a sub-picosecond pulse of diffusive current of
spin-polarized electrons [32–38]. Both contributions can be
modeled [39] by a time-dependent field, δBm(t ), the tempo-
ral profile of which governs the phase relations between the
broadband and quasiharmonic excitations.

Assuming small precession amplitudes, the LLG equa-
tion can be modified to a linear second-order differential
equation for the deviation of the azimuthal angle, δϕ(t ), of
m from equilibrium [40]. This equation is identical to the
equation of a linear oscillator with quasiharmonic excitation
as an external force while the ultrafast broadband excitation
is included in the initial conditions. The solution of this linear
equation may be written as

δϕ(t ) = δϕph(t ) + [δϕ(0) cos(ω0t )

+ δϕ̇(0)ω−1
0 sin(ω0t )] exp(−	0t/2), (2)

where 	0 is the magnon damping rate. The first term in
Eq. (2) is a partial solution from the modulation by phonons
(see Supplemental Material [21]) and the expression in the
square brackets is the general solution with the initial con-
ditions at t = 0 for displacement δϕ(0) and velocity δϕ̇(0)
determined by the broadband excitation. The resulting δϕ(t )
is the interference of the partial and general solutions, in
which the phases of δϕ(0) and δϕ̇(0) at ω = ω0 determine
the interference between the quasiharmonic and broadband
excitations. The values δϕ(0) and δϕ̇(0) are governed by the
time evolution of δBm(t ). Let us consider two extreme cases:
(i) Displacive excitation when δBm(t ) has the form of an
instantaneous step. In this case the initial speed δϕ̇(0) = 0.
(ii) Impulsive excitation when the broadband excitation is
applied in the form of an ultrashort pulse. Then the ini-
tial displacement δϕ(0) = 0. The phase relations between
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FIG. 3. The simulated spectra of magnons. (a)–(d) The spectra
calculated for the case of broadband impulsive excitation. [(e)–(h)]
The spectra calculated for the case of broadband displacive excita-
tion. [(a), (e)] Magnon spectra for various B. (b), (f) The spectra
as color maps; the insets demonstrate the analogy with a pendulum
excited by the impact of a load (b) or displacement (f) in parallel
with a quasiharmonic force with central frequency fR (lower inset).
(c), (g) The dependencies of the spectral amplitude A0 at the magnon
eigenfrequency f0 on B; vertical arrow in (c) points at the B where
nulling of A0 takes place due to destructive interference. (d), (h)
The magnon spectrum (thick black line) calculated for the detuning
fR − f0 = 0.4 GHz when the phonon driving and the broadband
laser pulse excite magnons in parallel; thin lines are the magnon
spectra when excited separately by phonon driving (red shading) or
broadband pulse (blue shading).

broadband and phonon excitations at the frequency of the
magnon resonance ω0 differ by π/2 depending on whether the
excitation is displacive or impulsive. It is easy to show from
Eq. (2) that for our damping rates 	0 and 	R, the interference
will be destructive or constructive depending on the detuning
of the magnon and phonon resonances when the broadband
excitation is impulsive. For displacive broadband excitation
the partial and general solutions in Eq. (2) are close to orthog-
onal and interference does not take place. Such a simplified
consideration based on Eq. (2) clearly shows how the hybrid
CC works for magnons.

The results of the modeling for impulsive and displacive
excitation are summarized in Fig. 3 (see Supplemental Mate-
rial for the full set of parameters). Comparing the simulation
for impulsive excitations [Figs. 3(a)–3(d)] and the experimen-
tal results for high J [Figs. 2(a)–2(d)] we find the following
agreement: the nulling of A0 takes place when the eigenfre-
quency is shifted from the phonon frequency by 0.4 GHz
pointing to destructive interference; A0 has a higher value at
f0 > fR in comparison to f0 < fR. The experimental results

for low J [Figs. 2(e)–2(h)] agree well for the theory which
exploits displacive excitation [Figs. 3(e)–3(h)]. There the
spectra do not show distinct Fano features such as nulling.
Such dependence on excitation fluence leads us to conclude
that the phase relations between the broadband and quasihar-
monic excitations of magnons are different for high and low
pump fluences.

The physics of the displacive and impulsive broadband
excitations and their dependencies on J is based on the ul-
trafast spin dynamics in the studied structure. At low J ,
optical excitation induces ultrafast demagnetization with slow
recovery, and δBm(t ) is well described by the step function
(displacive excitation) [23,41]. Increasing J results in a strong
magnetic nonuniformity due to the lower Curie temperature
in the grooves. In this case the diffusive spin current between
the grooves and ridges leads to a torque on m which increases
with increasing J . The spin current and corresponding torque
pulse last less than 1 ps due to rapid electron thermaliza-
tion, so that δBm(t ) may be considered as a temporal delta
function (impulsive excitation) [32–38]. The dependence of
the magnon spectra on the pump fluence shows the gradual
transformation of the broadband excitation from displacive to
impulsive with the increase of J (for details, see Supplemental
Material [21]).

The studied structure is an example of systems where
the hybrid CC can be realized. The requirements for effi-
cient CC include narrowband spectral profiles for both the
driven oscillator and the driving quasiharmonic excitation and
controllable detuning of their eigenfrequencies, and relative
phases. In the considered case of a ferromagnetic nanostruc-
ture, the long lifetime of the magnon mode is provided by
the ferromagnet’s properties [42] and the small thickness of
the ferromagnetic layer, which results in the mode’s spectral
isolation [43]. Periodic spatial patterning is responsible for
the high-Q factor of the Rayleigh phonon mode and allows
tuning the initial phase of the broadband optical excitation by
the fluence-dependent excitation mechanism: ultrafast demag-
netization or spin diffusion. The combination of these features
was not met in earlier works on the optically triggered phonon
driving of magnetization [44–50].

There are other systems, which are characterized by
high-Q resonances and can be excited by broadband and
harmonic excitations, and, thus, are suitable for hybrid CC.
Examples are multiple photonic cavities [51] or a single pho-
tonic cavity coupled to a mechanical oscillator [52], single
spins [53,54] and spin ensembles [55], magnon-phonon and
magnon-photon hybrid systems [56–58], spin-valve ferromag-
netic structures [35], magnons in antiferromagnets [59,60],
hydrogen molecules [61], and many others.

In conclusion, we present the concept of hybrid coherent
control where a linear quantum or classical oscillator is ex-
cited by two different types of excitations: broadband and
quasiharmonic. We confirm the feasibility of this concept
experimentally by exploiting magnons in a patterned ferro-
magnetic film excited by a femtosecond laser pulse, which
triggers an ultrafast demagnetization and generates coherent
phonons. The concept of hybrid coherent control fits well
in the wide field of Fano resonances that are prospective
for various applications in quantum technologies [62]. For
instance, the nulling effect of the amplitude at the oscillator
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resonance frequency observed in our work has similarity with
electromagnetic induced transparency [63] but happens with-
out modification of the permittivity by nonlinear or special
coupling effects.
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