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Unusual magnetotransport behaviors, such as temperature-dependent negative magnetoresistance (MR) and
bowtie-shaped MR, have puzzled us for a long time. Although several mechanisms have been proposed to
explain these phenomena, the absence of comprehensive quantitative calculations has made these explanations
less convincing. In our work, we introduce a methodology to study magnetotransport behaviors in magnetic
materials. This approach integrates the anomalous Hall conductivity induced by the Berry curvature, with a
multiband ordinary conductivity tensor, employing a combination of first-principles calculations and semiclas-
sical Boltzmann transport theory. Our method also incorporates the temperature dependence of the relaxation
time and the anomalous Hall conductivity, as well as the field dependence of the anomalous Hall conductivity.
We initially test this approach on models, obtaining distinct behaviors of magnetoresistance and Hall resistivity
across several types of magnetic materials, and then apply it to a Weyl semimetal Co3;Sn,S,. The results, which
align well with experimental observations in terms of magnetic field and temperature dependencies, demonstrate
the efficacy of our approach. This methodology provides a comprehensive and efficient means to understand
the underlying mechanisms of the unusual complex behaviors observed in magnetotransport measurements in

magnetic materials.
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I. INTRODUCTION

Large anomalous Hall effect (AHE) [1-7] and unusual
magnetotransport behaviors such as large magnetoresistance
(MR) [7-10] or negative magnetoresistance (NMR) [11-14]
are often observed in magnetic materials. Exploration of
various MR and large AHE responses may lead to novel
electronic functionalities and efficient spintronic devices.
Among them the most intriguing phenomenon is the NMR.
Several mechanisms have been proposed in numerous liter-
ature to explain the NMR, such as weak localization [15],
electron-magnon scattering [16—18], etc. However, few stud-
ies quantitatively investigate the impact of the anomalous Hall
effect on MR, especially the NMR, in magnetic materials.
Actually, the richness and complexity of magnetism may lead
to numerous fascinating magnetotransport properties resulting
from the magnetization-dependent anomalous Hall conductiv-
ity (AHC) [19], and the establishment of a systematic and
quantitative methodology for studying magnetotransport in
magnetic materials will greatly facilitate the understanding of
the connection between magnetoresistance and AHC.
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For a quantitative analysis of the influence brought by
AHE, calculations of ordinary conductivity and anomalous
Hall conductivity based on a first-principles calculated tight-
binding (TB) Hamiltonian are needed. Zhang et al. [20] have
systematically studied the MR derived from the ordinary
conductivity tensor using the Boltzmann transport theory in
several realistic materials, such as Bi [20], Cu [20], SiP, [21],
a-WP; [22], MoO, [23], TaSe; [24], ReO3 [25], WP, [20],
and ZrSiS [26], etc. The calculated MR curves show
good agreement with experiments, within the momentum-
independent relaxation time approximation. Recently, this
method has been extended to study the MR and Hall ef-
fects of narrow semiconductors such as ZrTes [27], and to
study the complex field, temperature, and angle-dependent
Hall effect of nonmagnetic materials [28]. Nevertheless, this
approach has not been extended to magnetic materials with
non-negligible AHC, where numerous magnetotransport be-
haviors remain to be discussed. In magnetic materials, the
empirical relation for the Hall resistivity is considered to be
the summation of the ordinary part ,oy(i and the anomalous
part pf), written as py, = p{ + oy, [29,30]. Conventionally,
09 = R,B; and p;, = R;M, where R, is the ordinary Hall co-
efficient, B, is the perpendicular field, and R; is the anomalous
Hall coefficient. However, this simple division of p,, may be
invalid unless both the ordinary and anomalous Hall angles
are small, as pointed out by Zhao et al in Ref. [31].

Conductivity, rather than resistivity, is more essential in
describing transport physics, considering that multiple car-
riers form parallel circuits contributing to the transport.
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Building on this perspective, our work develops a com-
bined first-principles and semiclassical Boltzmann transport
methodology to study magnetotransport in magnetic mate-
rials. We adopt the conductivity relation and extend it to
multiband magnetic materials as follows:

o= 0l(B.T)+0"B.T), 1)

where n is the band index, of(B, T) represent the ordi-
nary conductivity of the nth band arising from Lorentz force
and scattering, and (B, T) represent the AHC originating
from magnetism. By employing first-principles calculations
and constructing a tight-binding Hamiltonian with maximally
localized Wannier functions [32-34], we can calculate the
ordinary conductivity and the anomalous Hall conductivity,
respectively, along with the corresponding resistivity ob-
tained by inverting the total conductivity. To gain an intuitive
understanding, we initially apply this approach to several
models. Typical forms of magnetism such as antiferromag-
netic or paramagnetic [35-38], soft magnetic [39,40], and
ferromagnetic [41-43] behaviors are commonly observed in
experiments. By considering different types of magnetization
curves corresponding to these magnetic properties, a wide
range of MR curves (particularly the negative MR) and Hall
curves emerge, some of which match the characteristic fea-
tures of several materials. We then apply our methodology to
the realistic ferromagnetic material Co3Sn,S,. This magnetic
Weyl semimetal has drawn significant attention in recent years
due to its large AHE, giant anomalous Hall angle (AHA),
and unusual magnetotransport behaviors such as negative MR
at high temperatures, bowtie-shaped resistance, and reverse
jumping direction of MR at coercive fields at around 2 and
30 K [2,11,18,31,44-47]. Our calculated magnetotransport
behaviors exhibit consistency with experimental observations,
in terms of magnetic field and temperature dependencies. Our
work establishes guidelines and provides a comprehensive and
efficient approach to investigate the unusual magnetotransport
properties in a wide range of magnetic materials.

II. METHODOLOGY

The Boltzmann transport theory has been successfully used
for magnetoresistance calculations [20]. By solving the Boltz-
mann equation within the framework of the relaxation time
approximation, we obtain the ordinary conductivity tensor of
the target bands [20,48-50]:

o 2 dk (_8f(6,T)
o,(B,T)=¢e"1,(T) sy (2 )3 de e=e, (k)

x v,(k)v, k), ()

where 7,(T) is the relaxation time of the nth band with tem-
perature dependence, f is the Fermi-Dirac distribution, v, (k)
and v,(k) are the velocity and weighted averaged velocity,
respectively:

1
v, (k) = Evken(k)a 3
0
"_)n(k) Z/ ?ef/fnvn[k([)]’ (4)

and the differential equation describing the motion of k()
driven by a magnetic field is approximated as

dk(t) _ e
v —hvn[k(t)] x B. (5)

The trajectory k(¢) is solved by integrating Eq. (5). To obtain
€,(k) and v, (k), first-principles calculations are performed us-
ing the Vienna ab initio simulation package (VASP) [51,52] and
a tight-binding model based on localized Wannier functions
is constructed using the WANNIER90 software package [53].
Equations (2)—(5) and (6) below were implemented in the
WANNIERTOOLS software package [54].

The intrinsic anomalous Hall conductivity can also be cal-
culated by integrating the Berry curvature ), (k) over the
Brillouin zone [55]

(045), = —¢ 52 f ke w12, (@)
aBls afy A — Joz (27_[)3 n n .

(ao/fﬂ )s denotes the maximum intrinsic AHC when the magne-
tization perpendicular to the «-8 plane is fully saturated. This
magnetization may be spontaneously induced in ferromag-
netic materials or induced by an external field in paramagnetic
and antiferromagnetic materials. Although the AHC may ex-
hibit a nonlinear dependence on magnetization, we adhere to
the assumption that the AHC is proportional to the magneti-
zation in magnets [19]. With the magnetization parallel to the
magnetic field along the Z direction, one can write the AHC as

M(B,T)

of(B.T)= m
N

(), D
where M(B, T) and M; denote the field- and temperature-
dependent magnetization and the saturated magnetization,
respectively.

With the ordinary and anomalous parts of conductivity
determined, we utilize Eq. (1) to calculate the resistivity p =
o', followed by the analysis of MR and Hall resistivity. The
effects of different scattering mechanisms are considered in
the relaxation times t,,(7). Notably, this approach is versatile,
facilitating the calculation of a wide range of magnetic ma-
terials with various magnetization forms, resulting in diverse
MR and Hall resistivity curves.

III. MODEL ANALYSIS

Section II presents a comprehensive overview of the
combined first-principles and Boltzmann transport theory
methodology for calculating magnetotransport properties in
magnetic materials. Before applying this methodology to re-
alistic materials, we discuss its application to several simple
models to gain an intuitive understanding of exotic magneto-
transport behaviors.

A. Arising of the negative magnetoresistance and
temperature-dependent magnetotransport in two-band models

We begin with understanding the magnetotransport of a
two-band model, taking into account the AHC. The revised
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longitudinal and Hall resistivities can be obtained by inverting
the total conductivity tensor (see Appendix A 1)

e e[(nepte + mupan) + (nettensd + nppunie?)B2]
N[ (nepe + mppn 2 + (ne — my 22 piB2] + D(B)’
®)
e[ (nniel; — nend) B + pipi(my — n)B*] + C(B)oy
[ (nepte + nuppn)? + (ne — nyp)2 2B + D(B)
©)

where C(B)=(1 + u2B*)(1 + uiB*) and D(B)=2e[(ujn; —
wine)B + wr s (ny — ne)B3]a)fv + C(B)o)g,2 are the extra
terms compared to the conventional two-band model, in which
MR cannot be negative without the inclusion of Ufy. In con-
trast, negative MR becomes attainable in our revised form of

Pxc in Eq. (8).

Achieving NMR hinges on the competition between
the increase in field-dependent terms in the numerator and
denominator of p,,. In the conventional two-band Drude
model, the denominator always increases more slowly with
the magnetic field than the numerator, resulting in positive
MR. However, in our revised two-band model, the term D(B)
can yield a significant additional increase with the field,
leading to a greater growth in the denominator compared
to the numerator, thereby facilitating NMR. To further
illustrate this, note that in the denominator of po,,, axzx(O)
appears as e”(nqi, + nyip)?, and by rewriting D(B) as
2e[(uiny — u2n)B + p2ui(ny, — ne)B*tan 9o, (0) + (1 +
p2B*)(1 + pjB*) tan® 90 2.(0)  where tan® = o7} /0y (0)
denotes the anomalous Hall angle (AHA), we can assess the
impact of D(B) through the AHA. With a sufficiently large
AHA, NMR is attainable under the significant influence of
D(B).

For a deeper understanding, we consider the simplest case
where we set n, i, and m to be identical for both bands. It
is well known that without of included, this case leads to a
nonsaturating positive MR [8,56,57]. However, things change
considerably when va is taken into account. Equation (8) can
now be reduced to

Pyx =

_ 1 X
" 0 (0) 1 + tan? 9x2’

Pxx (10
where tan® represents the AHA, and x =1+ (uB)*> > 1.
Now we consider two distinct situations to analyze the con-
ditions under which the negative MR arises.

(a) The anomalous Hall angle is field independent. In this
situation tan ¢ is a constant and the derivative of p,, is given
by

d 1 — tan® ¥x?

pxx

— S — 11
dB (1 + tan? ¥ x2)? (b

When x > 1/|tan ¢, %pxx < 0. It appears that [tan¥| > 1
is required for x > 1/|tan ¢| to hold consistently, resulting in
pxre exhibiting a negative field dependence across the entire
range of the B field. However, this condition is rarely met in
the experimentally accessible materials. In fact, n, i, and m
do not necessarily need to be identical. For instance, if we set
ny # n, while maintaining other parameters the same, p,, will
saturate rapidly in the absence of o, implying a suppressed

growth of p,,. Likewise, with the consideration of ofy, obtain-
ing negative MR is also easier even with |tan 9| < 1.

(b) The anomalous Hall angle is field dependent. The posi-
tive B-field-dependent tan ¢ may also help to achieve negative
MR. To illustrate this, we maintain the same n, u, and m for
the two bands but introduce a positive slope for tan ¢, given

by % tan 9 = y > 0. Then we have

d 2u”B(1 — tan® ¥x?) — 2y tan x>
= Pxx = 2 N2 ) (12)
dB (1 + tan” 9 x?)
. —2y tan ¢
lim —p, = ——— < 0. (13)
B—0 dB (1 4 tan? )2

From Eq. (13), it is observed that as B approaches zero, the re-
sistivity becomes negatively dependent on the magnetic field.
With an increasing magnetic field B, % Pxx May either remain
negative or turn positive, depending on the values of the mo-
bility « and the slope y. Consequently, MR may be negative
throughout the entire field range or initially negative but grad-
ually rise up [see Fig. 5(c) and the discussion in Sec. III C].
In cases where the magnetization is positively field depen-
dent, such as B-linear magnetization, which can be observed
in paramagnetic and antiferromagnetic materials, achieving
negative MR may be easier with a significantly large y. In
cases of hard ferromagnets whose magnetization is almost
saturated, a weak field dependence may still exist, and the
slope of the magnetization increases with temperature, result-
ing in an increasing slope y with temperature. Furthermore, at
higher temperatures, the value of u decreases. The decreasing
w and increasing y simultaneously contribute to maintaining
the negativity of 2u?B(1 — tan? 9x?) — 2y tan x> in the nu-
merator of %pxx. As a consequence, negative MR across the
entire field range is achievable at high temperatures.

With the conditions for the emergence of NMR clarified,
we now systematically analyze the evolution of MR and
Hall resistivity with increasing temperature. The temperature
dependence of MR and Hall resistivity is attributed to the
Fermi distribution, the temperature-dependent magnetization
M (B, T), and mobility u(T). Magnetization M (B, T') can be
generated using specific formulas or directly adopted from
experimental curves for precision. Here, we generate the mag-
netization curves using the following formula:

M(B,T)

T S|tanh (¢B)], (14)

where § is the average spin determined by the mean-field
method with ¢J controlling the Curie temperature (see Ap-
pendix A2 for details), and « is the factor controlling the
saturation speed of magnetization, thereby generating differ-
ent types of magnetization curves observed in experiments
such as antiferromagnetic or paramagnetic, soft magnetic, and
ferromagnetic behaviors.

Without loss of generality, we consider three forms of mag-
netization curves, corresponding to « = 0.1 and 0.8 without a
coercive field, and « = 500 with a coercive field, to represent
antiferromagnetic or paramagnetic magnets, soft magnets, and
ferromagnets, respectively. These curves, depicted in Fig. 1,
are derived from Eq. (14) with a Curie temperature of 175 K.
The dashed lines and solid lines represent the magnetiza-
tion at low temperatures (5-70 K) and high temperatures
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FIG. 1. Temperature-dependent magnetization curves, with dashed lines representing the magnetization at low temperatures and solid

M

lines representing the magnetization at high temperatures. 7

= § tanh (aB) where « is a factor controlling the saturation speed. (a) @ = 0.1.

(b) @ = 0.8. (¢c) @ = 500 with a coercive field B. =3 T at low temperatures and B, = 1 T at high temperatures.

(100-160 K), respectively. For o = 0.1, magnetization is
nearly linearly dependent on the magnetic field, as depicted
in Fig. 1(a). For « = 0.8, magnetization grows linearly below
the saturation field B &~ 2 T and is almost fully saturated above
it, as depicted in Fig. 1(b). For = 500, magnetization is
almost saturated instantaneously at first(B = 0 T), as shown in
Fig. 9(c) in Appendix A 2, and by extending the field-parallel
magnetization curves to the antiparallel configuration region
up to the coercive field B., with an appropriate slope, we
can obtain the hysteresis magnetization loops as displayed in
Fig. 1(c). For simplicity, we set B, = 3 T at low temperatures
and B, = 1 T at high temperatures. The temperature and field
dependent a;.‘; (B, T') is then obtainable using Eq. (7) by setting
an appropriate value for (UQ, )s-

For the mobility u(7), it is related to the relaxation time
©(T) by w(T)=et(T)/m. In the absence of a magnetic
field, according to the Drude model, t(T) ox 1/p(T) [56],
where o(T) = po+ f(T), po is the residual resistivity,
and f(T) comes from the temperature-dependent scattering
mechanisms such as electron-electron scattering and electron-
phonon scattering, etc. For simplicity we set p(T) — po x T.
Certainly we can add some T2, T3 scaling terms at low tem-
peratures to improve the accuracy of the results, but they
do not significantly affect the key features we care about
in MR, particularly the NMR at high temperatures. Then
the corresponding relaxation time has the formula t(7) =
1/(C + AT), and the formulas for mobility can be written as

e 1 e 1
R e Cot AT M Co+ AT

The parameters of Eq. (15) along with the carrier concentra-
tions and the maximum anomalous Hall conductivity are set
in Table I. Using the magnetization curve and relaxation time
settings described above, the temperature- and magnetic field-
dependent MR curves of our two-band model are depicted in
Fig. 2, corresponding to different types of magnetic materials.

Antiferromagnetic or paramagnetic materials: o = 0.1.
The MR curves are quadratic, showing positive values at low
temperatures and negative values at high temperatures, as
depicted in Figs. 2(a) and 2(d). As discussed in Sec. IIT A,
a linearly field-dependent AHA with a significant slope y [as
shown in Fig. 1(a)] is beneficial for achieving NMR. We found
that the NMR reaches its maximum at 130 K, coinciding with
the maximum value of AHA, suggesting that the enhanced
AHA is responsible for the transition of MR from positive

5)

to negative. This MR behavior, transitioning from positive to
negative, is also observed in the antiferromagnetic material
LaMn,Sb,, where Mn occupancy x controls the strength of
magnetization and thus the AHA [38].

Soft magnets: o = 0.8. The MR curves consist of two
segments. At low temperatures, they initially decrease in the
first segment (almost invisible at extremely low temperatures
like 5 and 10 K), followed by a gradual increase in the second
segment, as depicted in Fig. 2(b). At high temperatures, MR
curves exhibit a rapid decrease in the first segment followed
by a slower decrease in the second segment, as illustrated in
Fig. 2(e). The distinct MR behaviors in the two segments stem
from the growth patterns of magnetization. The first segment
aligns with the rapidly increasing magnetization which leads
to a quick AHA rise and thus enhances the negative slope of
NMR. The second segment corresponds to the saturated mag-
netization that indicates a relatively stable AHA, lessening
its impact on the negative slope of MR. This type of NMR
resembles that found in materials such as SrlrO; [39] and
Nip gFeq» [40], suggesting that our proposed mechanism may
underlie these observations.

Ferromagnets with magnetic coercivity: o = 500. The hys-
teresis magnetization loops exhibit a rectangularlike shape at
low temperatures and a rhomboidlike shape at high temper-
atures, as depicted in Fig. 1(c). At high temperatures, with
a slight positive slope y and a large AHA in the hystere-
sis loops, the MR curves display negative and linear field
dependence with a bowtie shape, as shown in Fig. 2(f). At
low temperatures, MR curves are quadratic and positive and,

TABLE 1. Parameters of our two-band models.

o 0.1 0.8 500
e/m, (10"'Ckg™") 3 2 2
e/my (10''Ckg™") 3 2 2

Ce (ps™) 1.4 1.4 1.4
Ch (ps™) 1.7 1.7 1.7
Ac (psT' K1) 0.303 0.303 0.303
Ap (ps™ K1) 0.300 0.300 0.300
nee (107 C/m?) 3.6 3.6 3.6
nye (107 C/m?) 4.0 4.0 4.0
(62), (2 'em™) 180 180 180
AHA,,« (130 K) 0.16 0.40 0.38
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a=0.1 a=028 a =500
a 20% b
0% ( ) ° ( ) 20%
K
. 10% Zak
= . [ 50K
= 20% 10% ;(JK
0”0
-10%
-5 0 5 -5 5 -5 0 5
B(T) B(T) B(T)
0%
T @ " @ O
0 T00K
110K
= -1% -5% 130K
= 90 — 150K
= 2% 160K
-10%
-2% -4%
-15%
5 0 5 -5 5 -5 0 5
B(T) B(T) B(T)

FIG. 2. Field- and temperature-dependent MR. (a), (d) @ = 0.1, MR curves exhibit quadratic field dependence, showing positive values at
low temperatures and negative values at high temperatures. (b), (¢) @ = 0.8, MR curves consist of two segments: initially dropping and then
rising below 70 K, or continuously dropping with different slopes above 70 K. (¢), (f) @ = 500, MR curves are positive and quadratic below
70 K, with the inset highlighting behaviors at B. = 3 T. Above 70 K, MR curves turn negative and linear, displaying a bowtie shape.

furthermore, they jump at the coercive field B, at 5 K but in
contrast, drop at B, at 30 K, as shown in Fig. 2(c). All these be-
haviors are consistent with those observed in Co3zSn,S, [11].
The underlying reason for the reverse transition direction
of the MR at the coercive field B, at 5 and 30 K can be
elucidated by the expression for D(B) in the denominator

of Eq. (8). At B, the sign change of 0;‘), induces the sign

change of Ze[(,u%lnh — M%ne)B + u?u%(nh — ne)B3]Uj3,. Since

the mobility is much less than 1 m?/(V's) (as observed in
Co3Sn,S; [471), (uyny — wine)B > plus(ny — ne)B?, yield-
ing D(B) ~ Ze(u,%nh - ugne)Bajg, + C(B)O’)‘g,z. With the mo-
bility settings provided in Table I for & = 500 at 5 K, (uin, —
wrn, )Bo;‘y is positive when M and B are antiparallel, and neg-
ative when they are aligned parallelly, resulting in a decrease
in the denominator of p,, and a jump in MR at B... Conversely,
at 30 K, (ujny — puin.)Bo}, is negative when M and B are
antiparallel, and positive when they are aligned parallelly,
resulting in an increase in the denominator of p,, and a drop
in MR at B,.. This suggests that the temperature dependence of
mobility, which may cause the sign change of (u2n;, — u?n,),
potentially contributes to the reverse transition direction of
MR at the coercive field at different temperatures.

B. Temperature-dependent magnetotransport
in single-band models

In addition to the multiband cases, single-band cases also
deserve considerable discussions. The single-band conductiv-
ity is expressed as [31]

o [ A
Oxx ny + GX)’
o=| , A 0 , (16)
o.—0 0,
yx xy Yy

where 09 = 0] =09/(1 +tan’0), 09 = —0 = optan6/
(1 + tan”6), and the corresponding longitudinal resistivity is

given by

. £0
" (1+tan6 tan )2 + tan2 9’

Pxx a7
where tan® = uB and tan % = ag, /0% (0). Tt is important to
mention that tanf = uB corresponds to the hole-type sin-
gle band, while for the electron-type single band, tan6 =
—uB. Specifically, this means that tan 6 > 0 for the hole-type
band and tan6 < O for the electron-type band when B > 0.
Meanwhile, tan ¢+ assumes either a positive or negative sign
depending on the specific material when B > 0 and the mag-
netization is parallel to B. Consequently, there are a total
of four cases with different signs of tan6 and tan®, but
their product tan 6 tan ¢ falls into either of two categories:
positive or negative, as illustrated in Table II. Thus, the dis-
cussion of p,, is categorized into two cases, tan6 tan v < 0
ortan @ tan ¥ > 0. For convenience, we keep the sign of tan ¥
but change the sign of tan # according to the band type.
Linear and constant magnetization curves without tem-
perature dependence have been employed in the single-band
model introduced in Ref. [31]. Here, we take into account
the temperature dependence of mobility and magnetization
for the single-band model to explore previously undiscovered

TABLE II. Four different combinations of signs for the ordinary
Hall angle tan 6 and the anomalous Hall angle tan ¢ when B > 0 and
the magnetization is parallel to B.

Hole Hole Electron Electron
tan 0 + + - -
tan O + — + —
tan 6 tan + — — +
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a=0.1 a = 500
5% 4%
2% (a) (C)
5K
0% 2% —10K
a1 —30K
= 1% ’ 50K
. " 70K
0% »
0% -5% / \
-2%
-5 0 5 -5 0 5
B (T) B (T)
0% N
0% ’ 2% ~(f)
T00K
0y 110K
x© -5% 0% 130K
= 0.5% —150K
2% - —160K
10% o
1% b g~
20 0 20
-5 0 5 -5 5 -5 0 5
B (T) B (T) B (T)

FIG. 3. Field- and temperature-dependent MR curves of the electron-type single band. (a), (d) « = 0.1. MR curves are quadratic and
positive below 70 K, while negative above 100 K. In a wider field range, they rise and turn positive again, as shown in the inset of (d). (b), (e)
o = 0.8. MR curves consist of two segments. In the first segment, they all drop down (the first segment is almost invisible at extremely low
temperatures). In the second segment, they rise below 130 K or initially drop down above 150 K but rise again in a wider field range, as shown
in the inset of (e). (c), (f) « = 500. The MR curves are positive with a bowtie shape and linear characteristic below 130 K. With increasing
temperature above 150 K, the bowtie MR curves become negative but rise again in a wider field range, as shown in the inset of (f).

properties. We still set (a;‘y)s to be 180 Q7 'cm™! as we did
in Table I (thus tan ¥ > 0) and set ne = 7.6 x 107 C/m? to
maintain the total carrier concentration the same as that in
our two-band model. For the mobility, we employ the same
formula as in Eq. (15), with u = %ﬁ e/m is set to be 3,
2,2 (in units of 10'" Ckg™") for =0.1, 0.8, 500, respectively,
and C, A are set to be 1.7 ps~! and 0.3 ps~—! K~!. For the
magnetization curves, we continue to use the same forms in
Fig. 1.

We focus on the electron-type case here due to its com-
plexity and defer the discussion of the hole-type case in
Appendix B. The calculated MR and Hall curves are plotted
in Figs. 3 and 4. In the electron-type case (corresponding
to a negative tanf), however, the MR may be negative at
low fields (with magnetization parallel to B), as observed in
Figs. 3(b), 3(d), 3(e), and 3(f), distinctly different from the
positive MR at low fields mentioned in Ref. [31]. To clarify
this phenomenon we need to analyze AHA and mobility w(7)
more carefully. We start with the positive half of the magnetic
field (the negative half’s results are naturally obtained by
symmetry). For all three forms of magnetization, the corre-
sponding AHA at low fields can be expressed using the same
formula:

tand =¢+yBO0< ¢ <1,y >0), (18)

where ¢ = 0 for the magnetization curves of ¢ =0.1,0.8
and ¢ > 0 for the hysteresis magnetization curves of o =
500. The longitudinal resistivity is given by p.. = po/[(1 +
tan O tan ) + tan® 9] with tand = —puB < 0 and tan ¥ > 0
(thus tan 6 tan ¥ < 0), and the derivative of p,, is expressed
as

dpxx — /OON
dB [(1 +tan @ tan ®)? + tan? 9]’

19)

N = —-2(1 +tan6 tan ¥ )(y tanf — u tan ) — 2y tan
=2u(l —puBtan¥)2 tan} — ¢) — 2y tan

=2BQuy —y* — n*¢*) +2¢(n—y) +0, (20)

where O is the higher-order term in B expressed as O =
—6u*¢yB? — 4u?y*B3. Dropping this nonpositive term does
not affect the analysis of NMR presented below. Thus, by
retaining the terms of N to the first order in B, we obtain

N =2BQuy —y*> —p*¢tH+20(n—y). (1)

Now we divide the discussions into two cases: o = 0.1, 0.8
with £ = 0 and @ = 500 with ¢ > 0.

Antiferromagnetic, paramagnetic materials, or soft mag-
nets: { = 0. Equation (21) can now be simplified to

N =2By(2n —vy). (22)

If y is large enough (determined by the shape of the mag-
netization curve) or u is sufficiently small (achievable at high
temperatures) such that y > 2u, we anticipate that N < 0 and
the MR is negative at low fields. For example, in the case of
o = 0.1, the MR is positive at low temperatures as shown in
Fig. 3(a) since 2u is larger compared to y. However, at high
temperatures with p sufficiently small, the MR turns negative
at low fields, as shown in Fig. 3(d). In the case of @ = 0.8,
y is large enough that negative MR is attainable even at low
temperatures, as depicted in Fig. 3(b).

Ferromagnets: ¢ > 0. Scrutinizing the first term
2BQ2uy —y* — u¢?) of N in Eq. (21), we find it to be
negative when

w(T) < é(l —J1=¢9). (23)
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FIG. 4. Field- and temperature-dependent Hall curves of the electron-type single band. (a), (d) @ = 0.1. The sign reversal of the Hall
resistivity is obtained by increasing the temperature without a sign change of the anomalous Hall conductivity. (b), (¢) @ = 0.8. The Hall
resistivity also shows a transition from negative to positive field dependence. (c), (f) « = 500. The Hall curves form hysteresis loops.

Under the condition of Eq. (23), the second term u — y of N
becomes

W(TY—y < %(1—@)—1/
— %W(m— 1) <0. (24)

Therefore, when the temperature is sufficiently high, satisfy-
ing Eq. (23), N is negative, leading to negative MR. In the
case of « = 500 with an extremely small y, negative MR does
not appear above B, until the temperature reaches 150 K, as
shown in Figs. 3(c) and 3(f).

We can also analyze the derivative of the longitudinal resis-
tivity beyond low-field regions. If the magnetization evolves
slowly enough at a certain field point, we can expand the AHA
to the first order in its neighborhood using the same formula
in Eq. (18). Here, ¢ and y are variable, depending on the field
point at which the AHA is expanded, and Eq. (20) still applies.
As the field increases, the magnetization gradually saturates
at high fields. In this case, y tends to decrease to zero, and
tan v approaches a constant value .. Thus, the asymptotic
expression of Eq. (20) can be reduced to

N =2pg(1 — uBg.). (25)

N > 0 if the mobility is not too large, and thus the deriva-
tive of p,, is positive. This explains the rising behavior of
MR at sufficiently large fields, even though its field depen-
dence is negative at low fields, as depicted in the inset of
Figs. 3(d)-3(f). The Hall curves for the electron-type case are
also plotted, as shown in Fig. 4.

C. Approach to obtain large negative MR

Large negative MR is another significant phenomenon that
has garnered considerable interest [12,14]. We explore the
approach to obtain large NMR in both the hole-type single-
band model and two-band model in the following text. An

explicit conclusion is drawn that with the AHA remaining un-
changed, sufficiently large mobility facilitates the emergence
of extremely large NMR.

We apply the magnetization curve of Fig. 1(c) at 150 K
but without a coercive field, as shown in Fig. 5(a), to our
single-band and two-band models. Figures 5(b)-5(e) depict
the calculated NMR and Hall curves. The MR curves of the
single-band and two-band models differ significantly, but sur-
prisingly, their Hall curves are almost identical, indicating the
same anomalous Hall nature.

For the single-band model, we use the same parameters as
those in Sec. III B, except for the mobility and the anomalous
Hall conductivity, which are controlled by the scaling factor A.
When A = 1, the mobility and the anomalous Hall conductiv-
ity are identical to those in Sec. III B. By increasing X, both the
mobility and the anomalous Hall conductivity are multiplied
by A simultaneously, keeping the AHA unchanged. Fig-
ure 5(b) shows the NMR for different values of A. It is evident
that the higher the mobility, the larger the NMR becomes. To
illustrate this, we adopt Eq. (17) and the MR can be written as

— pxx(B) - pxx(o)
Pxx(0)

= (1 + tan® 99)/[(1 + tan @ tan ¥y)* + tan® 6] — 1,
(26)

MR

where tan?® is the AHA, with tan ¥, being its value at
zero field. Higher mobility results in a larger tanf in the
denominator, leading to larger NMR. This type of large NMR
resembles that observed in TbPdBi [14].

For the two-band model, MR curves for different values
of X are presented in Fig. 5(c). When A = 1, MR is negative
and exhibits linear field dependence. When A =5, MR is
initially negative but gradually rises and becomes positive, as
shown in the inset of Fig. 5(c). These two cases align with the
discussion in Sec. III A regarding negative MR. For larger A,
MR is initially positive, reaches a peak, and then drops down
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FIG. 5. (a) The spontaneous magnetization without a coercive field at 150 K, which is adopted in (b)—(e). (b)—(e) The MR and Hall curves
with increasing mobility while keeping the AHA unchanged (the anomalous Hall conductivity increases simultaneously with the same scaling
of mobility). (b) The negative MR of the hole-type single band. (c) Various MR curves of the two-band models. Large NMR is achievable
with high mobility, as shown in (b) and (c). (d), (¢) The Hall curves of the single-band and two-band models. Surprisingly, the Hall curves are

nearly identical, even though the MR curves are distinctly different.

with increasing field. An extremely large NMR approaching
—100% is achievable with A =200 at B = 20 T. This type
of large NMR with a peak is reminiscent of observations in
BaMn,Bi, [12].

To elucidate the observed peak and large NMR, we analyze
MR using p,, in Eq. (10):

px(B) + tan® ¥) _
Prx g

where x = 14+ (uB)*> > 1, g(x) = 1/x + tan® ¥x, and tan ®
is the AHA with tan ¥ being its value at zero field. If the
growth rate of tan ¢ is much smaller compared to x (which
is the case with high mobility), regarding tan ¥ as a constant
is a reasonable approximation. Under this approximation we
analyze the monotonicity of 1/x + tan? #x in MR:

J(x) = (*tan’ ¥ — 1)/x% (28)

g(x) <0 when 1 <x<1/|tan?¥?| and ¢ (x) > 0 when x >
1/] tan ¥#|. Consequently, MR increases, encounters its peak at
around x, = 1 4+ (uB.)*> = 1/|tan ¥|, and drops down there-
after, with B, being the field at which the peak is located. With
larger A (larger mobility), a smaller B, is needed, as observed
in Fig. 5(c). Furthermore, we notice that g(x) increases rapidly
with x without an upper limit when x > x,.. Larger mobility
results in a larger x, contributing to a larger g(x), and thus
extremely large NMR is obtainable.

MR = 1 1, 27)

IV. FIRST-PRINCIPLES CALCULATION OF
MAGNETOTRANSPORT
OF CO3SH2S2

In Sec. IIT A we found that the magnetoresistance curves
for the case of @ = 500 are quite consistent with the observa-
tions of the realistic material Co3Sn,S,. So moving beyond

model analysis, we employ first-principles calculations for
Co3Sn,S; to quantitatively study its magnetotransport as our
testing example.

Recognized as a magnetic Weyl semimetal with a stacked
kagome lattice structure, Co3Sn,S; has attracted considerable
attention for its large anomalous Hall angles (AHA) and un-
usual magnetotransport behaviors, whose mechanisms are not
fully understood. In this study, we apply our first-principles
methodology to explore these magnetotransport behaviors.
The band structure of Co3Sn,S;, as shown in Fig. 6(a), is
calculated using VASP [51] with the Perdew-Burke-Ernzerhof
(PBE) exchange-correlation potential. Spin-orbit coupling
(SOC) is included. The lattice constants a = b = 5.3683 A
and ¢ = 3.1783 A are adopted from experimental data [58].
The positions of the interior atoms are updated by relaxing the
crystal structure. The maximally localized Wannier functions
for 3d orbitals on Co, 5p orbitals on Sn, and 3p orbitals on S
are used as the basis, and the corresponding TB Hamiltonian
is constructed using the WANNIER90 package [59]. The Fermi
surface of Co3Sn,S, displayed in Fig. 6(b) ensures that both
the hole and electron carriers contribute to the transport. The
saturated AHC, calculated when the magnetic moments are
aligned with the magnetic field, is obtained using WANNIER-
TOOLS [54], as depicted in Fig. 6(c), with a notable value of
1205 S/cm at the Fermi level. This value closely approximates
the findings in Ref. [2] and the experimental value reported in
Ref. [44]. Equations (7) and (14) are employed to produce
magnetization curves similar to the experimental curves [43],
by setting o« = 500 and an appropriate coercive field. The
temperature-dependent relaxation times are obtained by fit-
ting to the experimental magnetoresistance curves and Hall
resistivity curves at different temperatures [20].

Figures 7 and 8 present the MR and p,, curves at 2, 30, and
150 K, set with appropriate relaxation times. For comparison,
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FIG. 6. First-principles calculations of band structure and anomalous Hall conductivity of Co3Sn,S,. (a) The band structure of Co3Sn,S,
with spin-orbit coupling included. (b) Fermi surface of Co3;Sn,S,. The purple pocket represents the hole carrier, and the blue pocket represents
the electron carrier. (c) Energy dependence of the anomalous Hall conductivity. The value at O eV is consistent with experimental results.

the experimental curves replotted from Ref. [11] are shown in
Appendix B. At 2 and 30 K, the MR curves are positive and
quadratic in field dependence. In contrast, at 150 K, the MR
curve becomes negative and linearly field dependent with a
bowtie shape, consistent with experimental results. The plots
of py and oy, are available in Appendix B. At 2 K, with
7, = 0.328 ps and 7, = 0.392 ps, the MR is smaller in the
magnetization configuration antiparallel to the field than in
the parallel case, leading to a jump at the coercive field, as
shown in Fig. 7(a). Conversely, at 30 K, with 7, = 0.208 ps
and 7, = 0.192 ps, the MR drops at the coercive field, as
shown in Fig. 7(c). These properties align with the exper-
imental results [11,47] with no need for fine tuning of the
relaxation times. To explain these properties, we notice that
at 2 K, 7, < 7, but at 30 K, 7;, > 7., indicating that initially
7, is larger but decreases faster than 7. This results in a
sign change in (uflnh — uzne), as discussed in Sec. IIT A,
accounting for the MR transitioning from a jump to a drop at

(a) (b) 2
200% =1
(&)
. ;
= c o
= 100% =
S-1
0% 5
2100 10
B(T)
(© (@ 4
0,
80% =
(&)
- ;
g 0
$-2
0% 4
21000 10 21000 10
B(T) B(T)

FIG. 7. MR and Hall resistivity calculated for Co3Sn,S, from
first-principles calculations. The insets of the MR plots show the
behaviors at B.. (a), (b) MR and Hall resistivity at 2 K. (c), (d) MR
and Hall resistivity at 30 K.

B.. Regarding the calculated Hall resistivity py, in Figs. 7(b)
and 7(d), the shapes of the hysteresis loops exhibit trends
similar to those reported in Ref. [31]. Additionally, we want
to point out that the calculated MR at 2 K is larger compared
to the experimental value of Ref. [31]. This discrepancy is
likely due to the absence of considerations for Berry curvature
and orbital moment corrections to the ordinary conductivity
tensor [60-63], which may slow the reduction of o with
increasing field and thus suppress the growth of MR.

At 150 K, the relaxation time significantly decreases,
resulting in a reduced value of the zero-field longitudinal
conductance. Consequently, this leads to an increase in the
AHA. As mentioned in Sec. III A, a large and positive field-
dependent AHA helps to enlarge the negative MR. Figure 8
shows the plot of MR and Hall resistivity with 7, = 0.022 ps
and t, = 0.016 ps. The negative MR achieves a value of
—2.6% at B =15 T with an AHA of 0.24. Additionally, the
NMR curve exhibits significant linear characteristic. The py,
plot is also consistent with the supplementary information of
Ref. [11] both in shape and value. The consistency between
the calculations and experiments for these unusual behaviors
further confirms the validity of our approach.

V. CONCLUSIONS

In conclusion, we have developed a first-principles
methodology to study magnetotransport in multiband
magnetic materials. This approach combines field- and
temperature-dependent ordinary conductivity and anomalous
Hall conductivity. Initially applied to two-band models and

(a) 1% (b) 100
0% ‘g 50

()

& 10 "
2-1/0 % 0
-2% S -50
-3% -100

-10 0 10 -10 0 10
B(T) B(T)

FIG. 8. MR and Hall resistivity calculated for Co3;Sn,S, from
first principles at 150 K. (a) MR. (b) Hall resistivity.
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single-band models, we showcased a variety of MR and Hall
curves with different magnetization forms, and meticulously
analyzed the mechanisms underlying these unusual behaviors.
Subsequently, we applied this method to the realistic magnetic
material CoszSn,S, using first-principles calculations. The
resulting unusual magnetotransport behaviors are consistent
with experimental results, indicating the validity of our
calculations. Our methodology may serve as a potent tool to
study the magnetotransport properties across a wide range of
magnetic materials. For further research, consideration could
be given to the field dependence of residual resistivity py due
to spin disorder scattering [64] or corrections to the ordinary
conductivity induced by Berry curvature and orbital moment.
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APPENDIX A: MODEL SETTINGS

1. Settings for o

For the two-band model, the total conductivity tensor is the
sum of the ordinary part (o,, 6;) and the anomalous part ¢:

where 00 = neep., o) = npep, e is the electron charge,
n., n;, are the carrier concentrations of the electron- and hole-
type bands, i, 1, are the mobilities of the two bands, and
o;‘y (B, T) is the field- and temperature-dependent anomalous

Hall conductivity. The resistivities p,, and p,, in Eqgs. (8)
and (9) of the main text are obtained by p = o~!.

2. Average spin by the mean field method and the production
of magnetization curves

To simulate the magnetization curves, we have adopted the
average spin of the Ising model in Eq. (14). The Hamiltonian
of the Ising model is given by

N
H=-J]) 5S—-B) S,

(i.) i

(A5)

where J is the exchange coupling strength. Ignoring the terms
representing the fluctuation of spin (S; — S)(S; — S), S:S; is
approximated as

SiS; =[S+ (Si — DS+ (S; — 9
=82+ 55 —8) = 5(S; = 8) + (S = 8)(S; = 5)
~ 524+ 8(S;—8) -5, -3

= -5 +8(Si +5)). (A6)
Then Eq. (AS) can be written as
N
H=-J) [-8*+5(S;+S)I—B)_S;
(i,J) i
1 _

= —NgJ5?> = (B+qJ3)S.. A7
5Ng Z( +4J3) (A7)

The single-particle partition function and the total partition
function are

7Z: = e*%ﬁ‘]/SerﬁBcfr + e*%ﬂqmz*ﬁlfcn’ (A8)

Z =7V = e NS 2 cosh(BBr)]", (A9)

where 8 = 1/kgT, Bet = B + qJS. The free energy is given
by
F(T,B) = —kgT InZ

= 1NgJ§?* — NkgT In(2 cosh{B[B + ¢J5)1}.

-2

o=0,+0,+0", (AD)
B 1 —u.B
1 g2 1 2p2
oo=ol| 11N b (A2)
|1+ uBz 1+ M%Bz_
1 wpB ]
1+ u2B? 14 p2B?
o, = U;(l) _lﬁl’b él’h , (A3)
|1+ u2B> 14 ulB? |
0 oA (B, T)
— xy
GA - —O'A,(B, T) 0 ’ (A4)
xy
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FIG. 9. Magnetization curves produced by % = § tanh (aB), where « is the factor controlling the saturation speed. Different colors
of curves represent different strength values of the magnetic field. (a) o = 0.1. (b) « = 0.8. (c) & = 500.
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FIG. 10. Field- and temperature-dependent MR and Hall curves of the hole-type single band. (a), (d) « = 0.1. The MR curves exhibit
negative and quadratic field dependence, while the Hall curves display positive and linear field dependence. (b), (¢) @ = 0.8. The MR and
Hall curves consist of two segments. The MR curves drop more rapidly in the first segment and more slowly in the second segment (the first
segment is almost invisible at extremely low temperatures). The Hall curves rise rapidly in the first segment and slow down in the second
segment, exhibiting behaviors similar to that of magnetization curves. (c), (f) « = 500. The MR curves exhibit negativity with a bowtie shape
and linear characteristic. The Hall curves form hysteresis loops similar to those of the magnetization curves. Additionally, the Hall resistivity
increases with temperature in all three cases.

Finally, we obtain the equation that the average spin satisfies:

N\ 3B

_ 1 /0F _
S = ——( ) = tanh[B(B + ¢JS)].
T.N

(A11)

This equation can be solved numerically. Considering the case
with B = 0 we find that above T, = qJ/kp the average spin
§ = 0. Thus, T, represents the Curie temperature. By applying

Eq. (14) and set different values of «, we can produce the
magnetization curves as shown in Fig. 9.

APPENDIX B: SUPPLEMENTAL PLOTS FOR THE
HOLE-TYPE SINGLE-BAND MODELS, TWO-BAND
MODELS, AND Co3Sn,S, SEMIMETAL

In Sec. IIIB, we analyzed the magnetotransport of
electron-type single-band models. Now we turn to the
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FIG. 11. Field- and temperature-dependent Hall resistivity curves of our two-band model. (a), (d) « = 0.1. (b), () « = 0.8. (¢), (f) &« =

500.
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FIG. 12. Longitudinal resistivity and Hall conductivity for Co3Sn, S, from first-principles calculations. (a), (d) Longitudinal resistivity and
Hall conductivity at 2 K. (b), (e) Longitudinal resistivity and Hall conductivity at 30 K. (c), (f) Longitudinal resistivity and Hall conductivity

at 150 K.

hole-type case, as shown in Fig. 10. For the hole-type case
(which corresponds to positive tan 8), the MR plots for linear
magnetization (¢ = 0.1) and hysteresis magnetization (o« =
500) are similar to Figs. 2(a) and 1(a) in Ref. [31], as depicted
in Figs. 10(a) and 10(c). In our plots, as the temperature
increases, the NMR reaches its maximum strength with the
maximal AHA at 130 K in the former case, whereas it con-
tinues to grow in strength up to 160 K in the latter case.

As for magnetization curves with o = 0.8, the MR curves
consist of two segments, as shown in Fig. 10(b). The curves
drop more rapidly in the first segment and more slowly in the
second segment. At extremely low temperatures below 10 K,
where the AHA is small, the first segment is nearly invisible.
Additionally, the NMR also reaches its maximum strength
at 130 K. Overall, the MR shows a negative field-dependent
behavior with tan 6 tan % > 0, consistent with Ref. [31]. This
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FIG. 13. Experimental data of MR and Hall curves for Co;Sn,S,, replotted from Ref. [11]. (a), (d) MR and Hall curves at 2 K. (b), (¢) MR
and Hall curves at 30 K. (¢), (f) MR and Hall curves at 150 K.
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behavior can be illustrated using Eq. (26):

1 4 tan? 99

MR = —1
(1 +tan® tan®)? + tan? 0

. 1 — (1 4 tan O tan ¥)? + tan? ¥y — tan® ¥
N (1 4 tan 6 tan ¥)2 + tan? ¥

where tan v, represents the AHA at zero field. Obviously,
tan® 9% — tan® ¥ < 0, and given tan @ tan ¥ > 0 with magne-
tization parallel to B, we have 1 — (1 + tan 6 tan 9#)*> < 0. As
a consequence, the MR is negative. The Hall curves exhibit
similar behaviors to the magnetization curves, as shown in
Figs. 10(d)-10(f).

In Fig. 11 we present the corresponding field- and
temperature-dependent Hall resistivity curves for the two-
band model discussed in Sec. IIl A. And in Figs. 12(a)-12(f)
we present the longitudinal resistivity and Hall conductivity
curves calculated for Co3Sn,S, at 2, 30, and 150 K. The
experimental curves replotted from Ref. [11] are also shown in

. (BD

(@) (b)
200 2K
S $100 50
x e
= = 0
0 150K
-3
10 0 10

FIG. 14. Comparison between experimental and first-principles
calculated MR curves. (a) Experimental MR curves from 2 to 150 K.
Figure taken from Ref. [11]. (b) Our calculated MR curves at 2, 30,
and 150 K.

Fig. 13. For an intuitive comparison, the MR curves from ex-
periments and first-principles calculations are placed together
in Fig. 14.
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