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Heterogeneity can markedly increase final outbreak size in the SIR model of epidemics
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We study the susceptible-infected-recovered (SIR) model of epidemics on positively correlated heterogeneous
networks with population variability, and explore the dependence of the final outbreak size on the network
heterogeneity strength and basic reproduction number R0—the ratio between the infection and recovery rates per
individual. We reveal a critical value Rc

0, above which the maximal outbreak size is obtained at zero heterogeneity,
but below which the maximum is obtained at finite heterogeneity strength. This second-order phase transition,
universal for all network distributions with finite standardized moments, indicates that network heterogeneity
can greatly increase the final outbreak size. We also show that this effect can be enhanced by adding population
heterogeneity, in the form of varying interindividual susceptibility and infectiousness. Our results provide key
insight as to the predictability of the well-mixed SIR model for the final outbreak size, in realistic scenarios.
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Introduction. The SIR (susceptible-infected-recovered)
model [1–3] has been a topic of great interest during the
past decades [4], and is one of the most conceptually basic,
yet powerful, models that describes the spread of an infec-
tious disease. The model includes three population classes:
susceptible (S), infected (I), and recovered (R). A contact
between S and I individuals can give rise to the infection of
S . Conversely, an infected individual can recover and move
to the R class. Remarkably, this simple model provides an
adequate description to a wide variety of infectious diseases
including COVID-19 pandemic [5].

Many works dealing with the SIR model assume a well-
mixed (or homogeneous) topology [2,3,6–8]. While this
assumption is valid in some limits, in realistic scenarios one
has to account for each individual’s connectivity and deal
instead with a population network. Indeed, in the past 20
years various authors studied the SIR model and epidemic
spreading on heterogeneous random networks, where differ-
ent individuals have varying connectivity [6,9–14]. In most
of these works a mean-field approach is taken; i.e., noise
is neglected. Other works have gone beyond mean field, by
including demographic noise in the well-mixed SIR model.
This allows, e.g., studying the final outbreak size distribution
[15–21]. Nevertheless, even in the absence of noise, the direct
influence of the network topology on the final outbreak size
has not been investigated. Importantly, this may be key for
predicting the outcome of such a disease, as we show that
the well-mixed (fully-connected) setting does not necessarily
provide an upper bound for the final outbreak size.

Here we discover a novel second-order phase transition in
the maximal outbreak size as a function of the network hetero-
geneity. Intuitively, as the network heterogeneity is increased,
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the final outbreak size should decrease, and thus, the outbreak
size is expected to be maximal at zero heterogeneity. This
is indeed the case for large values of the basic reproduction
number R0. For a well-mixed setting, R0 = β/γ ; i.e., the ratio
between the infection rate β and recovery rate γ per individ-
ual. However, it turns out that there exists a critical value of
R0, which we denote by Rc

0, below which the maximal out-
break size is obtained at nonzero heterogeneity. Furthermore,
as R0 is decreased below Rc

0, the magnitude of heterogeneity
which maximizes the final outbreak size is increased. Interest-
ingly, by introducing population heterogeneity in the form of
varying susceptibility and/or infectiousness across individu-
als [22–28], this effect is enhanced, and the phase transition
moves to increasingly larger values of Rc

0. In contrast, we find
that the value of Rc

0 decreases as the degree-degree correlation
between neighboring nodes increases. Finally, we show that
this phase transition is universal, namely Rc

0 is independent on
the network topology, as long as the degree distribution has
finite standardized moments. Our results provide key insight
as to the limits of applicability of the simplified well-mixed
SIR model to real-life heterogeneous networks with respect to
the final outbreak size.

SIR model on networks. In the SIR model the total popula-
tion is conserved: S + I + R = N . Here, N is the network
size—the number of agents spreading the infection. Using
the fractions of susceptibles S = S/N , infected I = I/N , and
recovered R = R/N , denoting R0 = β/γ , rescaling time t →
γ t , and assuming a well-mixed setting, in the limit of N � 1
the dynamics read

Ṡ = −R0IS, İ = R0IS − I, Ṙ = I. (1)

Notably, Eq. (1) ignores demographic noise, whose relative
magnitude scales, in general, as N−1/2 � 1 [29,30]. More-
over, in deriving Eq. (1) we used a fully-connected network,
where each individual interacts with all others.

We now account for network heterogeneity by considering
a population network, where each node represents an individ-
ual who can be either susceptible, infected or recovered, and
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edges between nodes represent interactions between them. We
follow the formalism developed by Miller [9] and define p(k)
as the network degree distribution. Namely, p(k) is the prob-
ability for a node to have k neighbors. We also assume that
the network has positive degree-degree correlations [31], see
below. Henceforth, we assume that the reproduction number
R0 is above the epidemic threshold, see Appendix A.

Let us denote θ (t ) as the probability that a random edge
has not transmitted an infectious contact up to a time t . This
definition is equivalent to the probability that a node of degree
1 is still susceptible at time t [10]. Thus, the probability of an
individual node with k neighbors to remain susceptible at time
t is given by θ k . As a result, the fraction of susceptibles at time
t is given by

S(t ) =
∞∑

k=0

p(k)θ (t, σ )k ≡ ψ (θ, σ ). (2)

Here, σ 2 = ∑
k k2 p(k) − k2

0 is the degree distribution’s vari-
ance, and k0 = ∑

k kp(k) is its mean. Also, ψ (θ, σ ) is the
probability generating function of p(k); its derivatives with
respect to θ at θ = 0 provide the distribution p(k), while the
derivatives at θ = 1 provide the distribution’s moments, e.g.,
k0 = ∂θψ |θ=1. Though ψ depends on the entire distribution
p(k), an explicit σ -dependence in ψ is included, as we focus
on how the final outbreak size depends on σ .

We now derive the governing equation for θ (t, σ ) in or-
der to obtain the final susceptible fraction, S∞ = ψ (t → ∞),
and the final outbreak fraction R∞ = 1 − S∞. Below we set
γ = 1, such that time is measured in units of γ −1, and rescale
β → β/k0, such that β now denotes the average rate of infec-
tion transmission through an edge. The average infection rate
per individual is thus k0β and the basic reproduction number
takes the form R0 = k0β/γ in order to be consistent with the
well-mixed case. Defining an auxiliary variable φ(t ) as the
probability that a node v is infectious but has not transmitted
the disease to its neighbor u, φ denotes the fraction of all
v − u edges in the network where v is infected but has not
(yet) directly infected u. Thus, θ̇ = −βφ [9].

The dynamics of φ(t ) satisfies φ̇ = −(β + 1)φ − ḣ. Here,
φ decreases when the neighbor u is infected from v at rate
βφ, or when node v is recovered at a rate of γφ = φ. On the
other hand, φ increases when a susceptible node v becomes
infected. Here, h(t ) is the probability that v remains suscep-
tible, and thus, −ḣ(t ) is the rate at which v becomes infected
from any of its neighbors except u. Accounting for positive
degree-degree correlations, the probability that a neighbor
of a degree-k′ node has degree k, i.e., the two-point degree
correlation function, satisfies p(k|k′) = (1 − α)kp(k)/k0 +
αδk,k′ [31], where α > 0 measures the correlation strength
[32]. Therefore, h(t ) = ∑∞

k′=0

∑∞
k=0 p(k|k′)p(k′)θ k−1 = (1 −

α)k−1
0 ∂θψ (θ, σ ) + αθ−1ψ (θ, σ ). This derivation yields φ̇ =

(1 + 1/β )θ̇ − ḣ, which can be integrated over time, using the
fact that φ(0) = 0, θ (0) � 1 and h(0) = 1. As a result,

θ̇ = 1 −
(

1 + R0

k0

)
θ + R0

k0

(
1 − α

k0
∂θψ + α

θ
ψ

)
. (3)

This is a first-order nonlinear differential equation, which
strongly depends on the network topology and degree-degree
correlations. While its time-dependent solution can be found

FIG. 1. (a) A numerical solution of R∞ versus the network’s
COV σ/k0 for a bimodal network, see text: blue, orange, green, and
red lines represent R0 = 1.3, 1.5, 1.7, 1.9 respectively. (b) σmax/k0,
which maximizes R∞ versus R0: blue, orange, green, and red lines,
respectively represent bimodal, symmetric beta, gamma, and uni-
form distributions, while black triangles are simulation results for
a bimodal network. Here Rc

0 � 1.84. (c) Rc
0 versus k0; dashed line

is the asymptotic value of (3/2) ln 3. (d) Rc
0 versus α; solution of

Eq. (5) (solid line) is compared with simulations of bimodal (up-
per triangles) and gamma (lower triangles) distributions. In panels
(a)−(c) N = 104 and in (a)−(b) k0 = 20, while in (d) N = 105 and
k0 = 100.

numerically, we study its steady-state solution θ∞ ≡ θ (t →
∞). Putting θ̇ = 0 in Eq. (3) we find

θ∞(σ ) = R0

R0 + k0

[
1 − α

k0
∂θψ + α

θ∞
ψ + k0

R0

]∣∣∣∣
θ=θ∞

. (4)

Note that, for α = 0 the results of Ref. [9] are recovered.
Maximal outbreak size. Equation (4) can be numerically

solved for various network topologies p(k), having mean k0

and variance σ 2. An example for the dependence of R∞ on
σ , for various values of R0, can be seen in Fig. 1(a) where
we have used a bimodal network, with p(k) = 1/2(δk,k0−σ +
δk,k0+σ ). Remarkably, as R0 is lowered below some thresh-
old Rc

0, the maximum of R∞ shifts from σ = 0 to σ > 0.
That is, while for R0 > Rc

0, the final outbreak size is max-
imized when the network is homogeneous, for R0 < Rc

0 the
maximum is obtained at finite heterogeneity. This is a surpris-
ing result. Indeed, as σ is increased, the final outbreak size
should decrease, as nodes with very high degree become more
abundant. Due to their high degree, these nodes get infected
(and recovered) much quicker than low-degree nodes, which
causes a more rapid decrease in the effective infection rate
per individual, and correspondingly, in the final outbreak size,
compared to the homogeneous case. Yet, we show below that
this reasoning breaks down when R0 < Rc

0.
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We have studied the dependence of the threshold Rc
0 on the

network’s degree distribution. In Fig. 1(b), we plot the value of
the coefficient of variation (COV) σmax/k0, which maximizes
the final outbreak size, for bimodal, symmetric beta, gamma
and uniform distributions, versus R0, for k0 = 20 and α = 0.
The fact that all curves in Fig. 1(b) collapse indicates that Rc

0
is independent on the particular network details, see below.

To find Rc
0 we realize that at the threshold R0 = Rc

0,
the maximum of R∞ is obtained exactly at σ = 0, namely
dR∞/dσ |σ=0 = 0. Above Rc

0 this derivative is negative,
whereas below Rc

0 the maximum is obtained for σ > 0, see
Fig. 1(a). Differentiating R∞ = 1 − ψ (θ∞, σ ) with respect to
σ , using Eqs. (2) and (4), and demanding that the derivative
dR∞/dσ be zero at σ = 0, we arrive at

k0 + k2
0

Rc
0

=
[

(1 − α)

(
∂θθψ − ∂θψ∂σθψ

∂σψ

)
− αk0

θ2
ψ

]∣∣∣∣θ = θ∞,

σ = 0

.

(5)

This is an exact algebraic equation, whose solution provides
Rc

0. In general it can be solved numerically, whereas ana-
lytical progress can be made for k0 � 1. Here we seek for
the solution perturbatively by assuming θ∞ = 1 − ε with ε =
O(k−1

0 ) � 1 (to be verified a posteriori).
First, we establish a connection between ε and Rc

0 by plug-
ging θ∞ = 1 − ε into Eq. (4), and putting σ = 0, i.e., using a
homogeneous distribution p(k) = δk,k0 . Keeping leading order
terms we arrive at εk0 � Rc

0[1 − exp(−εk0)], the solution of
which is given via the Lambert W-function

ε = k−1
0

{
Rc

0 + W0
[−Rc

0 exp
(−Rc

0

)]}
. (6)

Going back to Eq. (5), for k0 � 1, ψ (θ∞) = θ k
∞ can be

approximated as θ k
∞ = exp(−εk), with O(kε2) � 1 correc-

tions in the exponent. Thus, the two terms ∂θψ (θ, σ ) and
∂θθψ (θ, σ ) evaluated at θ = θ∞ and σ = 0, read

∂θθψ = e−εk0 k2
0[1 + O(ε)], ∂θψ = e−εk0 k0[1 + O(ε)]. (7)

Notably, the terms involving derivatives with respect to σ

in Eq. (5) are more involved as one has to use the definition of
ψ from Eq. (2). To proceed, we write

∂σθψ (θ, σ )

∂σψ (θ, σ )
= k0 − ∂ε ln ∂σ

〈
e−ε(k−k0 )

〉 + O(1), (8)

where this expression has to be evaluated at θ = θ∞ and
σ = 0. Here, we added k0, and subtracted k0 by subtracting
k0 from k in the exponent. The term in the brackets is (up to
a minus sign) the generating function of the central moments
(around the mean) {μn}∞n=0. Taylor-expanding in powers of
ε(k − k0), we find 〈e−ε(k−k0 )〉 = ∑

k p(k) − ε
∑

k p(k)(k −
k0) + (ε2/2)

∑
k p(k)(k − k0)2 − (ε3/6)

∑
k p(k)(k − k0)3 +

... = 1 + (ε2/2)σ 2 − (ε3/6)μ3 + ..., where μ1 = 0 and
μ2 = σ 2. For p(k) with finite standardized moments μ̃n, one
can show that μn = σ nμ̃n. As a result, plugging this series
back into Eq. (8), all terms with powers of σ greater than 2
vanish, since we set σ = 0 after the differentiation, and one
finally obtains ∂σθψ (θ, σ )/∂σψ (θ, σ ) = k0 − 2/ε + O(1).
Plugging this along with Eq. (7) into Eq. (5), and using
Eq. (6), in the leading order of k0 � 1 the critical Rc

0 is found

to be

Rc
0 = [(3 − 2α)/(2 − 2α)] ln(3 − 2α). (9)

For uncorrelated networks α = 0, we find Rc
0 = (3/2) ln 3 �

1.648. Plugging Rc
0 into Eq. (6) verifies a posteriori that ε =

O(k−1
0 ). In Fig. 1(c) we have numerically checked that as k0 is

increased, Rc
0 approaches Eq. (9) [33]. Notably, the numerical

value of Rc
0 � 1.84, obtained in Fig. 1(b) for k0 = 20, slightly

deviates from Eq. (9).
To verify our results we ran Gillespie simulations [34]

on correlated, bimodal-, and gamma-distributed networks. In
Fig. 1(b) the network size was N = 104, with k0 = 20 and
α = 0, while in Fig. 1(d) we took N = 105, k0 = 100, and
varied the value of α. The simulations were done using a mod-
ified version of the configuration model [35], see details in
Appendix B. In Figs. 1(b) and 1(d) our analytical prediction,
Eq. (9), agrees well with simulations for α � 0. While we
focus on α � 0 indicative of social networks [36], we checked
that for α < 0, Rc

0 grows as expected.
What is the reason for the second-order phase transition

observed in Fig. 1(b)? The total outbreak fraction satisfies
R∞ = ∫ ∞

0 I (t )dt . Several examples of epidemic waves for
various COV values are shown in Fig. 2(a). We propose to
approximate R∞ as R∞ � cImax�t , where Imax is the maximal
value of I (that defines herd immunity), and �t is the typical
wave’s duration: the time interval during which I is greater
than a fraction f (yet to be found) of Imax, while c is a constant.
For the distributions we have studied, f and c were found to
satisfy f ≈ 0.27 and c ≈ 0.785 for a wide range of R0 = O(1)
and σ values. In Fig. 2(b) the approximate and exact solutions
for R∞ agree well, for bimodal networks [37].

To explain the appearance of a phase transition at Rc
0,

we denote by Ĩmax (and similarly for �t̃) the ratio of Imax

at given σ and its value at σ = 0, see Figs. 2(c)–2(d),
such that R̃∞ = Ĩmax�t̃ . Thus, we have R̃′

∞(σ )/R̃∞(σ ) =
Ĩ ′
max(σ )/Ĩmax(σ ) + �t̃ ′(σ )/�t̃ (σ ). At R0 > Rc

0 we see from
Fig. 2(e) that R̃′

∞(σ )/R̃∞(σ ) is negative for any σ . Yet, as R0

goes below Rc
0 a nonmonotone regime appears, which gives

rise to a maximum in R∞ at σ > 0.
This can be understood as follows. As the network het-

erogeneity strength σ is increased, there are more very high
degree nodes (hubs), which get infected first due to their high
degree, and infect the entire network rapidly. This rapid epi-
demic spread causes I to surge, but also causes the epidemic’s
duration �t to decrease. For low infection rates R0 < Rc

0,
increasing σ initially causes the increase of R∞ as the in-
crease of Imax cannot be balanced by the decrease of �t , see
Figs. 2(c)–2(e). Notably, as σ exceeds σmax the dynamics of
the hubs is so rapid such that low-degree nodes are hardly
infected, and thus, R∞ starts to decrease. This effect is further
discussed in Appendix C, and can be seen in Fig. 4. Exactly
at the onset of decrease of R∞, i.e., at σ = σmax, the disease
spread rate is optimal such that the total fraction of infected
nodes R∞ is maximized. Interestingly, increasing R0 has a
similar effect to increasing σ ; when R0 grows, the increase
of σ is no longer needed to increase the disease spread rate.
Thus, if σ is also increased, one exceeds the optimal disease
spread rate which yields a decline in R∞. Therefore, if at
R0 < Rc

0 the maximum of R∞ is obtained at σ = σmax > 0,
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FIG. 2. (a) Infected fraction I (t ) versus time, for R0 = 1.6. Blue,
orange, green and red lines represent COVs σ/k0 = 0, 0.3, 0.6, 1,
respectively. (b) Line shows the approximation for the final outbreak
fraction cImax�t versus the COV, for the same network as in (a). Dots
represent numerical integration over I (t ) from (a). Panels (c), (d), and
(e), respectively, show Ĩmax, �t̃ , and R̃′

∞/R̃∞ = I ′
max/Imax + �t ′/�t

versus the COV, where prime denotes differentiation with respect
to σ . In all panels we use a bimodal distribution with k0 = 20
and α = 0, and in (c)–(e) blue, orange, and green lines represent
R0 = 1.65, 1.8, 1.95, respectively (here R0 = 1.95 is above Rc

0).

as R0 is increased, σmax shifts towards zero, as increasing R0

is complementary to increasing σ .
Population heterogeneity. We now add variability across

the population (population heterogeneity) and study its effect
on the phase transition, by using the formalism of Ref. [27]
and modulating the infection rate β by the mean population’s
susceptibility x̄, such that R0 → x̄R0. While for homogeneous
populations x̄(t ) = 1, for heterogeneous populations, x̄ decays
in time, as the highly susceptible individuals get infected and
recover relatively quickly, thereby decreasing x̄. In the well-
mixed case, denoting by s(x, t ) the fraction of susceptibles
having infection rate between x to x + dx, the total fraction
of susceptibles is S(t ) = ∫ ∞

0 s(x, t )dx. Thus, s(x, t ) satisfies
∂t s = −R0xsI , and the mean susceptibility becomes [27]

x̄(t ) = S(t )−1
∫ ∞

0
xs(x, t )dx. (10)

To find x̄(t ), a new time scale τ = R0R is defined, measur-
ing the epidemic spreading. Thus, dτ/dt = R0I , such that

FIG. 3. (a) Critical basic reproduction number Rc
0 versus pop-

ulation heterogeneity strength σp. Dashed line is Rc
0 ≈ 1.84, the

asymptotic value of Rc
0 at σp → 0. (b) Maximal outbreak size Rmax

∞
versus σp, for R0 = 1.5, 2, 3 (blue, orange, and green lines, respec-
tively). Dashed lines are the asymptotic values for σp → 0. In both
panels k0 = 20 and N = 104.

∂τ s = −xs, which yields s(x, τ ) = s0(x) exp(−τx). We in-
corporate population heterogeneity by taking a gamma-
distributed initial susceptibility s0(x) ∼ x−1+ae−ax, with av-
erage 1 and standard deviation σp = a−1/2 [38]. With this
distribution, x̄ given by Eq. (10) decays in time as x̄ = (1 +
τσ 2

p )−1 [27].
To combine network and population heterogeneity, we

introduce the dynamical infection rate β(t ) = x̄β = x̄R0/k0

with x̄ given by Eq. (10). For heterogeneous networks, θ and φ

are connected via θ̇ = −βφ. Using the equation for φ defined
above Eq. (3), putting β → x̄(t )β, and differentiating θ̇ with
respect to time, we arrive at

θ̈ = θ̇

{ ˙̄x

x̄
+ x̄

R0

k0

[
(1− α)

∂θθψ

k0
− α

(
ψ

θ2
− ∂θψ

θ

)
−1

]
−1

}
,

(11)

where we have assumed a correlation strength α. The validity
of Eq. (11) can be checked in two limits. In the limit of a
homogeneous population, x̄ → 1 and Eq. (3) is restored upon
integration over time. In the well-mixed limit, k0 � N � 1,
θ = 1 − O(k−1

0 ); here a proportion of O(I/k0) of edges em-
anating from each node transmits the infection from a still
infected node [9]. Thus, φ = 1 − O(I/k0), ψ ′(θ ) = k0S/θ ,
and Ṡ = −ψ ′(θ )θ̇ = −R0x̄SI + O(SI/k0), which coincides in
the leading order with the well-mixed SIR model under popu-
lation heterogeneity [27,28].

To find Rc
0 under both population and network hetero-

geneity, we numerically compute the steady-state solution
of Eq. (11), which allows finding R∞(R0). Here, as x̄
decreases over time, the effective disease spread rate x̄R0 de-
creases, which can be compensated by more highly connected
nodes. Thus, Rc

0 increases as population heterogeneity in-
creases, namely as σp increases. This is demonstrated for a
bimodal network in Fig. 3(a).

Discussion. We have discovered a previously unknown
phase transition in the maximum value of the final outbreak
size Rmax

∞ , as function of the network heterogeneity strength
σ , as R0 crosses a threshold of Rc

0. While for R0 > Rc
0, Rmax

∞ is
obtained at σ = 0, for R0 < Rc

0, Rmax
∞ is obtained at σ > 0.

This counterintuitive result stems from an intricate balance
between the increase in the peak and decrease in the duration
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of the epidemic wave, as the network heterogeneity grows. We
also showed that population heterogeneity and degree-degree
correlations between neighboring nodes strongly affect the
value of Rc

0.
What are the implications of this phase transition for

realistic scenarios? For diseases such as smallpox, monkey-
pox, diphtheria, or COVID-19, R0 > 2 is above Rc

0 [39–43].
Here, the prediction of the well-mixed SIR model gives an
upper bound for R∞. Yet, when R0 < Rc

0, taking the well-
mixed SIR prediction as an upper bound may be erroneous;
e.g., for seasonal influenza (R0 = 1.28 [44]), σmax/k0 � 0.857
for a gamma-distributed network with k0 = 20. This yields
R∞ � 0.466, higher by ∼16% than the well-mixed prediction
R∞ � 0.403. Notably, for positively correlated networks, Rc

0
decreases, whereas adding population heterogeneity increases
Rc

0. Yet, in Fig. 3(b) we show that the decrease in Rmax
∞ for all

values of σ , due to population heterogeneity, supersedes the
increase in Rmax

∞ due to network heterogeneity. Thus, while
evaluating Rc

0 and Rmax
∞ in realistic scenarios is highly nontriv-

ial, these may provide an important insight as to the outcome
of the epidemics in the worst-case scenario.

Acknowledgment. A.L. and M.A. acknowledge support
from the ISF Grant No. 531/20.

Appendix A: Epidemic threshold for heterogeneous net-
works. Here we derive the epidemic threshold for heteroge-
neous networks with degree distribution p(k) as described
in the main text. For simplicity we assume the network is
uncorrelated, i.e., α = 0.

At very early times, the spread of the epidemic is negligi-
ble, and the probability that a node remains susceptible, θ ,
can be approximated as θ = 1 − ε with ε � 1, where ε =
O(k−1

0 N−1) at the epidemic’s initial stage. Using Eq. (3) in
the main text, which describes the dynamics of θ , and taking
the leading terms in ε, yields

−ε̇ =
[

1 + R0

k0
− R0

k0

ψ ′′(1)

ψ ′(1)

]
ε + O(ε2). (A1)

Using the definition of ψ given by Eq. (2) in the main text,
and integrating over time yields

ε = ε(0) exp

{[
R0

(
1 + σ 2

k2
0

− 2

k0

)
− 1

]
t

}
. (A2)

We remind the reader that we are measuring time in units of
the inverse recovery rate γ −1. From Eq. (A2), valid at early
times, one readily sees that the epidemic spreads as long as
the exponent’s argument is positive. As a result, bifurcation
occurs when the basic reproduction number satisfies R0 = Rb

0,
with

Rb
0 = 1

1 + σ 2/k2
0 − 2/k0

= k2
0

〈k2〉 − 2k0
. (A3)

As a result, Eq. (A2) can be rewritten as

ε = ε(0)e(R0/Rb
0−1)t . (A4)

These results are consistent with previous results in the large
k0 � 1 limit [6]. Note that, the typical time scale of the epi-
demic outbreak, which scales as 1/(R0/Rb

0 − 1), diverges as
R0 → Rb

0. In the well-mixed limit, i.e., k0 � 1 and σ → 0, we
recover from Eq. (A3) the well-known result of the classical

homogeneous SIR model, Rb
0 = 1. Yet, for highly heteroge-

neous networks with σ/k0 = O(1), Rb
0 can be significantly

reduced [6].
Appendix B: Network simulations. Here we detail the nu-

merical algorithm used to perform network simulations. In all
simulations we have used a Gillespie-based algorithm [34].
In order to create the network of size N with mean degree k0

and given degree-degree correlation α, for each degree-k node
with k initial stems, a fraction α of these stems are connected
to other degree-k nodes. The rest are connected to randomly
chosen nodes, as in the configuration model, which produces
an uncorrelated network [35]. In this way, we obtain a network
with correlation α. While the accuracy is high for low values
of α � 0.3 (including uncorrelated networks with α = 0), as
α grows, the accuracy is gradually lost due to finite size
effects. Notably, most realistic networks have a correlation
parameter of up to ∼0.3 [36].

Once we have created the network, we run multiple sim-
ulations, each starting with an initial number of 100 (out
of N = 105) infected individuals randomly distributed in the
network. Within a realization, for each infected-susceptible
pair, the rate at which an edge transmits the infection is R0 in
case of a static infection rate, and x̄(t )R0 in case of a dynamic
infection rate, see Eq. (10) in the main text. Each infected node
can also recover at a rate of γ = 1. After each infection event,
we add the edges which can potentially transmit the infection
to the list of transmitting edges, while a recovery event of
the base node causes all the edges emanating from it to be
removed from the list. The simulation ends when there are no
more infected nodes and transmitting edges.

To compute Rc
0, namely to find σmax for a given R0, and the

critical basic reproduction number for which σmax becomes
zero for the first time, we performed 1,000 simulations for
each value of σ . In order to find σmax, i.e., the standard devi-
ation which maximizes the final fraction of recovered R∞, we
used a parabolic fit ax2 + bx + c (where a is negative) to the
dependence of R∞ on σ , in the vicinity of σmax. This way, we
identified σmax as the maximum of the parabola, at −b/(2a).
Notably, very close to the phase transition there was substan-
tial noise in the results, so we used instead of the parabolic fit,
a linear fit to determine whether σmax was positive or zero.

Appendix C: Comparison between initial and final sus-
ceptible degree distributions. Here we study the final degree
distribution of susceptible nodes. The initial degree distribu-
tion of susceptibles is p(k), as the initial number of infected
nodes is negligible. As a result, the probability that a node of
rank k is susceptible at time t , ps(k, t ), satisfies

ps(k, t ) � 1

S(t )
p(k)θ (t )k. (C1)

Here, the probability that an edge has not transmitted the
disease is given by θ (t ) < 1, see main text, and thus, θ (t )k

is the probability that none of the edges has transmitted the
disease to a degree-k node. Notably, in Eq. (C1), p(k)θ (t )k is
normalized by S(t ), the fraction of the susceptible individuals.

As time evolves, θ (t ) decreases monotonically. Thus,
at the final stage of the epidemic the probability to ob-
serve high-degree susceptible nodes is very small, while the
probability to observe low-degree susceptible nodes remains

L012010-5



ALEXANDER LEIBENZON AND MICHAEL ASSAF PHYSICAL REVIEW RESEARCH 6, L012010 (2024)

FIG. 4. Degree distribution of susceptible nodes at the initial and
final stages of the epidemic. Here, we used a gamma-distributed
network with 105 nodes, with k0 = 20 and R0 = 2, and averaged
over 100 realizations. The blue and red bins represent the degree
distribution at the initial epidemic stage (t = 0), and final epidemic
state (t = ∞), respectively. The solid curves represent the theoretical
PDF ps(k, t ) [Eq. (C1)], while the vertical lines represent the average
value. In panel (a) σ/k0 = 0.3, while in panel (b) σ/k0 = 0.65.

almost unchanged. This explains why in a population net-
work with high heterogeneity, individuals with more contacts
are more likely to get infected early in the epidemic, while

peripheral nodes with a small number of contacts are more
likely to remain susceptible at the end of the outbreak. No-
tably, this effect becomes more dominant as heterogeneity
increases, which causes an increase in the relative number of
low- and high-degree nodes.

In Fig. 4 we show the initial and final degree distribution
of susceptibles. Here, we average over 100 realizations on a
gamma-distributed network of size N = 105 nodes, with k0 =
20 and R0 = 2. One can see that as σ/k0 increases, the effect
becomes more dominant. Here, the vertical lines represent the
average of the degree distribution, which shifts to the left as
explained above.

We conclude by computing how the mean susceptible’s de-
gree ks(t ) changes as the epidemic progresses. At t = 0, ks(t )
is very close to k0. Thus, using Eq. (C1), the time-dependent
mean degree of susceptibles satisfies

ks(t ) � 1

S(t )

∞∑
k=0

kp(k)θ k. (C2)

For homogeneous networks where p(k) = δk,k0 , the mean de-
gree of susceptible nodes remains constant ks(t ) = k0, as here,
S(t ) = θ k0 . In contrast, as heterogeneity increases, the rate of
decrease of ks(t ) grows, see Fig. 4.
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