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In the SUPER scheme (Swing-UP of the quantum EmitteR population), excitation of a quantum emitter is
achieved with two off-resonant, red-detuned laser pulses. This allows the generation of high-quality single
photons without the need of complex laser stray light suppression or careful spectral filtering. In the present
work, we extend this promising method to quantum emitters, specifically semiconductor quantum dots, inside
a resonant optical cavity. A significant advantage of the SUPER scheme is identified in that it eliminates
re-excitation of the quantum emitter by suppressing photon emission during the excitation cycle. This, in turn,
leads to almost ideal single-photon purity, overcoming a major factor typically limiting the quality of photons
generated with quantum emitters in high-quality cavities. We further find that for cavity-mediated biexciton
emission of degenerate photon pairs, the SUPER scheme leads to near-perfect biexciton initialization with very
high values of polarization entanglement of emitted photon pairs.
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Semiconductor quantum dots (QDs) have been intensely
studied as sources of single photons and entangled photon
pairs [1–17]. The most efficient generation of highest-quality
photons [18–21], however, as well as their extraction as op-
tical information carriers [22,23], remain challenges on the
road to using QDs as on-demand photon sources in quantum
information processing architectures [24–26]. A number of
different excitation and photon extraction strategies have been
explored and demonstrated over the years [27–33], however,
each of the different approaches typically comes with specific
limitations or difficulties [13,19–21,34]. To achieve spectral
separation of excitation lasers and emitted photons, in the
last few years, excitation using dichromatic pulses has moved
into the spotlight [11,12,35]. The recently introduced SUPER
(Swing-UP of the quantum EmitteR population) scheme fol-
lows a similar approach [36–38], avoiding from the outset
typical problems brought about by near-resonant optical ex-
citation. In the SUPER scheme, by use of two off-resonant
red-detuned laser pulses, phonon scattering is minimized at
low temperatures [39,40], and spectral filtering for photon
detection is easily performed [22,23,41].

Here we extend this promising excitation method to a
quantum emitter, specifically a semiconductor quantum dot,
placed inside a resonant optical resonator as sketched in
Fig. 1. In that setup, for near-resonant optical excitation with a
Gaussian laser pulse, cavity-accelerated photon emission (and
then re-excitation) would occur already during the excitation
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cycle, spoiling the single-photon character of the emission
[2,42–44]. For the SUPER excitation scheme, here we theoret-
ically show that this emitter re-excitation is greatly suppressed
via a laser-induced AC-Stark shift, leading to almost ideal
single-photon purity even for high-quality cavities approach-
ing strong coupling. This way the SUPER scheme allows
us to overcome a major drawback that limits the quality of
photons generated with quantum emitter cavity systems. We
further investigate the SUPER scheme for excitation of the
biexciton state with subsequent cavity-mediated generation of
pairs of degenerate polarization entangled photons [14,45].
We show that in contrast to pulsed resonant two-photon exci-
tation, the SUPER scheme avoids populating the cavity such
that polarization entanglement is not reduced by the laser
excitation [46].

FIG. 1. Schematics of quantum dot cavity system. Electronic
states considered are ground state, |G〉, two exciton states, |XH〉 and
|XV〉, with fine structure splitting Efsp, and biexciton state, |B〉, with
binding energy Ebind. Electronic transitions are coupled to linearly
polarized cavity modes with frequencies ωH and ωV, with coupling
strength g and cavity photon loss κ . Spectra of the two red-detuned
pulses of the SUPER scheme with H polarization at h̄ω1 and h̄ω2 and
exciton emission are indicated. Energy differences shown are not to
scale.
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FIG. 2. Dynamics of SUPER excitation. Populations of H
exciton (green), biexciton (blue), and H cavity mode (red). (a) and
(b) Excitation of H exciton with cavity at X → G transitions for
Ebind = 3 meV. Laser parameters as in first set of Table I. (c) and (d)
Excitation of biexciton with cavity at two-photon B → G transition
with Ebind = 1 meV. Laser parameters as in fourth set of Table I.
(a) and (c) show the initial excitation period, (b) and (d) show time
evolution up to 300 ps. The laser pulses are 3 ps long, centered at
10 ps. Cavity coupling is g = 66 µeV, cavity loss h̄κ = g. Insets in
(b) and (d) show normalized H mode emission spectra SH(ω) with
frequencies relative to cavity frequency ωH.

The SUPER scheme was proposed in Ref. [36], demon-
strated in Refs. [37,38] and further analyzed in Ref. [47]. For
excitation of the quantum emitter, the SUPER scheme uses
a superposition of two off-resonant, red-detuned laser pulses,
with laser field amplitude

�(t ) = �1√
2πσ 2

1

e−t2/(2σ 2
1 ) e−iω1t

+ �2√
2πσ 2

2

e−(t−�t )2/(2σ 2
2 ) e−iω2(t−�t )+iφ.

(1)

We use horizontal (H) polarization of this laser; �i denotes
pulse area, σi duration and ωi frequency of respective pulses
with i = 1, 2. �t denotes temporal shift and φ phase shift
between pulses (φ = 0 unless otherwise noted). When a quan-
tum emitter (in the simplest case a two-level system) is excited
from the ground state with an appropriate choice of pulse
parameters, hereafter referred to as parameter sets, a Swing-
UP of the quantum EmitteR population (SUPER) to the
excited state is observed, initializing the emitter (cf. Fig. 2 for
results with cavity). With both pulses being on the low-energy
side of the resonant transition, at low temperatures, even in
condensed matter environments, adverse phonon influences in
the excitation process are minimized [36,39,40], and spectral
filtering of emitted photons is easily achieved.

Quantum dot cavity system. We model the lowest electronic
excitations of a semiconductor QD as a four-level system
[2,48] as sketched in Fig. 1, with typical parameters for high-
quality InGaAs QDs [34]. We note that the specific choice
of system parameters does not influence the main results and
conclusions. We include the electronic ground state |G〉, two
orthogonal exciton states |XH〉 and |XV〉, and the biexciton
state |B〉. The two excitons have energies EXH,V = EX ∓ Efsp

2
with EX = 1.366 eV and fine structure splitting Efsp = 2 µeV.
We note that the exact choice of fine structure splitting only

TABLE I. Examples of parameter sets for excitation. First two
sets excite the H exciton for a QD with Ebind = 3 meV, the latter two
sets excite the biexciton for a QD with Ebind = 1 meV. Pulse detun-
ings are relative to G → X transition energy, h̄�i = h̄ωi − EXH .

h̄�1 h̄�2 �1 �2 σ1 σ2 �t
( meV) (meV) ( π ) ( π ) (ps) (ps) (ps)

−8 −17.53 32.00 32.01 3.61 3.42 0.01
−5 −11.3 25 33.33 4.0 4.0 0.0

−5 −12.14 30 30 1.37 1.37 0.0
−5 −12.99 36.88 36.88 3.0 3.0 4.74

has little influence on our excitation and photon emission
results. However, for larger fine structure splittings overall
lower degrees of polarization entanglement are observed, see,
e.g., Ref. [45]. The biexciton has a binding energy of Ebind =
3 meV unless stated otherwise. The electronic transitions are
coupled to the respective orthogonal linearly polarized cavity
modes with frequencies ωi, i = H,V, with coupling rate g and
photon loss κ . We note that for the laser pulses in Eq. (1) it
is implicitly assumed that they couple to an additional light
mode and drive the electronic transitions in the H polariza-
tion channel. Time evolutions are calculated solving the von
Neumann equation [48,49]. Correlation functions measuring
the quality of generated photons are calculated using the quan-
tum regression theorem [50]. Further details on theoretical
modeling are given in Sec. I, Ref. [51]. One aspect we do
not address in the present work is the influence of direct
pumping of the cavity mode on the quantum properties of
emitted photons. We note that with significantly off-resonant
laser pulses this effect is expected to be relatively weak and
at low temperature mostly of adiabatic nature. For a realistic
investigation of this matter, detailed knowledge of the specific
photonic environment would be needed. The latter could then
together with the laser pulses be systematically optimized
to achieve optimal emissive state initialization and emission,
following Refs. [18,33].

First, we show that targeted excitation of one of the energy
levels of the QD is possible and that the cavity mode does not
hinder SUPER excitation. For initialization of either exciton
or biexciton we study two different cases. In the first case,
the H exciton is the target state for excitation while the QD is
in a cavity with modes resonant with the X → G transitions;
h̄ωi = Ei, i = H, V. In the second case, the biexciton state is
the target state with the cavity resonant with the two-photon
B → G transition; h̄ωH,V = EB

2 for generation of polarization
entangled photons [14,45,48]. To increase resonance enhance-
ment of the relevant two-photon transition, a biexciton binding
energy of 1 meV is used in the latter case.

In a first step, we identify ideal excitation parameters (by
simple parameter sweeps) such that near-unity population of
respective target states, H exciton or biexciton, is achieved.
Following the general rules for SUPER excitation [36,47],
for example, the parameter sets listed in Table I fulfill these
criteria. To emphasize that parameter combinations are not
unique for exciton or biexciton excitation, respectively, in
Table I, we give two possible parameter sets for either case;
the first two sets excite the H exciton, the last two sets ex-
cite the biexciton. For a given target excitation, we find a
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parameter sensitivity similar to resonant excitation. Slightly
higher sensitivity to the pulse width was found for biexciton
excitation. We note that while virtually no interpulse phase
dependence is observed for the first two and the last parameter
set of Table I, the third parameter set is significantly phase
dependent. Generally, we find that phase insensitivity is found
for parameters for which the product of interpulse detuning
�ω = ω1 − ω2 and average pulse width σ = |σ1+σ2|

2 fulfills
h̄�ω · σ � 20 meVps. In the main text, we only show results
for phase-insensitive parameter sets with zero phase differ-
ence between pulses, φ = 0 π . Further discussion is given in
Sec. IV, Ref. [51].

We now focus on excitation dynamics. Figures 2(a) and
2(b) show the case, where we excite the H exciton (first set
from Table I) while Figs. 2(c) and 2(d) show the targeted
biexciton excitation (fourth set from Table I). The two pulses
are centered around 10 ps and about 3 ps long; Figs. 2(a)
and 2(c) only show the main excitation window. Insets in
Figs. 2(b) and 2(d) show the cavity H mode emission spectra
[52], with coupling strength g = 66 µeV and h̄κ = g. Results
for lower cavity coupling, h̄κ = 4g, look qualitatively very
similar; see Fig. A.1, Ref. [51]. The swing-up dynamics are
very similar to the observations without cavity [47]. However,
if we compare these swing-up results with resonant Gaussian
π -pulse excitation (not shown), one very important difference
is that the cavity does not get populated with photons dur-
ing SUPER excitation, neither for exciton [Fig. 2(a)] nor for
biexciton [Fig. 2(c)] excitation. For the exciton this is due to
the AC-Stark shift [53] induced by the strong, detuned pulses
in the SUPER scheme. After the excitation, we observe the
expected vacuum Rabi oscillations. During the excitation, the
QD transition is shifted out of resonance with the cavity and
consequently no significant photon emission occurs during
excitation (see Sec. III, Ref. [51] for details). This is the
main reason, why the swing-up is very insensitive to the cav-
ity parameters, with no need to adjust excitation parameters
for different cavities. Premature emission and then emitter
re-excitation, as observed for resonant excitation [2,42–44],
is suppressed. Below we show that this turns out to be one
major advantage of the SUPER scheme as, for the parameters
of the present study, it leads to almost perfect single-photon
purity even approaching strong emitter-cavity couplings. We
note that for cavities with broader resonances this effect is
expected to be quantitatively reduced.

Next we turn to biexciton excitation. Using a two-photon
resonant Gaussian pulse, a transfer of H exciton excitation to
the H polarized cavity mode is observed during excitation (not
shown; see, e.g., Ref. [32]). This causes a different emission
behavior in the differently polarized H or V modes, inducing
which-path information and reducing polarization entangle-
ment. Below we show that for the SUPER scheme, where
photons are created equally in H and V cavity modes, for
degenerate two-photon emission into the cavity, polarization
entanglement is insensitive to the excitation.

The insets in Fig. 2 show the cavity emission spectra for
the two cases of exciton (b) and biexciton (d) excitation.
For exciton excitation a significant asymmetry is observed,
again induced by the AC-Stark shift, consistent with Sec. III,
Ref. [51], and a vacuum Rabi splitting is observed. For
biexciton excitation, no significant asymmetry is found.
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FIG. 3. Single-photon generation. Quality measures for photons
emitted from the H polarization cavity mode for a cavity resonant
with the X → G transition. Excitation with the SUPER scheme (red;
first set of Table I) or with a resonant Gaussian π -pulse (green;
width σ = 3.5 ps), respectively, for two different QD-cavity cou-
plings g = 20 µeV (solid lines) and g = 66 µeV (dotted). Shown are
(a) emission probability PH, (b) photon purity PH, and (c) photon
indistinguishability IH.

Single-photon source. Let us now investigate the potential
of SUPER excitation of a single-photon emitter. To most
efficiently extract the emitted single photons the cavity is
resonant with the X → G transition [as in Figs. 2(a) and
2(b)]. We now analyze the quality of photons emitted from the
H cavity mode. Besides photon emission probability Pi [41],
we consider the purity Pi as a measure for the single-photon
character [36], and photon indistinguishability Ii [54]. Def-
initions of these quantities are given in Sec. I, Ref. [51].
Results are shown in Fig. 3 for different cavity loss rates
h̄κ ∈ [ 1

2 g, 4 g] and fixed cavity couplings g = 20 µeV (solid
lines) and g = 66 µeV (dotted). In Fig. 3, we compare data
for the emitter excited with the SUPER scheme (red; first
parameter set of Table I) with data for resonant excitation with
a Gaussian π -pulse with width σ = 3.5 ps (green). For exci-
tation with the Gaussian pulse we consistently find emission
probabilities larger than unity. This is because of premature
photon emission into the cavity mode while the pulse is still
present and then re-excitation of the quantum emitter (most
pronounced for small cavity loss κ and large coupling g).
For SUPER excitation, the emission probability is consis-
tently just slightly below the ideal value of unity with an
insignificant decline for increasing cavity loss κ . For exci-
tation with the Gaussian pulse this decline is significantly
more pronounced, especially for larger cavity coupling g =
66 µeV. Apart from showing the insensitivity of the SUPER
scheme to the cavity parameters, this indicates, that no re-
excitation occurs for excitation with the SUPER scheme (in
contrast to the resonant excitation). For the SUPER scheme,
this can be understood by the AC-Stark shift induced by the
off-resonant pulses, shifting the X → G transition out off
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resonance with the cavity mode during excitation (cf. spec-
trally resolved emission shown in Sec. III, Ref. [51]). This is
also reflected in the single-photon purity in Fig. 3(b). For the
SUPER scheme we find purity of almost exactly 1 for both
cavity coupling rates and all cavity loss rates. When using
resonant excitation, the purity increases with increasing cavity
loss (more pronounced for larger cavity coupling g), however,
it remains significantly below unity. This is consistent with
emission probabilities in Fig. 3(a) being larger than unity as
consequence of re-excitation events. The indistinguishability
in Fig. 3(c) shows similar trends as the purity. And again,
the SUPER scheme convincingly outperforms resonant exci-
tation. Very similar results are found for SUPER excitation of
a two-level system inside a resonant cavity (not shown). For
completeness, we also note that the photon quality for the res-
onantly driven emitter is generally decreased with increasing
pulse width (not shown).

These results showcase the superiority of SUPER exci-
tation (over resonant excitation) leading to cavity-enhanced
emission of single photons with near-ideal quality that are
spectrally well separated from the excitation laser. In the
present study we focus on the intrinsic differences brought
about by different optical excitation methods, loss mecha-
nisms that may largely differ for different quantum emitter
systems and cavity designs such as dephasing, radiative loss,
and phonon-induced cavity feeding are not discussed in
detail here.

Entangled photon emission. While SUPER excitation of
the quantum dot biexciton was discussed above, we now in-
vestigate the properties of (polarization entangled) photons
emitted into the cavity mode at half the biexciton energy in the
resonant degenerate two-photon emission process [14,45,48],
which was previously shown to be rather insensitive to fine
structure splitting [14,55]. We note that the emission configu-
ration can be extended to two-color schemes with two cavity
modes per polarization channel, spectrally tuned to either
two-color two-photon emission [55] or in resonance with the
single-photon transitions. As a measure of polarization entan-
glement, we calculate the concurrence C [56–58] and emis-
sion occurs into two polarization channels, with probabilities
PH,V [41]; definitions are given in Sec. I, Ref. [51]. As dis-
cussed above, here Ebind = 1 meV and g = 66 µeV. Figure 4
shows results for different cavity loss rates h̄κ ∈ [ 1

2 g, 4 g]. Be-
sides the results for SUPER excitation (red; fourth parameter
set of Table I), as references, we include results for two-
photon resonant biexciton excitation with a Gaussian pulse
(green; h̄ω = EB

2 , pulse area � = 3.3 π , width σ = 3 ps), and
results for an initially excited biexciton (blue). For the latter,
the emission probability equals unity for both H and V mode.
For SUPER excitation very similar values are obtained, with
values for the H mode just slightly below unity over the
entire parameter range. For two-photon resonant excitation,
emission probabilities in the two cavity modes significantly
differ, with values greater (less) than unity for the H mode
(V mode) and pronounced changes with the cavity loss rate.
In this case, the excitation process leads to residual population
in the H mode, significantly also reducing the observed degree
of polarization entanglement as measured by the concurrence;
see Fig. 4(b). This behavior further increases for larger pulse
widths (not shown). In Fig. 4(b), we observe the highest
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FIG. 4. Polarization entangled photon pairs for cavity reso-
nant with degenerate B → G two-photon transition for g = 66 µeV.
Shown are biexciton excitation with the SUPER scheme (red; fourth
set of Table I), with a resonant Gaussian pulse (green; pulse area � =
3.3 π , width σ = 3 ps, h̄ω = EB

2 ), and for initially excited biexciton
(blue). Shown are (a) emission probabilities PH,V of photons from
H (points) and V (squares) mode, respectively, and (b) concurrence
C.

concurrence values for the idealized scenario of the initially
excited biexciton. However, this ideal case outperforms the
SUPER excitation only for the case of small cavity loss κ ,
with the SUPER scheme being a close second for larger κ .

In conclusion, we have analyzed and demonstrated the
potential that the SUPER scheme offers for excitation of
photonic quantum emitters inside an optical cavity. Semi-
conductor quantum dots serve as a typical example here.
While high excitation fidelities of emmissive states (exciton
and biexciton, respectively) are achieved for wide parameter
ranges, quantum properties of emitted single photons and
polarization entangled photon pairs are by far superior to
resonant excitation. As one main result, for single-photon gen-
eration we find that photon emission and emitter re-excitation
during excitation are entirely suppressed. This holds true even
for systems approaching the strong coupling regime where
photon emission occurs on timescales comparable to duration
of excitation pulses. For SUPER excitation, this leads to very
high and near-ideal single-photon purity and indistinguisha-
bility over the entire parameter range investigated.

Finally, we note that during review of the present paper
two related papers on quantum emitter resonator systems were
published [59,60]. In Ref. [60], it was shown that phonons
do not have a significant influence on photon qualities in
two-photon emission when exciting with the SUPER scheme.
Reference [35] was significantly extended during review of
our own paper (cf. Refs. [35,59]). In the final version [59],
the phonon influence on SUPER excitation was shown to not
significantly affect the quality of emitted single photons. Very
recently also high-quality single-photon emission from a trion
state initialized by swing-up excitation in a circular Bragg
reflector was demonstrated experimentally [61].
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