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Quantum eigenvalue transformation (QET) and its generalization, quantum singular value transformation
(QSVT), are versatile quantum algorithms that allow us to apply broad matrix functions to quantum states,
which cover many significant quantum algorithms such as Hamiltonian simulation. However, finding a parameter
set which realizes preferable matrix functions in these techniques is difficult for large-scale quantum systems:
there is no analytical result other than trivial cases as far as we know and we often suffer also from numerical
instability. In this Letter, we propose recursive QET or QSVT (R-QET or R-QSVT) in which we can execute
complicated matrix functions by recursively organizing block-encoding by low-degree QET or QSVT. Owing to
the simplicity of recursive relations, it works only with a few parameters with exactly determining the parameters,
while its iteration results in complicated matrix functions. In particular, by exploiting the recursive relation of
Newton iteration, we construct the matrix sign function, which can be applied for eigenstate filtering for example,
in a tractable way. We show that an analytically obtained parameter set composed of only eight different values is
sufficient for executing QET of the matrix sign function with an arbitrarily small error ε. Our protocol will serve
as an alternative protocol for constructing QET or QSVT for some useful matrix functions without numerical
instability.
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Introduction. Recently, quantum eigenvalue transforma-
tion (QET) has become a versatile technique for various
quantum algorithms [1]. For a hermitian matrix of interest
A, QET executes parallel processing of its eigenvalues and
thereby allows us to apply broad matrix polynomial functions∑

n cnAn to arbitrary quantum states. With its generalization
to general matrices, called quantum singular value transfor-
mation (QSVT), it covers various todays important quantum
algorithms, such as Hamiltonian simulation [2,3] and search
algorithms [4], by properly constructing polynomial approx-
imations. Not only does it provide unified understanding of
quantum algorithms [5], but also it can serve more efficient
alternative algorithms for various purposes.

QET is executed by repeating parametrized unitary gates
on ancilla qubits and unitary gates embedding the target ma-
trix, called block-encoding. While tunability of the parameters
ensures realization of broad functions by quantum signal pro-
cessing (QSP) [2], we must accurately determine a proper
parameter set for a desired function. Although finding the
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parameters for degree-q polynomials within an error ε can be
executed by poly(q, log(1/ε))-time classical computation, its
numerical instability has become one of the central problems
for accurate implementation of QET/QSVT. In fact, several
numerical algorithms such as optimization try to solve this
instability [6–9]. By contrast, there are only a few results on
analytical parameter determination. As far as we know, they
are limited to trivial cases for Chebyshev polynomials useful
for Grover’s search [4,10,11].

In this Letter, we propose recursive QET/QSVT (R-QET/

R-QSVT) that can potentially determine all the parameters
in an analytical or numerically much cheaper way. We recur-
sively organize block-encoding by low-degree QET/QSVT so
that it can reproduce recursive relations of matrix functions,
and then obtain complicated matrix functions by iteration.
For instance, we can exploit Newton iteration as the recursive
relation [12]. Then, with a sufficient number of iterations for
its convergence, R-QET/R-QSVT organizes nontrivial matrix
functions only with a smaller number of parameters that can
be easily determined. As a prominent consequence, we obtain
an analytical parameter set for realizing matrix sign functions
with arbitrarily small error. Furthermore, the parameter set
has constant unique values which do not depend on either an
allowable error ε or any parameter of the matrix. Although our
construction expenses the computational cost compared to the
optimal protocol [13,14] due to the strong limitation on the
parameters, it suffers from no numerical instability and even
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can overwhelm the optimal one when we perform recovery
of coherent errors [15]. With various recursive constructions
of matrix functions, such as Newton iteration [12] and lo-
gistic map [16,17], R-QET/R-QSVT will give a promising
candidate for executing complicated operations on quantum
computers in accurate and stable ways.

Quantum Eigenvalue Transformation (QET). Throughout
the main text, we concentrate on QET and thus, R-QET
for hermitian matrices for simplicity (See Sec. S2 of the
Supplemental Material for QSVT, whose discussion is
completely parallel). We begin with briefly introducing QET
here. Let a hermitian matrix A have spectral decomposition
A = ∑

a a |a〉 〈a| (a ∈ R) on a finite-dimensional Hilbert
space H. Block-encoding of A is defined by a unitary gate
OA, satisfying

〈0|OA|0〉b = A

α
, α > 0. (1)

Here, |0〉b denotes a reference state in an ancillary Hilbert
space Hb. We set α = 1 by the renormalization A → A/α
below. Construction of block-encoding is known for a linear
combination of unitaries, a sparse-access matrix, and so
on [3].

Combining parametrized unitary operations on the ancilla
system,

Rφ = eiφ(2|0〉〈0|b−Ib) ⊗ I, (2)

we define a degree-q QET operator by

QET[OA, �φ] =
{

Rφ1 OA
∏(q−1)/2

i=1 [Rφ2i O
†
ARφ2i+1 OA], q: odd,∏q/2

i=1[Rφ2i−1 O†
ARφ2i OA], q: even.

(3)

By properly tuning the parameter set �φ ∈ Rq, it realizes vari-
ous polynomial functions f (x) = ∑

n cnxn (cn ∈ C) as

〈0|QET[OA, �φ]|0〉b = f (A) =
∑

n

cnAn. (4)

There exists a parameter set �φ if and only if f (x) satisfies all
the following conditions [1]:

(1) f (x) has a degree at most q and a parity (−1)q;
(2) | f (x)| � 1 for any x ∈ [−1, 1] and | f (x)| � 1 for any

x ∈ (−∞,−1] ∪ [1,∞);
(3) (If q is even) | f (ix) f ∗(ix)| � 1 for any x ∈ R, where

f ∗(x) is defined by f ∗(x) = ∑
n c∗

nxn.
By O(1) controlled operations QET[OA, �φ], generic renor-

malized matrix functions f (x) with | f (x)| � 1/4 (∀x ∈
[−1, 1]) are also realizable.

For a desired function f (x) satisfying (i)–(iii), how
can we find a proper parameter set �φ? As far as we
know, the analytical result is restricted to the Cheby-
shev polynomials f (x) = Tn(x) with the trivial angles �φ =
((q − 1)π/2,−π/2,−π/2, . . . ,−π/2), which is useful for
Grover’s search and its family, such as amplitude ampli-
fication [4]. In general, it requires finding all the roots
of 1 − f (x) f ∗(x), which is a degree-q polynomial in x2,
and iteratively decomposing QET[OA, �φ] into lower-degree
QET operators [1]. However, for useful functions such as
e−itA (Hamiltonian simulation [2,3]), A−1/2κ (quantum lin-
ear system problem, QLSP [18]), and sign(A) (eigenstate

filtering [14]), the typical degree q is quite large, as q ∈
poly(N, log(1/ε)) depending on the system size N and the
allowable error ε. Thus, it is difficult to accurately com-
pute �φ generally having poly(N, log(1/ε)) different values
in a numerically stable way, although it can be done by
poly(N, log(1/ε))-time classical calculation. This instability
has been partially resolved by refining root-finding problems
and decomposition into lower degrees [6,7], or employing
optimization [8,9]. They have numerically succeeded up to
q ∼ 104 within 102 ∼ 104 seconds.

Recursive QET (R-QET) and Newton iteration. Here, we
propose the protocol named recursive QET (R-QET), and
provide the formulation combined with Newton iteration for
matrix functions [12]. It aims to implement complicated
matrix functions by QET with keeping tractability of the
parameter set �φ in a stable way. Our strategy is to employ
recursive relations: while each step operation is simple, its
repetition forms rather complicated functions.

Suppose that we want to execute complicated matrix func-
tions of A with its block-encoding OA. Based on the fact
that QET generates block-encoding from block-encoding as
Eq. (4), we organize R-QET by recursively defining a series
of block-encodings {OXn}n by

OXn+1 = QET[OXn , �φg], n = 0, 1, 2, . . . . (5)

Here, the initial input OX0 depends on OA (e.g., OX0 = OA),
and we have options for the parameter set �φg including its val-
ues and dimension. The above construction forms a recursive
relation of matrices Xn = 〈0|OXn |0〉b,

Xn+1 = g(Xn), X0 = 〈0|OX0 |0〉b , (6)

with a variety of polynomial functions g. Recursive relations
of matrices like Eq. (6) are available for complicated matrix
functions exemplified by a matrix logistic map [16,17].

One of the most promising candidates for the recursive
relation is Newton iteration, which was originally invented for
solving nonlinear equations [12]. Newton iteration for matri-
ces enables us to efficiently compute various matrix functions
f (A) with properly choosing the function g as a result of iter-
ation limN→∞ Xn = f (A). For instance, g(X ) = (3X − X 3)/2
and X0 = A generates the matrix sign function Xn → sign(A)
(defined later), and the one by g(X ) = 2X − XAX and X0 =
θA (0 < θ 
 1) generates the matrix inversion Xn → A−1

[12]. When R-QET combined with Newton iteration, we orga-
nize the parameter set �φg so that the polynomial g reproduces
Newton iteration. The iteration continues until it achieves
an allowable error ε as ‖Xn − f (A)‖ � ε (‖ · ‖ denotes the
operator norm), and thus the iteration number n depends
on ε. Then, the resulting unitary gate OXn provides an accurate
block-encoding for the function f (A).

By iterative substitution of the recursive relation Eq. (5),
the block-encoding OXn is rewritten by

OXn = QET[QET[. . . [QET[OX0 , �φg], �φg], . . . , �φg], (7)

which has the form of OXn = QET[OX0 , �φn]. The (deg(gn))-
dimensional parameter set �φn is determined solely by the
(deg(g))-dimensional one �φg. Since the degree of g is a con-
stant independent of any parameter, i.e., the input X0, the
allowable error ε, and the iteration number n, we can obtain
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FIG. 1. (a) Some members of Padé family. (b) Intuitive picture of
Newton iteration based on p2(x). Each eigenvalue of Xn, represented
by xn, approaches 1 or −1 depending on its sign.

a parameter set valid for any situation in an analytical or
numerically stable way.

While we use the standard QET for implementing the func-
tion g here, we note that other types of QET/QSVT are also
available. For instance, if the recursive relation g(X ) includes
some matrices other than X (e.g., g(X ) = 2X − XAX for
matrix inversion), we need at-least multi-variate QET/QSVT
[19,20].

Analytical R-QET for Matrix Sign Function. In R-QET,
we should carefully choose the recursive relation so that the
tractable function g can be realized by QET, and the result-
ing function Xn is meaningful. Here, we show the power of
R-QET combined with Newton iteration by analytically con-
structing the parameter set of QET for matrix sign functions.

Suppose that a hermitian matrix A = ∑
a a |a〉 〈a| has a

spectral gap 2� (>0) around zero as a ∈ [−1,−�] ∪ [�, 1].
The matrix sign function is defined by

sign(A) =
∑

a

sign(a) |a〉 〈a| , sign(a) = a

|a| , (8)

which is useful for various tasks such as eigenstate filtering
[21]. The matrix sign function sign(A) can be generated by
Newton-Shultz iteration using a series of rational functions
called Padé family {pl (x)}l∈N with the initial input X0 = A
[12,22]. As the recursive relation g(X ), we adopt the second
simplest case,

p2(X ) = 1
8 (15X − 10X 3 + 3X 5), deg(p2) = 5 (9)

since the simplest one p1(X ) = (3X − X 3)/2 violates condi-
tion (ii) for QET [See Fig. 1(a)]. The convergence to sign(A)
is confirmed by the fact that every eigenvalue of Xn, denoted
by xn, moves to +1 or −1 based on the recursive relation
xn+1 = p2(xn) [See Fig. 1(b)].

We determine the parameter set �φp2 ∈ R5, which con-
structs the relation

OXn+1 = QET[OXn , �φp2 ], OX0 = OA. (10)

To find �φq, we compute all the roots of the quintic polyno-
mial 1 − p2(x)p∗

2(x). Although there is no formula for quintic
equations, we find them by the factorization,

1 − p2(x)p∗
2(x) = − 9

64 (1 − x2)3(x2 − s)(x2 − s∗), (11)

with s = (11 + 3
√

15i)/6. This leads to the following ana-
lytical parameter set �φp2 (See Sec. S1 of the Supplemental

Material for its detailed calculation [23]):

φ
p2
1 = 0, φ

p2
2 = π + 1

2
arctan

√
15

7
,

φ
p2
3 = π + 1

2
arctan

√
15, φ

p2
4 = −1

2
arctan

√
15,

φ
p2

5 = −1

2
arctan

√
15

7
. (12)

Therefore, by repeated substitution, Eq. (7), we obtain an
analytical QET operator QET[OA, �φn] for the matrix sign
function sign(A). The parameter set �φn has only eight dif-
ferent angles ±φ

p2
i for i = 2, 3, 4, 5, and they always appear

in the fixed orders of φ
p2
2 → φ

p2
3 → φ

p2
4 → φ

p2

5 or −φ
p2

5 →
−φ

p2
4 → −φ

p2
3 → −φ

p2
2 .

Cost and comparison with standard QET. Let us evaluate
the cost for the matrix sign function. We repeat the recur-
sive relation until the desirable error ε ∈ [0, 1] is achieved
as ‖Xn − sign(A)‖ � ε. Convergence to sign(A) based on the
Newton iteration, Eq. (9), is dominated by the gap � as
follows [22]:

‖Xn − sign(A)‖ � (1 − �2)3n
. (13)

By using the relation log(1 − �2)−1 � �2 for � ∈ [0, 1), it
is sufficient to choose the iteration number by

n =
⌈

log3

(
1

�2
log(1/ε)

)⌉
. (14)

The cost is measured by the query complexity, i,e., the
number of OA in the unitary gate OXn giving Xn = sign(A) +
O(ε). The query complexity qn is immediately obtained by
Eq. (10), which results in qn+1 = 5qn and q0 = 1. Under the
proper iteration number n by Eq. (14), the query complexity
yields

qn = 5n � 5 ×
(

1

�2
log(1/ε)

)log3 5

(15)

∈ 	

(
1

�2 log3 5
loglog3 5(1/ε)

)
. (16)

Let us compare with the standard QET approach [1,5,13],
which uses the optimal approximation by the shifted
Chebyshev polynomials. This yields the query complexity
	(�−1 log(1/ε)), which is optimal both in � and ε. Consider-
ing log3 5 � 1.465, the query complexity of R-QET, Eq. (16),
is polynomially larger than the optimal one. This difference
comes from flexibility of the parameter set �φ. The standard
QET approach uses O(�−1 log(1/ε)) different parameters
�φ obtained by numerically solving an O(�−1 log(1/ε))-
degree equation. In contrast, our approach employs only
eight different values in a fixed order independent of �

and ε. At some expense of cost, R-QET can serve sign(A)
up to arbitrarily small error ε, with completely avoiding
numerical instability and working only with a few kinds
of gates.

While R-QET fails to achieve the optimal scaling, it can
overwhelm the optimal protocol when correcting coherent
error is considered. In QET, a multiplicative coherent er-
ror on the parameter set φi → φi(1 + δ) (i = 1, 2, . . . , q)
is a possible obstacle to accurate implementation. Recently,
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Tan et al. [15] have shown that the coherent error δ on degree-
q QET can be suppressed up to O(δk+1) (k ∈ N) by additional
query complexity,

qcorrect ∈ O(2k (c �φ )k2
q). (17)

Here, c �φ denotes the number of different values in �φ ∈ Rq.
The standard QET approach achieving optimality is expected
to have c �φ ∈ O(q) different values in �φ, and its total query

complexity amounts to O(�−k2−1 logk2+1(1/ε)). By contrast,
R-QET employs constant values with c �φ = 8 regardless of
any parameters. The total query complexity including the
recovering remains, Eq. (16), as long as k ∈ O(1), which be-
comes smaller than that of the originally optimal protocol for
k � 2.

Errors in each recursive relation caused by deviation of
parameters may bring instability to convergence of Newton
iterations. However, in contrast to the standard QET suffering
from numerical errors in parameter determination and large
cost for recovering implementation errors, R-QET can analyt-
ically provide parameters and efficiently deals with coherent
errors. Such errors are much suppressed, and hence R-QET
has a strong advantage in stability.

Generalization of R-QET for matrix sign functions. Our
result for matrix sign functions can be generalized to other
members of the Padé family or implementation of polar de-
composition by R-QSVT.

In the first case, the recursive relation Xn+1 = pl (Xn) with
X0 = A (l ∈ N) by the Padé family,

pl (x) = x
l∑

k=0

(2k − 1)!!

2kk!
(1 − x2)k, (18)

casts matrix sign functions as limn→∞ Xn = sign(A). Condi-
tions (i)–(iii) for QET can be satisfied only when l is even
[24]. It has only 2l different values in the parameter set for
the degree-(2l + 1) polynomial pl (X ), where one of them
can be zero. As well as l = 2, we can analytically determine
the parameter set for l = 4 by the quartic formula. Even for
larger l � 6, the numerical instability for parameter determi-
nation is much more suppressed than the standard QET. The
advantage of this generalization is the computational cost.
Convergence to sign(A) becomes faster as ‖Xn − sign(A)‖ �
(1 − �2)(l+1)n

[22], and hence the query complexity becomes
smaller as

qn ∈ 	

(
1

�2(1+νl )
log1+νl (1/ε)

)
, (19)

νl = log(2l + 1)

log(l + 1)
− 1. (20)

The scaling becomes 	(�−(2+o(1)) log1+o(1)(1/ε)) for large l
[24]. While it is still not optimal in the gap �, it can reach the
optimal one in the desirable error ε.

Next, we consider generalization to R-QSVT. QSVT pro-
duces block-encoding executing polynomial transformation of
every singular value from block-encoding of a generic matrix
A, and hence R-QSVT can be composed by recursive iteration
of QSVT (See Sec. S2 of the Supplemental Material for its
detail [23]). When we use the same parameter set �φp2 for

the matrix sign function, R-QSVT organizes block-encoding
{OXn}n, reproducing

Xn+1 = Xn

8
{15 − 10X †

n Xn + 3(X †
n Xn)2}, X0 = A. (21)

When A is nonsingular, Xn converges to A(
√

A†A)−1, which
is the unitary part of polar decomposition. With the same
iteration number, Eq. (14), R-QSVT achieves an arbitrarily
small error ε and analyticity (or numerical stability) of the
parameter set for the polar decomposition.

Discussion and Conclusion. In this Letter, we propose
recursive QET/QSVT that executes recursive relations by
QET/QSVT. All the parameters can be determined by low-
degree polynomials for recursive relations, which enables
analytical or numerically stable calculation. Particularly, the
construction of matrix sign functions when combined with
Newton iteration is the first analytical result on parameters for
useful functions other than the trivial Chebyshev polynomials.
Indeed, with the analytically obtained parameters Eq. (12), we
can execute eigenstate filtering, and thereby solve quantum
linear system problems [21] (See Sec. S3 of the Supplemental
Material for its detailed discussion [23]).

Although R-QET/R-QSVT have polynomially large query
complexity compared to the optimal standard QET/QSVT,
they are expected to be useful in the following scenarios. In
the early fault-tolerant quantum computation (early-FTQC)
era, where the ability to correct errors is restricted, suppress-
ing errors in the algorithmic level will be of importance.
Then the availability of the coherent error protocol will
make R-QET/R-QSVT advantageous compared to the stan-
dard QET/QSVT, as discussed in Eq. (17). In the FTQC era,
our interest will move to huge quantum systems, which re-
quires high-degree QET/QSVT. Inaccurate parameters make
the standard QET/QSVT meaningless even if we can ap-
ply arbitrarily accurate gates, but R-QET/R-QSVT avoids
such a problem due to its numerical stability. Therefore, R-
QET/R-QSVT will be a significant option which ensures
stability.

We conclude this Letter with a future direction. While we
focus on the matrix sign function with using the standard
QET for the recursive relation, these will be generalized. For
instance, Newton iteration covers various matrix functions
like matrix inversion with ensuring quadratic or faster con-
vergence. Another interesting example is the matrix logistic
map [16,17], which generates either chaotic or nonchaotic
behaviors of each eigenvalue. As subroutines for reproducing
recursive relations, we can also exploit a series of QET/QSVT
protocols. For instance, we can realize QET/QSVT of generic
renormalized functions with fixed parity with an extra qubit
[1]. While we avoid the odd order Padé family, it can also
be exploited for R-QET to realize matrix sign functions
with some additional cost (See Sec. S4 of the Supplemen-
tal Material for its detailed discussion [23]). A series of
recently proposed QET/QSVT for Fourier series [25–27]
and multivariate polynomials [19,20] will also be promis-
ing candidates. These broad options of R-QET/R-QSVT will
provide a variety of matrix functions for various quantum
tasks while efficiently and accurately providing the required
parameters.
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