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Inherent trade-off in noisy neural communication with rank-order coding
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Rank-order coding, a form of temporal coding, has emerged as a promising scheme to explain the rapid
ability of the mammalian brain. Owing to its speed as well as efficiency, rank-order coding is increasingly
gaining interest in diverse research areas beyond neuroscience. However, much uncertainty still exists about
the performance of rank-order coding under noise. Herein we show what information rates are fundamentally
possible and what trade-offs are at stake. An unexpected finding in this Letter is the emergence of a special class
of errors that, in a regime, increase with less noise.
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Introduction. Currently, there is growing interest in spik-
ing neural networks in physics and engineering [1,2], mainly
because of their potential to improve power efficiency, which,
to a great extent, depends on the coding scheme employed.
For spiking neural networks, a variety of coding schemes are
available. Chief among them is rank-order coding; this coding
scheme offers a fundamentally different approach for neural
information transmission. In rank-order coding, information
is encoded in the order of neural spikes; utilizing this degree
of freedom can substantially boost communication speeds and
efficiency.

Rank-order coding has been proposed as a faster alternative
to the traditional rate coding scheme [3]. While rate coding
is the most widely accepted coding scheme in neuroscience,
it has a subtle problem: Some experimental observations
are hard to reconcile with it because it is slow. For example,
primates can respond selectively to the presentation of three-
dimensional (3D) objects as quickly as 100–150 ms after
the onset of a stimulus [4,5]. This response is too fast to be
explained with rate coding as it needs, for a reasonable degree
of accuracy, to accumulate spikes over periods much longer
than 150 ms.

One could, of course, argue that rate coding across a rea-
sonably large number of neurons could provide speed (in
terms of bits/s). In such an approach, we would have n neu-
rons firing in parallel, and one counts the number of spikes
generated within a relatively short time window. This pop-
ulation rate coding approach can certainly provide speed as
we would need a longer time window to accumulate n spikes
from a single neuron than n neurons firing in parallel. How-
ever, one must contend with the fact that such an approach

*ibrahim.alsolami@oist.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

is inefficient in terms of bits/neurons [6]. For instance, in an
extreme case, we may consider a short time window in which
a neuron would fire at most once. In this time window, the
number of spike counts can range from 0 to n (no neuron fires
to all neurons fire)—collected by a set S = {0, 1, . . . , n}. If
a postsynaptic neuron cannot distinguish which presynaptic
neurons fires, then the total number of possible symbols of
this rate coding approach is n + 1 (the number of elements in
S), which encodes a maximum of log2(n + 1) bits. As such,
the efficiency of this population rate coding approach is upper
bounded by log2(n+1)

n (bits/neuron)—that is, the more neurons,
the less the efficiency. Additionally, the rapid speed of visual
processing is likely to be accomplished with very few spikes
[5], and this would require a neural coding scheme whereby a
few neurons can communicate efficiently.

Rank-order coding can offer both speed and efficiency.
With n neurons, rank-order coding can encode log2 n! bits
per transmission compared to log2(n + 1) bits per transmis-
sion for rate coding (because with n neurons, there are n!
different ways in which neurons can fire after each other,
which is utilized by rank-order coding to encode informa-
tion, log2 n!). The encoding ability of rank-order coding
is vast. Take, for instance, a setting with ten presynaptic
neurons. With these neurons, rank-order coding can in prin-
ciple form 10! = 3 628 800 symbols, that is, firing orders
of neurons (Fig. 1). As n increases, the encoding ability of
rank-order coding rapidly accelerates. This vast amount of
information available in the arrival order of spikes is of-
ten forgotten, and studying neural codes that utilize such
an arrival order could provide clues on how neurons can
transmit information rapidly and efficiently across brain
regions.

Converging evidence suggests that the relative timing, or
rank, of neuronal firing plays an important part in encod-
ing information. In retinal ganglion cells of salamanders, the
rapid transmission of visual scenes is likely accomplished
by encoding information in the relative timing of spikes
[7]. It was shown later in a population of retinal ganglion
cells of mice that the content of a visual stimulus could be
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FIG. 1. Rank-order coding with temporal noise (random delay).
Here, α is the spacing between successive spikes before noise is
introduced. In this illustration, the magnitude of synaptic weights
is represented by the size of the depicted circles. Here, postsy-
naptic neurons integrate and fire and are progressively desensitized
by shunting inhibition circuits (red). With shunting inhibition, the
sensitivity of a neuron progressively decreases as βk , where k is
the arrival order of a spike, and β is a constant that takes values in
the range 0 < β < 1. A postsynaptic neuron is maximally activated if
spikes arrive in the order of its synaptic weights; by setting the firing
threshold to this maximum excitation/activation level, a postsynaptic
neuron becomes selective to a particular temporal pattern.

accurately inferred from the wave of the first stimulus-evoked
spikes, indicating the importance of the relative timing of
spikes to encode sensory information [8]. An analysis of the
odor-evoked responses of olfactory neurons of Xenopus laevis
(African clawed frogs) demonstrated that the rank of spike
latencies is a reliable predictor of odor identity [9]. It was also
shown that synchronized firing among motor cortex neurons
of macaque monkeys performing a pointing task is associated
with movement planning, highlighting the importance of pre-
cise spike timing in decision making [10].

In addition to its biological applicability, rank-order coding
is gaining attention in the field of artificial spiking neural
networks, which are becoming popular as they hold great
potential in energy-efficient computing [11]. It was shown that
spiking neural networks with rank-order coding can achieve
a high image-classification accuracy with a relatively small
number of spikes in multilayer feed-forward networks [12]
as well as in recurrent networks [13]. Rank-order coding is
also finding favor in hardware implementations of spiking
neuromorphic processors; it was demonstrated that rank-order
coding can enhance power efficiency [14] and provide a favor-
able trade-off between energy consumption and classification
accuracy [15]. Recently, it was shown that rank-order coding
successfully reduced the on-chip inference latency in neuro-
morphic devices [16].

Despite increasing interest in the use of rank-order coding,
far too little attention has been paid to the effect of noise on
its performance. Our goal here is to analytically understand
the impact of noise on the performance of rank-order coding,
as noise is unavoidable in any physical system. In rank-order
coding, noise can cause spikes to be swapped with each other,
giving rise to errors. Contrary to intuition, reducing noise does
not necessarily reduce all types of errors. Moreover, we show
that information rate and communication efficiency cannot
be simultaneously maximized due to an intrinsic trade-off
between them.

Methods. We consider a noise model in which the spike
times of presynaptic neurons exhibit random delays (Fig. 1)
characterized by an exponential probability density, and is
given by

fi(z) =
{
λ e−λ[z−(i−1)α], if z � (i − 1)α,

0, otherwise.
(1)

Here, fi(z) is the probability density function (pdf) of the ith
presynaptic neuron, i ∈ {1, 2, . . . , n}. This pdf describes the
likelihood of observing a randomly delayed spike, by noise,
at time z. Such noise may arise when neurons do not respond
instantly to a stimulus, at an expected time, but rather with a
random delay (Fig. 1).

Without loss of generality, we hypothesize that a postsy-
naptic neuron responds selectively and reliably to a particular
order of presynaptic spikes. A feed-forward shunting inhibi-
tion circuit was suggested as the underlying mechanism of
this precise decoding of temporal patterns [6,17]. However,
exploring the detailed decoding mechanisms is beyond the
scope of this Letter.

The channel capacity enables us to compute the maximum
amount of information postsynaptic neurons can receive and
is defined as [18,19]

C = max
p(x)

I (X ;Y ) (bits/symbol), (2)

where I (X ;Y ) is the mutual information between random
variable X (input symbol) and Y (output symbol), and is given
by

I (X ;Y ) = H (Y ) − H (Y |X ) (bits/symbol). (3)

Here, H (Y ) is the entropy of Y , and H (Y |X ) is the conditional
entropy of Y given X .

In Fig. 1, we have (n!)2 possible combinations of input
and output symbols, where a symbol is defined as a particular
order of neural spikes (e.g., the sequence ABC). Here, n is the
number of presynaptic neurons. The probability of sending
symbol x and, because of noise, receiving symbol y is given
by the transition probability p(y|x). The following probability
transition matrix describes such a communication channel:

p(y|x) =

⎛
⎜⎜⎝

p(0|0) p(1|0) · · · p(n! − 1|0)
p(0|1) p(1|1) · · · p(n! − 1|1)

...
...

. . .
...

p(0|n! − 1) p(1|n! − 1) · · · p(n! − 1|n! − 1)

⎞
⎟⎟⎠

n!×n!

=

⎛
⎜⎜⎝

p0 p1 · · · pn!−1

p1 p0 · · · pn!−2
...

...
. . .

...

pn!−1 pn!−2 · · · p0

⎞
⎟⎟⎠

n!×n!

. (4)

L012009-2



INHERENT TRADE-OFF IN NOISY NEURAL … PHYSICAL REVIEW RESEARCH 6, L012009 (2024)

This communication channel is symmetric because rows of
the transition matrix are permutations of each other, and so
are the columns. The capacity of this channel is achieved by
a uniform distribution on the input X [19] [p(x) = 1

n! ], which
results in a uniform distribution on the output Y [p(y) = 1

n! ],
and is given by

C = max
p(x)

[H (Y ) − H (Y |X )]

= log2 n! − H (r) (bits/symbol), (5)

where H (r) = −∑n!−1
j=0 p j log2 p j is the entropy of a row of

matrix p(y|x).
Results.
Transition probabilities. Here, we determine the transition

probabilities to find the channel capacity in Eq. (5). These
probabilities are the likelihood that a particular neural spike
sequence is received under the perturbation of noise (random
delay, Fig. 1). For instance, for three neurons, p(CBA|ABC) is
the probability that the sequence CBA (y = 5) is erroneously
received due to noise, given that the original noise-free se-
quence is ABC (x = 0). It suffices to compute the transition
probability of any row of p(y|x) because the channel is sym-
metric [19]. Calculations of the transition probabilities are
straightforward but tedious. Therefore, we only determine
these probabilities when the number of presynaptic neurons
is relatively small (see Supplemental Material for a derivation
[20]).

We can obtain

p0 = p(AB|AB) = 1 − 1
2 e−λα,

p1 = p(BA|AB) = 1
2 e−λα, (6)

for two presynaptic neurons and

p0 = p(ABC|ABC) = 1 − e−λα + 1
6 e−3λα,

p1 = p(BAC|ABC) = 1
2 e−λα − 1

2 e−2λα + 1
6 e−3λα,

p2 = p(ACB|ABC) = 1
2 e−λα − 1

3 e−3λα,

p3 = p(CAB|ABC) = 1
6 e−3λα,

p4 = p(BCA|ABC) = 1
2 e−2λα − 1

3 e−3λα,

p5 = p(CBA|ABC) = 1
6 e−3λα, (7)

for three presynaptic neurons. In the above expressions, α

is the spacing between successive spikes before noise is
introduced, and λ is the rate parameter of the exponential dis-
tribution of the noise. Results with four presynaptic neurons
are shown in the Supplemental Material [20].

As expected, when λα increases, error probabilities de-
crease [Fig. 3(a)]. There is a notable exception, however. In
the range 0 � λα � ln

√
2, the error probability p(ACB|ABC)

increases. This can be viewed in two different ways: (1) For a
fixed value of α, as the noise decreases (that is, λ increases),
the probability of this type of error increases [Fig. 3(b)]. (2)
For a fixed value of λ, as the spacing between spikes (α)
increases, the error probability increases as well. A similar
phenomenon is also observed when we have four (n = 4)
presynaptic neurons (see Supplemental Material [20]). This
error probability momentarily increases with less noise, which
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FIG. 2. Performance of rank-order coding. (a) Communication
efficiency. (b) Information rates. Here, we plot the scaled version
of R (that is, R

λ
) rather than R as it eliminates the need to display

R for various combinations of λ and α. (c) The trade-off between
information rates and efficiency.

is counterintuitive: Errors typically decrease with less noise—
not the opposite (see the Appendix for an explanation as to
why they emerge). Throughout this Letter, we shall refer to
this class of probabilities as atypical probabilities. This type
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FIG. 3. Transition probabilities and spikes of rank-order coding with temporal noise. (a) Transition probabilities for three presynaptic
neurons (n = 3). (b) Atypical probability p(ACB|ABC). Here, α is arbitrarily set to 1 (second), and the number of samples per point used in
the simulation is 109. (c) Spikes of rank-order coding with temporal noise (random delay).

of error is not limited to exponential noise; it can also be ob-
served, for example, with Gaussian noise (see Supplemental
Figs. 6 and 7 [20]).

Communication efficiency and information rate. Figure 2(a)
shows the performance of rank-order coding in terms of com-
munication efficiency, which is defined as

γ = C

n
(bits/neuron), (8)

where C can be calculated by using Eq. (5). The commu-
nication efficiency increases monotonically with λα. This
increase in efficiency eventually plateaus and is asymptot-
ically bounded by γ ∗ = limλα→∞ C

n = log2(n!)
n (bits/neuron).

Moreover, the higher the value of n, the more efficient is the
communication.

We can further evaluate the performance of rank-order
coding in terms of information rate, which is defined as

R = C

T̄
(bits/s). (9)

In the absence of noise, the average symbol duration T̄ (that
is, the time difference between the first and last spikes of a
rank-order coding symbol) is (n − 1)α. However, with noise,
the average symbol duration increases and is given by

T̄ = α + 1

λ
e−λα (s/symbol) (10)

for two presynaptic neurons (n = 2),

T̄ = 2α + 1

λ
e−λα + 1

2λ
e−2λα (s/symbol) (11)

for three presynaptic neurons (n = 3), and

T̄ = 3α + 1

λ
e−λα + 1

2λ
e−2λα + 1

2λ
e−3λα − 1

6λ
e−4λα

− 1

6λ
e−5λα + 1

6λ
e−6λα (s/symbol) (12)

for four presynaptic neurons (n = 4) (see Supplemental Ma-
terial for a derivation [20]).

In Fig. 2(b), we display the (scaled) information rate as
a function of λα. The information rate is a nonmonotonic
function of λα and increases with n. Moreover, there is an
optimal operating point at which the information rate is maxi-
mized; beyond this critical point, the information rate rapidly
diminishes.

In a noisy environment, there exists an inherent trade-off
between the communication efficiency of rank-order cod-
ing and its information rate. The communication efficiency
continuously increases with λα [Fig. 2(a)], but this gain in
efficiency comes at the cost of a loss in the information rate
once λα is beyond a critical value [Fig. 2(b)]. A range of
trade-offs is shown in Fig. 2(c), in which the value of λα is
varied and the pair (γ , R

λ
) is displayed.

Discussion. This Letter set out to study the impact of noise
on the performance of rank-order coding. The communica-
tion speed and efficiency of rank-order coding come from its
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ability to utilize the order of neural spikes. This coding
scheme is advantageous as it allows for a multitude of symbols
(n!) to be constructed using a few spikes. A disadvantage,
however, is that it is susceptible to temporal noise, which can
swap spikes with each other, causing errors at postsynaptic
neurons.

In noisy environments, the information rate and communi-
cation efficiency depend at least on three factors: The spacing
between spikes α, the rate parameter λ, and the number
of presynaptic neurons n. The higher the value of λα, the
more efficient is the communication. However, increasing λα

beyond an optimal operating point has the adverse effect
of reducing the information rate. Additionally, we found a
class of error probabilities that increase with less noise. This
result is counterintuitive because errors commonly decrease
with less noise—not the opposite. The presence of such error
probabilities raises a need for special care in designing error
correction schemes for neuromorphic devices that employ
rank-order coding.

We revealed that rank-order coding has an inherent trade-
off between information rate and communication efficiency.
This result could provide insights to better understand what
trade-offs neurons make in different brain regions (under the
rank-order coding hypothesis) between the conflicting needs
to be fast and, at the same time, efficient. The trade-off re-
sult also offers a realistic picture of neuromorphic computing
with rank-order coding: Information rate and communication
efficiency cannot be simultaneously maximized—a compro-
mising trade-off between them needs to be made [Fig. 2(c)].

In the present Letter, we assumed that postsynaptic neurons
respond selectively to a particular order of spikes (tem-
poral pattern). Studies have shown that cortical neurons
exhibit such selectivity to temporal input sequences [21].
Various biological mechanisms of temporal pattern detec-
tion have been proposed (e.g., Ref. [22]). A feed-forward
shunting inhibition circuit, which progressively desensitizes
a postsynaptic neuron as spikes arrive (see Fig. 1), may
accomplish selectivity to a particular temporal pattern of
rank-order coding [6,17]. In such a setting, a postsynaptic
neuron would be maximally activated (and fire only) if spikes
arrive in the order of its synaptic weights. A small por-
tion of extremely strong synapses observed in log-normally
distributed synaptic weights [23] may enhance this progres-
sive desensitization. Moreover, a belief-voting decoder may

provide a robust means for decoding the order of neural
spikes [24].

To conclude, rank-order coding can provide speed and
efficiency, but noise imposes a trade-off between them. The
results of this Letter offer insight into the performance of
rank-order coding.
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Appendix: Atypical probabilities. Why do errors increase
when we have less noise? The emergence of atypical prob-
abilities can be explained as follows. Let the probability
P(ACB|ABC) serve as an example [Fig. 3]. Moreover, let
random variables Zi (i = 1, 2, 3) represent a spike’s latency
after the perturbation of noise; here, i denotes the index of
the ith presynaptic neuron. These random variables are in-
dependent. For the event Z1 < Z3 < Z2, or equivalently the
sequence ACB, to occur, the following two conditions should
be simultaneously satisfied: (i) Random variable Z2 needs to
be the largest value and (ii) random variable Z1 needs to be the
smallest value.

(i) The probability of Z2 being the largest value (i.e., Z2 >

Z3) decreases with λ (the larger the value of λ, the less the
noise) because the amount of overlap between the distribu-
tions of Z2 and Z3 decreases as λ increases.

(ii) In contrast, the probability of Z1 being the smallest
value increases with λ in the interval (0, 2α) for the following
reason. The event Z2 > Z3 implies that Z2 > 2α [Fig. 3(c) and
Eq. (1)]. Thus, when Z2 > Z3, more space (from α to 2α) for
Z1 has been made to take the position of the smallest value in
the interval (0, 2α), thereby increasing the likelihood of the
neural order ACB (Z1 < Z3 < Z2).

Factor (i) causes P(ACB|ABC) to decrease, whereas factor
(ii) causes P(ACB|ABC) to increase. The net effect of factors
(i) and (ii) is P(Z1 < 2α < Z3 < Z2), which is a concave
function. This component brings about a rare regime in which
errors increase with λ (or, equivalently, with α). Mathemati-
cally, the probability P(Z1 < 2α < Z3 < Z2) can be obtained
by splitting the integration region of P(ACB|ABC) into two
parts:

P(ACB|ABC) = P(Z1 < Z3 < Z2|ABC) =
∫ ∞

2α

∫ z2

2α

∫ z3

0
f1(z1) f3(z3) f2(z2), dz1 dz3 dz2

=
(∫ ∞

2α

∫ z2

2α

∫ 2α

0
f1(z1) f3(z3) f2(z2), dz1 dz3 dz2

)
︸ ︷︷ ︸

Concave: P(Z1 < 2α < Z3 < Z2 )

+
(∫ ∞

2α

∫ z2

2α

∫ z3

2α

f1(z1) f3(z3) f2(z2), dz1 dz3 dz2

)
︸ ︷︷ ︸

Convex: P(2α < Z1 < Z3 < Z2 )

=

⎛
⎜⎜⎝ 1

2
e−λα

︸ ︷︷ ︸
Factor (i): P(2α < Z3 < Z2 )

× (1 − e−2λα )︸ ︷︷ ︸
Factor (ii): P(Z1 < 2α)

⎞
⎟⎟⎠

︸ ︷︷ ︸
Concave: P(Z1 < 2α < Z3 < Z2 ) = P(Z1 < 2α) × P(2α < Z3 < Z2 )

+
(

1

6
e−3λα

)
︸ ︷︷ ︸

Convex: P(2α < Z1 < Z3 < Z2 )

= 1

2
e−λα − 1

3
e−3λα. (A1)
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