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Pauli blockade is a fundamental quantum phenomenon that also serves as a powerful tool for qubit manip-
ulation and readout. While most systems exhibit a simple even-odd pattern of double-dot Pauli spin blockade
due to the preferred singlet pairing of spins, the additional valley degree of freedom offered by bilayer graphene
greatly alters this pattern. Inspecting bias-triangle measurements at double-dot charge degeneracies with up to
four electrons in each dot reveals a much richer double-dot Pauli blockade catalog with both spin and/or valley
blockade. In addition, we use single-dot Kondo effect measurements to substantiate our understanding of the
three- and four-particle state spectra by analyzing their magnetic field dependence. With high controllability and
reported long valley- and spin-relaxation times, bilayer graphene is a rising platform for hosting semiconductor
quantum dot qubits. A thorough understanding of state spectra is crucial for qubit design and manipulation,
and the rich Pauli blockade catalog provides an abundance of qubit operational possibilities and opportunities to
explore intriguing spin and valley physics.

DOI: 10.1103/PhysRevResearch.6.L012006

Carbon-based materials are promising hosts for spin qubits
[1–4] due to the natural abundance of 98.9% low-mass,
nuclear-spin free 12C. Experimental advancements achieved
in recent years [5–21] have demonstrated the great potential
for electrostatically defined bilayer graphene (BLG) quantum
dots (QDs) to host spin and valley qubits, with highly tunable
QDs’ geometry and tunnel couplings, as well as gate-tunable
valley g-factors [9], and reported remarkably long valley-
relaxation time T1 > 500 ms [20], and spin-relaxation times
T1 up to 50 ms [16,17,20], comparable with the state-of-the-art
results achieved in other semiconductor quantum dot systems
[22].

To harvest the full potential of BLG QDs, a thorough
understanding of the relevant QD state spectra is essential.
In BLG, in addition to spins, up and down, there exist two
valleys, K+ and K−, which couple to an external perpen-
dicular magnetic field due to their nontrivial Berry curvature
[5,9,10,23,24]. These valleys enrich the spectra of BLG, and
lead to intriguing properties, such as the spin-triplet valley-
singlet single-dot two-particle ground state [11,18,25,26] and
the double-dot two-carrier Pauli spin- and valley-blockade
[15]. Most other systems, i.e., systems without valleys, exhibit
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no Pauli blockade when an odd number of carriers reside
in a double dot due to the preferred singlet pairing of spins
[27–32]. In contrast, in BLG three-carrier spin blockade has
been demonstrated recently [19].

Not limited to three carriers, the entire double-dot Pauli
blockade catalog with up to four carriers (i.e., a full shell) in
each dot is far richer for BLG than for a conventional system.
Our main result is summarized in Fig. 1(a), a comparison of
schematic double-dot charge stability diagrams for (i) BLG
and for (ii) a conventional system. In a conventional system,
an even-odd pattern of Pauli spin-blocked and nonblocked
transitions arise [32]; in contrast, in BLG Pauli blockade
could arise from both spin and valley selection rules. The rich
blockade structure provides a multitude of qubit operational
positions, allowing us to exploit the unique spin and valley
physics for varied qubit manipulation and control [33].

In this work, we study transport measurements through
BLG double quantum dot (DQD). By analyzing finite-bias
triangles at various charge degeneracies, we discuss the states
and transitions involved, and hence the nature of the observed
Pauli blockade as summarized in Fig. 1(a), going beyond
the previously discussed two-carrier [15] and three-carrier
[19] cases. Substantiating our understanding of the three- and
four-particle state spectra experimentally, we further present
transport measurements through a single BLG QD, probing
the magnetic field dependence of the state spectra with the
Kondo effect (similar to Ref. [12]).

The BLG QDs are defined electrostatically [device shown
in Fig. 1(b)]. We use the band gap arising from a perpendicular
displacement field [34–36], achieved by the global back gate
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FIG. 1. (a) Schematic double-dot charge stability diagram for
(i) BLG and (ii) a conventional system [32]. Nonblocked (NB),
spin-blocked (SB), and valley-blocked (VB) transitions are marked
with black, red, and blue arrows. (b)(i) False-colored AFM image of
the device. (ii) Conduction band (CB) and valence band (VB) edge
variation along the channel. Dots L and R are formed underneath
the respective plunger gates (red), with gate voltages VL and VR.
Left-barrier (LB), middle-barrier (MB), and right-barrier (RB) gates
(blue) control the respective tunnel barriers. (c) Double-dot charge
stability map at VSD = 1.5 mV with stable charge states marked in the
respective Coulomb-blockaded regions and separated with dashed
lines. Roman numerals label the triple points studied in this work,
with zoom-ins presented in Fig. 2(b). The number of electrons in the
left NL and in the right NR dot increase from left to right, and from
top to bottom.

and various local top gates. The split gates [Fig. 1(b,i), gray]
form a one-dimensional (1D) channel. Another layer of gates
(red and blue) locally tune the potential landscape within this
channel. See Supplemental Materials S1 [37] for more detail.

We form an electron DQD with n-type leads and tunable
tunnel barriers [potential landscape depicted in Fig. 1(b,ii)].
The plunger gate voltages VL and VR define dots L and R
underneath the respective gates (red). More negative VL and
VR deplete the respective dot discretely to the last electron.
When a voltage VSD is applied between the source and drain
leads, finite-bias triangles form at triple-points where three
charge configurations coexist. The distinctive honeycomb pat-
tern of the double-dot charge stability diagram is observed
on Fig. 1(c). Charging energies ∼6−10 meV are estimated
for both dots, much larger than the energy scales that will be
considered in the following discussions.

The nature of Pauli blockade is determined by the relevant
spin and valley states involved. Understanding the blockade
therefore demands a discussion on the single-dot N-particle
state spectra [sketched in Fig. 2(a)]. We choose to discuss the
states first with the single-particle notation:

One particle: The fourfold spin and valley states are split
by a small (60−80 µeV) Kane-Mele [12,13,38] spin-orbit
gap �SO into two Kramer pairs: lower-energy ↓ K− and
↑ K+, and higher-energy ↓ K+ and ↑ K−. At zero field, �SO

quantizes the spins and valleys along the direction perpendic-
ular to the BLG sheet.

Two particles: The spin-triplet valley-singlet is the ground
state, as shown in Refs. [11,18,25,26] and Fig. 2(a,ii).

Three particles: Taking three of the four available states
for one particle gives us the spectrum shown in Fig. 2(a,iii),
with Kramer pairs ↓ K− ↑ K+ ↓ K+ and ↓ K− ↑ K+ ↑ K−
lower, and ↓ K+ ↑ K− ↓ K− and ↓ K+ ↑ K− ↑ K+ higher in
energy.

Four particles: Four carriers complete the shell, occupying
all the available states in the lowest-energy orbital.

Alternative to the single-particle notation, we can also
write the states with their quantum numbers: the total spin
(valley) number σ (τ ), and their projections to the spin
(valley) quantization axis σz (τz). We define σz = ±1/2 for
spins ↑ / ↓, and τz = ±1/2 for valleys K±. This notation
|σ, σz; τ, τz〉 is marked in Fig. 2(a) for the ground states at zero
magnetic fields (black). The valley quantization axis is always
out of plane, whereas the spin quantization axis is out of plane
at zero B-field due to �SO [12,13], and tilts towards in-plane
in external B‖. A B-field applied in any direction shifts spin-
state energies by σzgsμBB, while only an out-of-plane field
shifts the valley-state energies by τzgvμBB⊥, where μB is
the Bohr magneton, gs = 2 the spin g-factor [5,10,11], and
gv � gs the gap-size and dot-geometry dependent valley g-
factor [9,12].

Since the interdot coupling is weak, we can choose to
write the double-dot states as product states of the single-dot
states in the left and in the right dot, written in a bracket
(|NL〉, |NR〉). The spin (valley) projection of a double-dot state
is thus simply the sum of its constituting single-dot states
σz = σz,NL + σz,NR (τz = τz,NL + τz,NR). Since both spin-orbit
[38,39] and valley-orbit [40] effects are weak in BLG, we
assume that tunneling conserves all the spin and valley num-
bers. Transitions between double-dot charge configurations
are not blocked only if, for every degenerate ground state of
the initial charge configuration, there exists a state in the final
charge configuration being lower in energy and matching all
quantum numbers with the initial state. Otherwise, some form
of Pauli blockade arises; its nature depends on the mismatched
quantum number (spin and/or valley).

In Fig. 2(b), we present zoom-ins of the finite-bias triangles
labeled with Roman numerals i–vii in Fig. 1(c). The barrier
gate voltages are adjusted slightly such that the dot geometry
and tunnel couplings are similar for different charge transi-
tions. Charge-configuration transitions (dashed arrows) can
be nonblocked (black), spin blocked (red), or valley blocked
(blue):

(i) (1,0)–(0,1): Any loaded electron hops between the two
dots with the same one-particle states. No blockade is ob-
served: the bias triangles are complete for both bias directions.

(ii) (1,1)–(0,2): Studied in Ref. [15], the system is stuck
when a (1,1) state with τz = ±1 (valley-polarized state, e.g.,
K− in both dots) is loaded, as transition to the (0,2) ground
state with τz = 0 (paired valley singlet Sv) is forbidden by
valley conservation. The valley-blocked transition (1, 1) →
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FIG. 2. (a) N-particle state spectra EN with zero-field ground states (black) and relevant excited states (gray) in in-plane B‖ and out-of-plane
B⊥ magnetic field, for [(i)–(iv)] N = 1−4. The zero-field N-particle ground state is labeled as |σ ; τ 〉N,GS, where σ (red) and τ (blue) is its total
spin and valley number. (b) Finite-bias triangles at VSD = −1 mV (left panel) and +1 mV (right panel), at charge degeneracies (i) (0,1)–(1,0),
(ii) (0,2)–(1,1) (reproduced from Supplemental Material of Ref. [15]), (iii) (0,3)–(1,2) (reproduced from Ref. [19]), (iv) (0,4)–(1,3), (v) (1,2)–
(2,1), (vi) (1,3)–(2,2), and (vii) (1,4)–(2,3). Arrows mark the direction of charge configuration transitions; nonblocked (NB), spin-blocked (SB),
and valley-blocked (VB) transitions are marked with black, red, and blue arrows, respectively. Ground states of each charge configuration are
labeled as |σ = σNL + σNR; τ = τNL + τNR〉. (c) Schematic illustrating the condition of Pauli blockade, determined by the total spin (valley)
number of the ground states of the initial σi (τi) and final σf (τf ) charge configuration.

(0, 2) suppresses the current in the bias triangles [right,
Fig. 2(b,ii)], as compared to the nonblocked ones (left).

(iii) (1,2)–(0,3): Studied in Ref. [19], transition (1, 2) →
(0, 3) is spin blocked; the system is stuck in the maxi-
mally spin-polarized (1,2) states σz = ±3/2 [e.g., (↓, T−

s )],
since the (0,3) ground state can only offer σz = ±1/2 states
[41,42]. Current in the (1, 2) → (0, 3) bias triangles [right,
Fig. 2(b,iii)] is therefore strongly suppressed, as compared to
the nonblocked (0, 3) → (1, 2) ones (left). The spin-blockade
current suppression is stronger here than that of valley block-
ade in (ii). Marked by a square at detuning ∼0.6 meV,
transport resumes when the (0,3) excited state with σz =
±3/2 [(0,↓↓↓ / ↑↑↑), Fig. 2(a,iii) gray] becomes lower in
energy than the (1,2) ground state.

(iv) (1,3)–(0,4): Transition (0, 4) → (1, 3) is nonblocked,
where (1, 3) → (0, 4) is both spin and valley blocked with
strong current suppression: The (1,3) ground state can
be spin (σz = ±1) or valley (τz = ±1) polarized, whereas
(0,4) only accepts a spin and valley paired full shell. The
blockade lifts (indicated by the triangle) when the polar-

ized (0,4) excited state with σz = ±1 (0,↓↓ / ↑↑) or τz ±
1 (0, K−K−/K+K+) [gray in Fig. 2(a,iv)] becomes accessible
at detuning ∼0.8 meV.

(v) (2,1)–(1,2): Since the states in the two charge config-
urations are essentially the same with only the roles of the
left and the right dot switched, no blockade exists in either
direction.

(vi) (2,2)–(1,3): Both sets of bias triangles in Fig. 2(b,vi)
show regions with current suppression, with spin blockade
(right) stronger than valley blockade (left). For (2, 2) →
(1, 3), a fully spin-polarized (2,2) ground state with σz =
±2, e.g., (T−

s Sv, T−
s Sv), is blocked to the (1,3) ground state

where the maximally spin-polarized state has only σz = ±1,
e.g., (↓ K−,↓ K− ↑ K+ ↓ K+). This spin blockade is lifted
(marked by the square) upon accessing the spin-polarized
excited three-particle states ↓↓↓ / ↑↑↑ in the right dot [gray
in Fig. 2(a,iii)]. For (1, 3) → (2, 2), a valley-polarized (1,3)
ground state with τz = ±1, e.g., (↓ K−,↓ K− ↑ K+ ↑ K−), is
blocked to the (2,2) ground state that allows only fully paired
valleys (TsSv, TsSv) with τz = 0. This valley blockade is lifted
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FIG. 3. (a) Potential landscape along the channel for the single hole dot. (b) Schematics of (i) Coulomb blockade, (ii) Kondo-assisted
spin-flip co-tunnelings involving degenerate ground states with different quantum numbers at VSD = 0, and (iii) involving the ground and an
excited state at VSD = �E , conserving energies. [(c)–(e)] (i) Evolution of conductance along finite bias cuts at fixed VL for (c) three holes in
in-plane field B‖, (d) three holes in out-of-plane field B⊥, and (e) four holes in out-of-plane field B⊥, with (ii) respectively deduced three- and
four-particle level spectra and relevant co-tunneling transitions. States are labeled with total spin (valley) numbers σ (τ ), and projected spin
(valley) numbers σz (τz).

(marked by the circle) upon accessing the valley-polarized
excited two-particle states SsT± [gray in Fig. 2(a,ii)] in either
dot. Here, transitions in both directions are Pauli blocked
but for different quantum numbers—an intriguing situation
special to BLG.

(vii) (1,4)–(2,3): The transition (2, 3) → (1, 4) is spin
blocked and (1, 4) → (2, 3) nonblocked, demonstrated by
the strong current suppression in the right bias triangles as
compared to the left ones in Fig. 2(b,vii). The (1,4) state,
a full shell in the right dot and a single electron in the left
dot, cannot accommodate the maximally spin-polarized (2,3)
state with σz = ±3/2, e.g., (T−

s Sv,↓ K− ↑ K+ ↓ K+). The
spin blockade lifts (marked by the triangle) upon accessing
the spin-polarized four-particle excited state ↓↓ / ↑↑ [gray in
Fig. 2(a,iv)] in the right dot.

The nature of Pauli blockade at various charge transitions is
summarized in Fig. 1(a) and compared with the conventional
case where levels are filled with alternating spins. The richer
structure in BLG stems from (1) the additional valley degrees
of freedom, and as a result (2) the single-dot two-particle
ground state being a spin triplet [11,18] instead of a spin
singlet.

From the above discussion, we see that the maximally spin-
(valley-)polarized [i.e., with maximum |σz| (|τz|)] double-dot
ground state of a charge configuration is responsible for spin
(valley) blockade. The maximum |σz| (|τz|) can be found by
simply summing the total spin (valley) quantum number of the
left and right single-dot ground states σNL + σNR (τNL + τNR).

We can therefore summarize the above discussion into a sim-
pler rule [illustrated in Fig. 2(c)]: If the total spin (valley)
number of the double-dot ground state of the final charge
configuration σ f (τ f ) is lower than that of the initial charge
configuration σi (τi), then there are (at least) initial states
with σz = ±σi (τz = ±τi) that do not exist in the final ground
states, and this transition is spin (valley) blocked.

To substantiate the proposed three- and four-particle state
spectra in Fig. 2(a) that form the basis of the double-dot Pauli
blockade analysis, we present experimental data investigating
the spectra in magnetic field with the single-dot Kondo effect
[43], similar to the analysis performed in Ref. [12].

With VL as the plunger gate voltage, we tune the system
to a single hole dot (the electron and hole spectra in BLG
have so far been found identical) with strong dot-lead tunnel
coupling, allowing for the observation of the Kondo effect
[12,43] [sketched in Fig. 3(a), see Supplemental Materials S1
[37] for details].

The Coulomb blockade in a QD [Fig. 3(b,i)] can be lifted
by the Kondo effect [Fig. 3(b,ii)] [43–48], allowing for fi-
nite conductance G: the unpaired spin (valley) state in the
dot attracts a cloud of carriers with opposite spins (valleys)
to the strongly coupled lead, assisting spin- (valley-)flip co-
tunneling events [12]. For energy conservation, the energy
gained by the carrier escaping the dot equates to the energy
lost by the carrier entering simultaneously from the lead.
Therefore, a conductance resonance around zero VSD indi-
cates the existence of degenerate N-particle ground states with
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different spin (valley) quantum numbers, as observed in the
Coulomb diamonds in Fig. S1 for one, two, and three holes.
The absence of this resonance for four holes confirms the
formation of a singly degenerate full shell with paired spins
and valleys. At finite VSD, co-tunnelings with excited states
become possible [Fig. 3(b,iii)]. Conductance resonances oc-
cur when e|VSD| = μN,ES − μN,GS := �E , i.e., when the bias
provides exactly the energy difference between the states.
From the Coulomb diamonds in Fig. S1 we obtain charging
energies ∼4 meV, larger than the energy scales in the follow-
ing discussions.

Fixing VL for three and four holes (See Supplemental Ma-
terials. S1 [37] for the corresponding Coulomb diamonds and
the chosen VL), we apply external in-plane B‖ and out-of-plane
B⊥ field which shift the energies of spin and valley states.
Slopes of conductance resonances in B-fields offer informa-
tion on the character of the states: a slope of ±gs (±gv),
corresponds to a spin- (valley-) flip co-tunneling transition be-
tween the ground state and an excited state with different spin
(valley) numbers �σz = ±1 (�τz = ±1). For the discussion
of the Kondo effect, we label the single QD states exclusively
with spin and valley numbers for compactness. We discuss for
positive VSD only, though the physics is equivalent for negative
VSD.

With these rules in mind, we first look at conductance
maps Fig. 3(c,i) for three particles in in-plane magnetic
field, which couple only to spins but not to valleys. We
thus see resonance 1 at zero-bias corresponding to valley-flip
co-tunnelings, indicating the ground-state valley degeneracy
τz = ±1/2. Resonance 2 splits off from 1 with slope +gs ≈ 2,
indicating spin-flip co-tunnelings and thus the zero-field spin
degeneracy of the ground state σz = ±1/2. Starting from
0.7 mV at B‖ = 0, resonance 3 shows a slope of −gs ≈ 2,
indicating spin-flip co-tunnelings between the ground state
with σz = −1/2 and an excited state with lower spin number.
This maximally spin-polarized three-particle state with σz =
−3/2 appears as an excited state at 0.7 meV as it requires
contributions of an excited orbital level. This state is also
responsible for lifting the (1, 2) → (0, 3) and (2, 2) → (1, 3)
spin blockade [Figs. 2(b,iii) and 2(vi), squares, also sketched
in Fig. 2(a,iii)]. This excited state becomes the ground state at
B‖ > 7 T. Co-tunneling events then arise from this state.

In out-of-plane field [Fig. 3(d)], as gv � gs we resolve
mainly valley splitting. The nonresolved spin-multiplet bun-
dles are colored gray together. Being a zero-bias resonance in
B‖, resonance 1 splits off in B⊥ with gv ≈ 40, corresponding
to valley-flip co-tunnelings. We observe a “focusing” effect
of resonance 2 becoming the narrowest at 0.35 ± 0.10 T,
arising from the competition between the zero-field split-
ting �SO [12,13] and the Zeeman splitting, changing the
ground state from σz = 1/2; τz = −1/2 to σz = −1/2; τz =
−1/2. With gs = 2 we estimate �SO ≈ 40 ± 10 μeV, slightly
lower than that reported for one-particle states [12,13,19].
Starting from 1.5 mV at B⊥ = 0, resonance 5 with g ∼ 40
corresponds to valley-flip co-tunnelings between the ground
state with τz = −1/2 and an excited state with lower val-
ley number τz = −3/2. Since there exists no resonance
with a slope of g ∼ −40 starting from 0.7 mV at B⊥ = 0,
we conclude that the σz = −3/2 excited states contain no
τz = −3/2 states. At B⊥ > 0.7 T, the valley-polarized τz =

−3/2 state becomes the ground state. From there resonance
6 with gs = +2 corresponds to spin-flip co-tunnelings be-
tween the τz = −3/2; σz ± 1/2 states. Resonances 5’ and 7
with slopes g ∼ +40 correspond to valley-flip co-tunnelings
of the τz = −3/2 ground state with the spin-doublet of σ =
1/2; τ = 1/2, τz = −1/2, and with the quadruplet bundle of
σ = 3/2; τ = 1/2, τz = −1/2, respectively.

It is worth noting that the three-particle σz = 3/2 state
is lower in energy (∼0.7 meV) than the τz = 3/2 state
(∼1.5 meV), similar to the two-particle case [11,18] where,
counterintuitively, the spin triplet (σ = 1) is the ground state
while the valley triplet (τ = 1) is the excited state.

We now turn our attention to four-particle states in out-
of-plane field. Intuitively, the four-hole ground state is a full
shell with degeneracy of 1, and indeed no zero-bias peak
occurs at zero field. Starting at 1 mV, resonance 1 shows
gv ∼ −40, corresponding to valley-flip co-tunnelings between
the full shell and an excited state with τz = −1. This state
becomes the ground state at B⊥ > 0.5 T. At B⊥ > 1.1 T, a
fully valley-polarized state with τz = −2 becomes the ground
state. Resonances 2 and 2’ arise from co-tunnelings between
the τz = −2 and the τz = −1 states. Tracing resonance 2 back
to B⊥ = 0, we obtain energy of the τz = −2 excited state
∼3 meV.

The excited states are higher in energy due to involvement
of higher orbital levels. Their energy deduced from the Kondo
measurements agrees well with that deduced from lifting of
the double-dot blockade (Fig. 2), which also agrees qualita-
tively with the calculated orbital levels [25,26].

As the ground states change in B field, the double-dot Pauli
blockade also changes in nature. For charge degeneracies
(1,2)–(0,3), (1,3)–(0,4), and (2,2)–(1,3), we study conduc-
tance along the detuning axis of bias triangles in B⊥ (see
Supplemental Materials S2 [37]). The magnetospectroscopy
shows the evolution of Pauli blockade in B⊥, and agrees with
the suggested [Fig. 2(a)] and demonstrated [Figs. 3(c)–3(e)]
N-particle state spectra.

To conclude, we established three- and four-particle state
spectra in BLG QDs by examining their magnetic field de-
pendence with the Kondo effect. By discussing the relevant
N-particle states and inspecting the double-dot bias-triangle
measurements between a multitude of charge configurations,
we reveal the Pauli blockade catalog for BLG QDs as summa-
rized in Fig. 1(c,i), notably richer and intriguingly different
compared to the canonical spin blockade [32] [Fig. 1(c,ii)].
The rich BLG state spectra and Pauli blockade catalog offer
an abundance of different qubit operational positions, allow-
ing for improved qubit manipulation and control exploiting
unique spin and valley properties.

The data supporting the findings of this study is made
available via the ETH Research Collection [49].
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