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Automatic quantum circuit encoding of a given arbitrary quantum state
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We introduce an quantum-classical hybrid algorithm, named automatic quantum circuit encoding (AQCE),
that is designed to encode an arbitrary quantum state |�〉 onto an optimal quantum circuit Ĉ composed of a finite
set of single- and two-qubit quantum gates. The algorithm employs an objective function based on the absolute
value of fidelity, F = 〈0|Ĉ†|�〉, which is iteratively maximized to construct an optimal quantum circuit Ĉ with
controlled accuracy. Here, |0〉 denotes a trivial product state in the computational basis of a quantum computer.
The core of this algorithm lies in the sequential determination of an optimal set of two-qubit unitary operators,
identified one by one through the singular value decomposition of the fidelity tensor. Once an optimal set of
operators is determined, including the location of qubits on which each operator acts, elementary quantum gates
are assigned algebraically to these two-qubit unitary operators. Importantly, these procedures are deterministic
without assuming any quantum circuit ansatz and therefore eliminate the need for parameter optimization
of parametrized quantum gates. Through noiseless numerical simulations, we demonstrate the effectiveness
of the AQCE algorithm in encoding ground states of quantum many-body systems, including the spin-1/2
antiferromagnetic Heisenberg model and the spin-1/2 XY model. We also compare these results with quantum
circuit encoding employing predefined circuit structures such as Trotter-like and MERA-like circuit ansatze.
Furthermore, our algorithm extends to classical data, for instance, classical images represented as quantum
states using amplitude encoding. The adaptability enables us to adjust the quantum resource requirement, i.e.,
the number of qubits, by partitioning classical data into multiple distinct segments. This feature holds potential
for near-term applications in quantum machine learning, such as a state preparation of classical data for an
input quantum state to be processed. Finally, using a real quantum device provided by IBM Quantum, we
experimentally validate that a quantum circuit generated by the AQCE algorithm can indeed reasonably represent
the original quantum state.
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I. INTRODUCTION

It has been of crucial importance to find useful applica-
tions of quantum computers specially since the realization of
real programable quantum devices. Considering that currently
available quantum devices are prone to noise and decoher-
ence, it is highly desirable to find applications that can work
effectively with a less number of quantum gates and qubits.
Under these conditions, one of the promising and appealing
approaches is based on variational quantum algorithms [1]
because it can be applied to a wide range of applications
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including quantum chemistry [2–9] and quantum machine
learning [10–19].

In variational quantum algorithms, a quantum circuit is
composed of parametrized quantum gates and these param-
eters are optimized classically on a classical computer to
minimize or maximize a cost function by using standard
optimization techniques such as a natural gradient descent
method [20–22] and a sequential optimization technique [23].
In this context, there is an issue, known as barren plateau (BP)
phenomena, where the partial derivatives of the cost function
vanish exponentially with increasing the number of qubits
and quantum gates [24–27]. The basic tool used to discuss
the BP phenomena is the unitary t-design [28] related to the
representability of a quantum circuit via the Haar measure
[29,30]. The theory of the BP phenomenon [24] claims that
a quantum circuit which shows unitary 2-design exhibits the
BP phenomena. Generally, one tends to increase the num-
ber of quantum gates to represent a quantum state that one
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intends to prepare in the first place. However, such a quantum
circuit with enhanced capability of representation can easily
fall into the class of unitary operators belonging to the unitary
2-design [31,32], thus suggesting the emergence of the BP
phenomena [33].

Several routes have been discussed to alleviate and even
avoid the BP phenomena. A simplest way is to select a cost
function appropriately because the BP phenomena is cost
function dependent [25]. The importance of properly set-
ting the initial variational parameters has also been pointed
out [34,35]. Another route to address the BP issue is to
construct an appropriate quantum circuit. For instance, it
has been reported that a quantum circuit with a struc-
ture like the multi-scale entanglement renormalization group
ansatz (MERA) [36–38], known also as quantum convolu-
tional neural network [39], can avoid the BP phenomena
[40]. However, the tensor network structure of MERA is
originally constructed to capture the quantum entanglement
of a particular quantum state, e.g., in a one-dimensional
critical system, and therefore it is not obvious at all and
is probably not appropriate that the MERA-type quantum
circuit can be applied to general problems. An alternative
approach in this regard is a method such as adapted varia-
tional quantum eigensolver (ADAPT-VQE) [41–45], where
an appropriate quantum circuit is automatically generated
by selecting quantum gates sequentially among a predeter-
mined set of quantum gates accordingly to a problem to
be solved.

Following a similar strategy of the ADAPT-VQE, here in
this paper, we propose a method that constructs an appropri-
ate quantum circuit automatically, named automatic quantum
circuit encoding (AQCE). The AQCE algorithm proposed
here is to construct a quantum circuit Ĉ that approximates
a given quantum state |�〉 such that |�〉 ≈ Ĉ|0〉 with con-
trolled accuracy. Here, Ĉ is composed of a standard set of
quantum gates acting on up to two qubits and |0〉 is a trivial
product state in the computational basis. The algorithm is
not based on a parametrized circuit ansatz but determines
sequentially optimal two-qubit unitary operators, including
an optimal location of qubits on which each unitary operator
acts, by maximizing the fidelity with a technique inspired by
the optimization algorithm in the tensor-network method [38].
A standard set of quantum gates is assigned algebraically to
these optimally determined unitary operators. Therefore, the
AQCE algorithm does not requires any derivatives of a cost
function.

With noiseless numerical simulations, we demonstrate
the AQCE algorithm to encode a ground state of quantum
many-body systems including the spin-1/2 isotropic antifer-
romagnetic Heisenberg model and the spin-1/2 XY model.
We also compare the results with the quantum circuit encod-
ing of the same quantum state onto a quantum circuit in a
given circuit structure (i.e., a quantum circuit ansatz) such
as the Trotter-like [46–48] and MERA-like circuit structures.
Furthermore, we apply this algorithm to encode classical data
that is represented as a quantum state via the amplitude en-
coding [15], demonstrating a potential near-term application
for a quantum state preparation of input data in quantum
machine learning. In addition, we employ a real quan-
tum device provided by IBM Quantum [49] to demonstrate

experimentally that a quantum circuit generated by the AQCE
algorithm can indeed represent the original quantum state
reasonably.

The rest of this paper is organized as follows. The AQCE
algorithm is first introduced in Sec. II. The performance of
this algorithm is then demonstrated by numerical simulations
in Sec. III. The method is first applied to encode the ground
states of the spin-1/2 Heisenberg models in Sec. III A, and the
results are compared with those for the quantum circuit en-
coding of the same quantum states onto quantum circuits with
fixed circuit structures in Sec. III B. The results are also com-
pared with those obtained for parametrized quantum circuit
encoding optimized by a gradient-based method in Sec. III C.
The application of the AQCE algorithm to classical data such
as a classical image represented by a quantum state via the
amplitude encoding is also discussed in Sec. III D. Moreover,
the AQCE algorithm is partially demonstrated experimentally
with a real quantum device in Sec. IV. Finally, the paper is
concluded with a brief summary in Sec. V. The details of
the gate assignment of unitary operators acting on a single
qubit and on two qubits are described in Appendices A and B.
Additional information for the experimental demonstration is
provided in Appendix C.

II. QUANTUM CIRCUIT ENCODING ALGORITHM

We first introduce the fidelity as an objective function for
quantum circuit encoding in Sec. II A. We then describe how
to determine a unitary matrix of a quantum gate operation by
maximizing the objective function in Sec. II B. Based on these
techniques, we introduce a prototype of the algorithm for the
quantum circuit encoding in Sec. II C. We also explain how to
evaluate the fidelity tensor elements on a quantum computer
in Sec. II D. Although the encoding algorithm can be applied
in any cases, it might meet some difficulty when the fidelity
tensor is essentially zero due to a particular symmetry reason.
We discuss this issue and introduce an alternative approach
to overcome this problem in Sec. II E. This approach can be
used for the initialization of the quantum circuit encoding.
Combining with these methods in Secs. II C and II E, we
finally introduce an algorithm, i.e., the AQCE algorithm, to
construct a quantum circuit automatically in Sec. II F.

A. Objective for quantum circuit encoding

We consider a quantum state defined on L qubits that
are enumerated as L = {1, 2, ··· , i, ··· , L}. Let X̂i, Ŷi, and
Ẑi denote the x, y, and z components of the Pauli opera-
tors, respectively, acting on qubit i. We also introduce the
notation Îi for representing the identity operator on qubit i.
Let |σi〉i = |0〉i and |1〉i denote the eigenstates of the Pauli
operator Ẑi at qubit i, i.e., Ẑi|0〉i = |0〉i and Ẑi|1〉 = −|1〉i.
The Hilbert space HL on the L-qubit system L is spanned
by the basis {|σ1σ2 ··· σL〉}, where |σ1σ2 ··· σL〉 = ⊗L

i=1|σi〉i.
We can label the state |σ1σ2 ··· σL〉 by introducing the integer
number

n =
L∑

i=1

2i−1σi (1)

as {|n〉 = |σ1σ2 ··· σL〉}2L−1
n=0 in the Hilbert space HL =

span{|σ1σ2 ··· σL〉}.
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Let |�〉 be an arbitrary quantum state defined on L and let
us assume that |�〉 is normalized. In addition, we can assume
that |�〉 is given generally by a linear combination of many
different quantum circuit states, i.e.,

|�〉 =
�∑

γ=1

χγ |ψ (γ )〉, (2)

with

|ψ (γ )〉 = ψ̂ (γ )|0〉, (3)

where χγ and ψ̂ (γ ) with γ = 1, 2, ··· , � are complex-valued
coefficients and quantum circuits, respectively. Although
〈ψ (γ )|ψ (γ )〉 = 1, i.e., ψ̂ (γ ) being unitary, here we do not
assume that the states |ψ (γ )〉 with different values of γ are mu-
tually orthogonal. Note that Eq. (2) may include the simplest
and most extreme case where the circuits ψ̂γ are composed
simply of products of Pauli-X operators

P̂{σi}L
i=1

≡
L∏

i=1

X̂ σi
i , (4)

i.e., P̂{σi}L
i=1

|0〉 = |σ1σ2 ··· σL〉, as in the case of a quantum state
representing a classical image via the amplitude encoding dis-
cussed in Sec. III D. The objective here is to represent |�〉 by a
quantum circuit Ĉ|0〉 that is a priori unknown. The algorithm
proposed here constructs a quantum circuit Ĉ that approxi-
mately represents |�〉 ≈ Ĉ|0〉 with controlled accuracy. We
should note that this can be considered as a special case in
the variational quantum state eigensolver for a density oper-
ator reported in Ref. [50], although the optimization method
introduced here is different, as it will be described below.

For this purpose, we consider as an objective function to be
maximized the absolute value of the overlap F between |�〉
and Ĉ|0〉, i.e.,

F = 〈0|Ĉ†|�〉. (5)

Assuming that the quantum circuit Ĉ is composed of a product
of unitary operators Ûm, i.e.,

Ĉ† =
M∏

m=1

Û†
m = Û†

1 Û
†
2 ··· Û†

M, (6)

F can be expressed as

Fm = 〈�m−1|Û†
m|�m+1〉, (7)

where we have introduced the subscript m explicitly for the
reason clarified below and the quantum states |�m〉 and 〈�m|
defined, respectively, as

|�m〉 =
M∏

k=m

Û†
k |�〉 = Û†

mÛ†
m+1 ··· Û†

M |�〉 (8)

and

〈�m| = 〈0|
m∏

k=1

Û†
k = 〈0|Û†

1 Û
†
2 ··· Û†

m, (9)

with |�M+1〉 = |�〉 and |�0〉 = |0〉.

B. Determination of unitary operators

To appropriately determine each unitary operator Ûm com-
posing the quantum circuit Ĉ, here we propose a method
inspired by a tensor-network algorithm [38] by introducing
a fidelity tensor operator.

Let Im = {i1, i2, ··· , iK} with 1 � i1 < i2 < · · · < iK � L
be a subsystem in the total L-qubit system L and assume
that an unitary operator Ûm is defined on the subsystem Im.
By labeling the basis states {|n〉 = |σi1σi2 ··· σiK 〉}2K −1

n=0 on the
subsystem Im, i.e., n = ∑K

k=1 2k−1σik , the unitary operator Ûm

can be represented generally as

Ûm =
2K −1∑
n=0

2K −1∑
n′=0

|n〉[Um]nn′ 〈n′|, (10)

where Um is a 2K × 2K unitary matrix and [A]nn′ denotes
a matrix element in the nth row and the n′th column of
matrix A.

We shall now introduce the following fidelity tensor oper-
ator F̂m:

F̂m = TrĪm
[|�m+1〉〈�m−1|], (11)

where Īm is the complement of the subsystem Im in L
and TrAÔ indicates the trace of operator Ô over the
Hilbert space spanned by the basis states for subsystem A =
{i1, i2, ··· , iA} ⊂ L, i.e.,

TrA[Ô] =
1∑

σi1 =0

1∑
σi2 =0

· · ·
1∑

σiA =0

〈
σi1σi2 · · · σiA

∣∣Ô∣∣σi1σi2 · · · σiA

〉
,

(12)
with |σi1 · · · σiA〉 = |σi1〉i1 |σi2〉i2 · · · |σiA〉iA and 1 � i1 <

i2 < · · · < iA � L. Since F̂m is an operator defined on the
Hilbert space spanned by the basis states for the subsystem
Im, one can represent the operator F̂m in the matrix form as

F̂m =
2K −1∑
n=0

2K −1∑
n′=0

|n〉[Fm]nn′ 〈n′|. (13)

We can now readily find that

TrIm [F̂mÛ†
m] = 〈�m−1|Û†

m|�m+1〉 = Fm. (14)

We also find that

TrIm [F̂mÛ†
m] = tr[FmU†

m], (15)

where trA indicates the trace of matrix A. Note that Fm is
a 2K × 2K matrix and is neither Hermitian nor unitary in
general.

Let us now perform the singular-value decomposition
(SVD) for Fm as

Fm
SVD= XDY , (16)

where X and Y are 2K × 2K unitary matrices, and D is a non-
negative real diagonal matrix with its diagonal elements being
the singular values dn (n = 0, 1, 2, ··· , 2K − 1) of matrix Fm.
Note that the m dependence of these matrices X , Y , and D is
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implicitly assumed. We then find that

Fm = tr[XDYU†
m] = tr[DZ] =

2K −1∑
n=0

dn[Z]nn, (17)

where Z = YU†
mX is a unitary matrix. The absolute value of

Fm thus satisfies that

|Fm| =
∣∣∣∣∣∣
2K −1∑
n=0

dn[Z]nn

∣∣∣∣∣∣ �
2K −1∑
n=0

dn|[Z]nn|. (18)

The equality in Eq. (18) holds if and only if arg[[Z]nn]
is the same for all n, where arg[c] denotes the phase
of complex number c. Noticing also that

∑
n′ |[Z]nn′ |2 =∑

n′ |[Z]n′n|2 = 1 because Z is unitary, the absolute value
of Fm is thus maximized by choosing [Z]nn′ = δnn′ [51],
i.e., Z = I, where I is the identity matrix. Hence, the uni-
tary matrix Um that maximizes the absolute value of Fm is
obtained as

Um = XY , (19)

and therefore we can determine the optimal unitary operator
Ûm. Summarizing these results, the following corollary is ob-
tained:

Corollary 1. Let |�〉 be an given quantum state and |�〉
be a quantum circuit state given by ÛM ÛM−1 · · · Û1|0〉. Fix-
ing unitary operators {Ûi}M

i=1 other than the mth unitary
operator Ûm acting on subsystem Im, the optimal Ûm that
maximizes the absolute value of the fidelity F = 〈�|�〉 is
given by

arg max
Ûm

[|F |] =
∑
n,n′

|n〉Im [XY ]nn′Im〈n′|, (20)

where X and Y are the unitary matrices obtained by the
singular-value decomposition of Fm, the matrix representation
of the fidelity tensor operator F̂m given in Eq. (11), and |n〉Im

denotes the basis states on subsystem Im.
Three remarks are in order. First, as already stated above,

a similar idea is used in the optimization of tensor network
states [38]. Second, although the fidelity tensor F̂m can be
defined for a subsystem containing many qubits, we focus
mostly on the two-qubit case in this paper. This is simply
because the assignment of elementary quantum gates for an
optimal unitary operator determined in Eq. (19) can be made
rather simply, as described in the next section. Third, the
fidelity Fm and the fidelity tensor operator F̂m can be more
explicitly expressed for the case when the state |�〉 is given
by a linear combination of several quantum states as in Eq. (2),
i.e.,

Fm =
�∑

γ=1

χγ f (γ )
m (21)

and

F̂m =
�∑

γ=1

χγ f̂ (γ )
m , (22)

where

f (γ )
m = TrIm

[
f̂ (γ )
m Û†

m

]
(23)

and

f̂ (γ )
m = TrĪm

[∣∣ψ (γ )
m+1

〉〈�m−1|
]
, (24)

with ∣∣ψ (γ )
m

〉 = Û†
mÛ†

m+1 ··· Û†
M |ψ (γ )〉. (25)

The optimal unitary operator Ûm that maximizes the absolute
value of Fm is still determined by Eqs. (17)–(19).

Once we obtain the matrix representation Um for the
unitary operator by using the above technique, we have to
assign a standard set of elementary quantum gates to this
operator Ûm. It is well known that any unitary operator can
be compiled as a product of two-qubit quantum gates by
using the method that proves the universality of quantum
computation [52]. However, this method of decomposing a
unitary operator acting on K qubits generates an exponentially
large number of elementary single- and two-qubit quantum
gates with respect to K . Therefore, it is not practical for our
purpose. In contrast, focusing on a unitary operator acting
on two qubits, there exists an optimal form decomposing
it into elementary quantum gates [53], which can be deter-
mined from its matrix representation Um (See Appendix A).
Therefore, in what follows, we consider how to construct
a circuit composed of the product of two-qubit quantum
gates.

C. Quantum circuit encoding algorithm

Using the procedures described above, we can now in-
troduce an algorithm to construct a quantum circuit Ĉ that
approximately represents a given quantum state |�〉. With-
out loss of generality, let us assume that Ĉ† = ∏M

m=1 Û†
m

is given. For example, we set Ûm = Î for all m as the
initial condition, where Î is the identity operator of the
subspace defining Ûm. In the algorithm, we sequentially re-
places Ûm to a new Û ′

m that maximizes the absolute value of
the fidelity

Fm = 〈�m−1|(Û ′
m)†|�m+1〉, (26)

where 〈�m−1| and |�m+1〉 are given, respectively, by

〈�m−1| = 〈0|
m−1∏
m′=1

(Û ′
m′ )† = 〈0|(Û ′

1)†(Û ′
2)† ··· (Û ′

m−1)† (27)

and

|�m+1〉 =
M∏

m′=m+1

(Ûm′ )†|�〉 = (Ûm+1)†(Ûm+2)† ··· (ÛM )†|�〉,

(28)

with |�0〉 = |0〉 and |�M+1〉 = |�〉. Furthermore, we as-
sume that the mth two-qubit unitary operator Ûm acting on
Im = {im, jm} is replaced with an unitary operator Û ′

m acting
on Ik = {ik, jk} that is properly selected among a set of bonds
B = {I1, I2, ··· , IB}. Although here we assume the case of
two-qubit unitary operators, the generalization to K-qubit uni-
tary operators with K > 2 is straightforward.

A prototype of the algorithm is then given in Algorithm 1
and is also schematically shown in Fig. 1(a). Here, the symbol
“:=” in the algorithm denotes that the variable on the left
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ALGORITHM 1. Forward update.

Input Target state |�〉, quantum circuit Ĉ = ÛM ÛM−1 · · · Û1,
and a set of bonds B = {I1, I2, ··· , IB}

Output Updated quantum circuit Ĉ ′ = Û ′
M Û ′

M−1 · · · Û ′
1

1: function FORWARD|�〉, C, B
2: Set Ĉ ′ := Î , |� ′〉 := ∏M

m′=2(Ûm′ )†|�〉, and 〈�′| := 〈0|.
3: for m = 1, 2, · · · , M do
4: Evaluate matrix F (k)

m of the fidelity tensor operator
F̂ (k)

m = TrĪk
[|� ′〉〈�′|] for all Ik ∈ B.

5: Perform SVD F (k)
m = X kDkY k and calculate

Sk = ∑3
n=0[Dk]nn.

6: Find k = k∗ that maximizes Sk among k = 1, 2, · · · , B.
7: Set U := X k∗Y k∗ and assign the quantum gates for the

new mth unitary operator Û ′
m, represented by the matrix U ,

acting on Im := Ik∗ = {ik∗ , jk∗ }.
8: Set Ĉ ′ := Û ′

mĈ ′.
9: if m �= M then

10: Set |� ′〉 := Ûm+1|� ′〉, 〈�′| := 〈�′|(Û ′
m )†.

11: end if
12: end for
13: return Ĉ ′

14: end Function

side is newly replaced with the variable on the right side.
Algorithm 1 describes the sequential update of the unitary
operators from m = 1 to m = M [also see Fig. 1(a)] and thus
we refer to this update as forward update.

However, it is apparent that the order of update can be
reversed, from m = M to m = 1, as shown in Fig. 1(b). The
algorithm for this is given in Algorithm 2 and is referred to
as backward update. Note that the procedure at line 4 in both
Algorithm 1 and Algorithm 2 is most time consuming and can
be treated on a quantum computer (see Sec. II D), while the
other procedures are performed on a classical computer. Since
the evaluation of F (k)

m for different bonds Ik is independent,
one can trivially parallelize this part. The underlying assump-
tion in Algorithms 1 and 2 is that the sequential update in
order form m = 1 to m = M and vice versa is computation-
ally efficient when it is performed on a classical computer.
The computational complexity is further discussed later in
Sec. II F.

Finally, we shall refer to a single set of consecutive up-
dates, forward update followed by backward update, as a
sweep. As summarized in Algorithm 3, we aim to optimize
the entire quantum circuit by repeating the sweeps.

D. Implementation on a quantum computer

The most demanding part computationally in the quantum
circuit encoding algorithm is to evaluate the fidelity tensor
operator F̂m in Eq. (11). As explained here, this part can
be evaluated directly using a quantum computer when the
quantum state |�〉 is given by a linear combination of several
quantum circuits as in Eq. (2), which includes the extreme
case where |�〉 is given by a linear combination of direct
product states in the computational basis.

Although this procedure can be extended to the case for any
number of qubits in principle, here we consider a subsystem

FIG. 1. (a) Forward and (b) backward updates that optimize
sequentially unitary operators Ûm for m = 1, 2, ··· , M. Light-blue
boxes with rounded corners indicate the input unitary opera-
tors, while light-red and light-green boxes with rounded corners
indicate the updated unitary operators by forward and back-
ward updates, respectively. Light-yellow and light-blue square
boxes indicate the initial product state |0〉 and the target state
|�〉, respectively. Evaluating the fidelity tensor operators F̂ (k)

m =
TrĪk

[Û†
m+1 · · · Û†

M |�〉〈0|Û†
1 · · · Û†

m−1 for all Ik ∈ B = {I1, I2, ··· , IB}
and performing the SVD for the corresponding matrices F (k)

m , we
select the optimal mth unitary operator Ûm acting on bond Ik that
maximizes the absolute value of the fidelity (see Algorithms 1
and 2).

composed of two qubits, i.e., Im = {i, j}, on which an unitary
operator Ûm acts. Let us introduce the following notation:

P̂α
i =

⎧⎪⎪⎨
⎪⎪⎩

Îi (α = 0),
X̂i (α = 1),
Ŷi (α = 2),
Ẑi (α = 3),

(29)

for the identity and Pauli operators acting on qubit i. Then, the
fidelity tensor operator F̂m in the two-qubit subsystem Im =
{i, j} can be expressed generally as

F̂m =
3∑

α=0

3∑
α′=0

f̃α,α′P̂α
i P̂α′

j , (30)
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ALGORITHM 2. Backward update.

Input Target state |�〉, quantum circuit Ĉ = ÛM ÛM−1 · · · Û1,
and a set of bonds B = {I1, I2, ··· , IB}

Output Updated quantum circuit Ĉ ′ = Û ′
M Û ′

M−1 · · · Û ′
1

1: function BACKWARD|�〉, C, B
2: Set Ĉ ′ := Î , |� ′〉 := |�〉, and 〈�′| := 〈0| ∏M−1

m′=1 Û†
m′ .

3: for m = M, M − 1, · · · , 1 do
4: Evaluate matrix F (k)

m of the fidelity tensor operator
F̂ (k)

m = TrĪk
[|� ′〉〈�′|] for all Ik ∈ B.

5: Perform SVD F (k)
m = X kDkY k and calculate

Sk = ∑3
n=0[Dk]nn.

6: Find k = k∗ that maximizes Sk among
k = 1, 2, · · · , B.

7: Set U := X k∗Y k∗ and assign the quantum gates for the
new mth unitary operator Û ′

m, represented by the matrix U ,
acting on Im := Ik∗ = {ik∗ , jk∗ }.

8: Set Ĉ ′ := Ĉ ′Û ′
m.

9: if m �= 1 then
10: Set |� ′〉 := (Û ′

m )†|� ′〉, 〈�′| := 〈�′|Ûm−1.
11: end if
12: end for
13: return Ĉ ′

14: end Function

where f̃α,α′ are complex numbers. This is simply because the
operator |n〉〈n′| in Eq. (13) for all n, n′ = 0, 1, 2, 3 can be ex-
panded with a polynomial of the Pauli and identity operators.
We thus find that

TrIm

[
F̂mP̂α

i P̂α′
j

] = 22 f̃α,α′ , (31)

because

TrIm

[
P̂β

i P̂
β ′
j P̂α

i P̂α′
j

] = 22δα,βδα′,β ′ . (32)

Meanwhile, by using the definition of the fidelity tensor
operator F̂m in Eq. (11), we find that

TrIm

[
F̂mP̂α

i P̂α′
j

] = 〈�m−1|P̂α
i P̂α′

j |�m+1〉. (33)

Therefore, f̃α,α′ can be determined by estimating the overlap
between P̂α

i P̂α′
j |�m+1〉 and |�m−1〉 for all α, α′ = 0, 1, 2, 3.

This overlap can be evaluated using a Hadamard test like
circuit shown in Fig. 2(a), provided that a quantum circuit �̂

generating the quantum state |�〉 = �̂|0〉 is already known.
However, this is generally not the case but rather the main task

ALGORITHM 3. Sweep.

Input Target state |�〉, quantum circuit
Ĉ = ÛM ÛM−1 · · · Û1, a set of bonds B, and integer N

Output Optimal quantum circuit Ĉ ′

1: function SWEEP|�〉, Ĉ, B, N
2: for n = 1, 2, · · · , N do
3: Ĉ := FORWARD(|�〉, Ĉ, B).
4: Ĉ := BACKWARD(|�〉, Ĉ, B).
5: end for
6: Set Ĉ ′ := Ĉ.
7: return Ĉ ′

8: end Function

FIG. 2. (a) A quantum circuit to evaluate Eq. (33). Ĥ and X̂ are
Hadamard and Pauli-X gates, respectively. Ŝθ is a phase shift gate
given by Ŝθ |0〉 = |0〉 and Ŝθ |1〉 = e−iθ |1〉. The quantum circuits �̂m+1

and �̂m−1 are defined as |�m+1〉 = ∏M
k=m+1 Û†

k |�〉 = �̂m+1|0〉 and
|�m−1〉 = ∏1

k=m−1 Ûk |0〉 = �̂m−1|0〉, respectively. In our protocol,
we assume that |�〉 is given by a linear combination of quantum
circuit states |ψ (γ )〉, including the extreme case where it is given
by a linear combination of direct product states in the computa-
tional basis. Therefore, as indicated in the figure, �̂m+1 is given
by a linear combination of different quantum circuits, i.e., �̂m+1 =∑�

γ=1 χγ ψ̂
(γ )
m+1, where ψ̂

(γ )
m+1 = ∏M

k=m+1 Û†
k ψ̂ (γ ) and |ψ (γ )〉 = ψ̂ (γ )|0〉.

Hence, f (γ )
α,α′ = 〈�m−1|P̂α

i P̂α′
j |ψ (γ )

m+1〉 can be evaluated separately
for each γ , as shown in panel (b), by a Hadamard test like
circuit. By measuring Ẑ at the ancilla qubit, we can evaluate
Re[〈�m−1|P̂α

i P̂α′
j |ψ (γ )

m+1〉] for θ = 0 and Im[〈�m−1|P̂α
i P̂α′

j |ψ (γ )
m+1〉] for

θ = π/2. A black circle in the circuits indicates a control qubit for a
controlled unitary gate.

of the quantum circuit encoding algorithm is to find a quantum
circuit Ĉ that approximately represents �̂. Instead, here we
assume that |�〉 is given by a linear combination of quantum
circuit states as in Eqs. (2) and (3). In this case, Eq. (33) can
be more explicitly written as

TrIm

[
F̂mP̂α

i P̂α′
j

] =
�∑

γ=1

χγ 〈�m−1|P̂α
i P̂α′

j

∣∣ψ (γ )
m+1

〉
(34)

=
�∑

γ=1

χγ TrIm

[
f̂ (γ )
m P̂α

i P̂α′
j

]
, (35)

where f̂ (γ )
m and |ψ (γ )

m+1〉 are defined in Eqs. (24) and (25),

respectively. As shown in Fig. 2(b), f (γ )
α,α′ = TrIm [ f̂ (γ )

m P̂α
i P̂α′

j ]
can now be evaluated separately for each γ by using a
Hadamard test like circuit on a quantum computer.

E. Initialization algorithm

Although the quantum circuit encoding algorithm de-
scribed above in Sec. II C can be applied to general cases,
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there are some exceptions for which care must be taken. For
example, when we consider a ground state |�〉 of a quantum
spin system, the state |�〉 is often in the spin singlet sector.
In this case, there is no overlap between |�〉 and |0〉 because
the product state |0〉 represents the fully polarized state with
the maximum spin value. Therefore, an alternative algorithm
is required to construct an initial circuit Ĉ, for which Ĉ†|�〉
has a finite overlap with |0〉.

Let us consider the reduced density matrix ρ̂ of a quantum
state |�〉 on the subsystem I = {i1, i2, ··· , iK} that is given by

ρ̂ = TrĪ[|�〉〈�|], (36)

with the associated eigenstates and eigenvalues being denoted
as |λn〉 and λn, respectively. Here we assume that λn is in
the descending order, i.e., λ0 � λ1 � λ2 � ···. The reduced
density matrix ρ̂ is then represented as

ρ̂ =
∑

n

|λn〉λn〈λn|. (37)

We shall now find the unitary operator V̂1 in the subsystem I
such that

max
V̂1

〈0|V̂†
1 ρ̂V̂1|0〉, (38)

where |0〉 = |0〉i1 |0〉i2 ··· |0〉iK in the computational basis de-
fined in the subsystem I with 1 � i1 < i2 < · · · < iK � L.

For this end, let us first expand V̂1 in the following general
form:

V̂1 =
2K −1∑
l=0

2K −1∑
n=0

vln|λl〉〈n|, (39)

where {|n〉 = |σi1σi2 ··· σiK 〉}2K −1
n=0 are the basis states in the

subsystem I and n = ∑K
k=1 2k−1σik . Because V̂1 is unitary,∑

n vlnv
∗
l ′n = δll ′ and

∑
l v∗

lnvln′ = δnn′ . We then find that

〈0|V̂†
1 ρ̂V̂1|0〉 =

2K −1∑
l=0

λl |vl0|2 � λ0. (40)

It is now easy to find that

V̂1 =
2K −1∑
n=0

|λn〉〈n| (41)

yields one of the solutions for Eq. (38). Once we determine
the unitary operator V̂1 in Eq. (41), we can assign quantum
gates for this operator by following the prescription described
in Appendix A for the two-qubit case, if it is required.

In numerical simulations, we can determine V̂1 in Eq. (41)
by directly evaluating the eigenstates |λn〉 of the reduced
density operator ρ̂. V̂1 can also be determined via a quantum
computer. To show this, let us consider the subsystem I com-
posed of two qubits I = {i, j}, for simplicity. Expanding the
reduced density matrix ρ̂ with a polynomials of the Pauli and
identity operators

ρ̂ =
∑
α,α′

r̃α,α′P̂α
i P̂α′

j , (42)

we find that

〈�|P̂α
i P̂α′

j |�〉 = TrI
[
ρ̂P̂α

i P̂α′
j

] = 22r̃α,α′ . (43)

This implies that the matrix elements r̃α,α′ of ρ̂ in Eq. (42)
can be determined by measuring all possible pairs of products
of the Pauli and identity operators P̂α

i P̂α′
j (α, α′ = 0, 1, 2, 3).

This can be performed on a quantum computer directly if
the state |�〉 is given in a quantum circuit, or by using the
procedure described in Sec. II D (also see Fig. 2), otherwise.
Having estimated the reduced density matrix for ρ̂, one can
determine the unitary operator V̂1 in Eq. (41) classically. The
extension to the subsystem I composed of more than two
qubits is straightforward. We should also note that construct-
ing a reduced density matrix by measuring a set of Pauli
and identity operators on a quantum computer is known as
quantum state tomography [52], and the technique described
in Sec. II D is also along this line.

This procedure can be easily extended for further adding
unitary operators V̂2, V̂3, . . . . Let us assume that we have
already determined the first unitary operator V̂1 acting on
I = {i1, i2, ··· , iK}. The location of these qubits is selected
among a set of clusters of K qubits C = {I1, I2, ··· , IC} to
maximize Eq. (38), i.e.,

max
I∈C

[max
V̂1

〈0|V̂†
1 ρ̂V̂1|0〉]. (44)

Let us now define a quantum state |�̃1〉 incorporating V̂†
1 into

the quantum state |�〉, i.e.,

|�̃1〉 = V̂†
1 |�〉, (45)

and consider the reduced density matrix ρ̂1 of |�̃1〉 on the
subsystem I′ = {i′1, i′2, ··· , i′K} given by

ρ̂1 = TrĪ′[|�̃1〉〈�̃1|]. (46)

V̂2 is then determined by maximizing 〈0|V̂†
2 ρ̂1V̂2|0〉, i.e.,

max
I′∈C

[
max
V̂2

〈0|V̂†
2 ρ̂1V̂2|0〉]. (47)

This procedure can be continued until the desired num-
ber M0 of unitary operators V̂1, V̂2, . . . , V̂M0 are added, i.e.,
V̂†

M0
··· V̂†

2 V̂
†
1 |�〉. Note that the reduced density operators

ρ̂1, ρ̂2, . . . can be evaluated on a quantum computer by
the quantum state tomography. Algorithm 4 summarizes the
procedure described above. Here, we generally assume the
most general case of a set of clusters of K qubits C =
{I1, I2, ··· , IC}, but in practice we can simply consider a set
of bonds of two qubits B = {I1, I2, ··· , IB}.

F. Automatic quantum circuit encoding algorithm

Finally, we combine a prototype algorithm of the quantum
circuit encoding, Algorithm 3, described in Sec. II C (also see
Fig. 1) and the initialization algorithm, Algorithm 4, explained
in Sec. II E, to automatically construct an optimal quantum
circuit for encoding a give quantum state. The resulting al-
gorithm is summarized in Algorithm 5 and is referred to
as automatic quantum circuit encoding (AQCE) algorithm,
which is schematically depicted in Fig. 3.

The AQCE algorithm is composed of two steps, i.e., the
enlargement step in Figs. 3(b) and 3(c), and the optimization
step in Fig. 3(d). The inputs of the AQCE algorithm are a
target quantum state |�〉, a quantum circuit Ĉ set to be the
identity operator Î , and a set of bonds B of two qubits (and
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FIG. 3. Automatic quantum circuit encoding (AQCE) algorithm.
(a) Inputs: a quantum states |�〉, a quantum circuit Ĉ, and a set of
bonds B of two quabits on which unitary operators act. We set Ĉ = Î
and thus the number M of unitary operators in the circuit is zero.
(b) Initialization step. The initialization algorithm (Algorithm 4) is
employed to properly construct M0 unitary operators. (c) Enlarge-
ment step. δM unitary operators acting on two qubits (all set to the
identity operators) are newly inserted in the circuit and the backward
update algorithm (Algorithm 2) is applied only to these inserted δM
unitary operators. (d) Optimization step. The circuit consisting of M
unitary operators is optimized by the forward and backward updates
N times (Algorithm 3), in which each unitary operator is updated one
by one, including the location of qubits that the unitary operator acts
on. The overall iteration is terminated when M reaches to the desired
number Mmax of unitary operators. Otherwise, the algorithm goes
back to the enlargement step (c) and inserts additional δM unitary
operators. The enlargement step (c) outputs the new quantum circuit
Ĉnew with M + δM unitary operators and this circuit is used as the
input of the optimization step (d). Light-green and light-red boxes
with rounded corners indicate updated unitary operators, while light-
blue boxes with rounded corners indicate input unitary operators. The
control parameters in the AQCE algorithm are M0, Mmax, δM, and N .

ALGORITHM 4. Initialization algorithm.

Input Target state |�〉, a set of clusters of K-qubits
C = {I1, I2, ··· , IC}, and integer M0

Output Initialized quantum circuit Ĉ = V̂1V̂2 · · · V̂M0

1: function Init|�〉, C, M0

2: Set |�̃〉 := |�〉, Ĉ = Î
3: for m = 1, 2, · · · , M0 do
4: Evaluate matrix R(k) of the reduced density

operator ρ̂ (k) = TrĪk
[|�̃〉〈�̃|] for all Ik ∈ C

5: Diagonalize R(k) = �(k)diag(λ(k)
0 , λ

(k)
1 , · · · )(�(k) )†

with the lth eigenstate |λ(k)
l 〉 and find k = k∗ that

maximizes λ
(k)
0 among k = 1, 2, · · · ,C

6: Set V := ∑2K −1
n=0 |λ(k∗ )

n 〉〈n| and assign the quantum
gates for the unitary operator V̂m, represented by the
matrix V , acting on Ik∗ .

7: Set Ĉ := ĈV̂m, |�̃〉 := V̂†
m|�̃〉.

8: end for
9: return Ĉ

10: end Function

a set of clusters C of K qubits, but here we assume that it is
exactly the same set of bonds B, for simplicity), as shown in
Fig. 3(a). In the first enlargement step, we employ the initial-
ization algorithm (Algorithm 4) as in Fig. 3(b) to construct a
quantum circuit Ĉ having M0 number of unitary operators and
finite overlap between Ĉ|0〉 and |�〉. Then, in the following
optimization step, we perform the forward and backward up-
dates of the quantum circuit encoding algorithm (Algorithm 3)
to optimize these unitary operators as in Fig. 3(d). The total
number of sweeps for the optimization is set to N .

Next, we enlarge the quantum circuit by increasing the
number M of unitary operators by δM, i.e., M = M0 + δM,
as in Fig. 3(c). This is done by inserting δM identity op-
erators next to |0〉 and perform the backward update of the
quantum circuit encoding algorithm (Algorithm 2) to opti-
mize these inserted δM unitary operators. We then move to
the optimization step and perform the forward and backward

ALGORITHM 5. Automatic quantum circuit encoding (AQCE)
algorithm.

Input Target state |�〉, integers (M0, δM, Mmax, N ), and a set
of bonds B

Output Optimal quantum circuit Ĉ
1: function AQCE|�〉, B, M0, δM, Mmax, N
2: Ĉ := INIT(|�〉, B, M0)
3: Ĉ := SWEEP(|�〉, Ĉ, B, N)
4: for M = M0 + δM, M0 + 2δM, · · · , Mmax do
5: Set |� ′〉 := Ĉ†|�〉, Ĉ ′ = ÎδM

6: Ĉ ′ := BACKWARD(|� ′〉, Ĉ ′, B)
7: Set Ĉ := ĈĈ ′

8: Ĉ := SWEEP(|�〉, Ĉ, B, N)
9: end for

10: return Ĉ
11: end Function
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updates again (Algorithm 3) to optimize the whole M unitary
operators as in Fig. 3(d). Notice that expect for the initial
enlargement step, we perform in the enlargement step the
backward update of the quantum circuit encoding algorithm
(Algorithm 2), which is more efficient than the initialization
algorithm (Algorithm 4). We repeat this whole iteration of the
enlargement and optimization steps until the quantum circuit
contains the desired number Mmax of unitary operators. The
control parameters in the AQCE algorithm are thus M0, Mmax,
δM, and N .

Let us now briefly discuss the computational complexity.
At each update of the unitary operator Ûm, we have to evaluate
the fidelity tensor operator F̂ (k)

m for B different bonds Ik ∈
B = {I1, I2, · · · , IB}. The computational complexity of F̂ (k)

m
for a given single bond Ik is proportional to the total number
M of unitary operators in the quantum circuit when a quantum
computer is used. Since there are 2M unitary operators to
be updated at each sweep (i.e., one series of forward and
backward updates), the total computational complexity for a
single sweep is proportional to 2M2B. Therefore, if we assume
that B as well as M is proportional to the number L of qubits,
the total computational complexity is O(L3).

In contrast, if we perform the same calculation on a
classical computer with the state-vector method, then the com-
putational complexity of F̂ (k)

m for given m and k is proportional
to 2L−2 × 16, where the factor 16 is due to the number of
matrix elements for F̂ (k)

m and the factor 2L−2 is for the cal-
culation of the overlap between two 2L−2-dimensional state
vectors. Therefore, the total computational complexity for a
single sweep is proportional to 2L+3MB and thus it becomes
O(2L+3L2) if we assume that B as well as M is proportional to
the number L of qubits.

For comparison, we note that the computational com-
plexity of the exact state preparation method proposed in
Ref. [54] is O(2L ). Therefore, no gain is expected in compu-
tational complexity for our algorithm when the state-vector
method is employed on a classical computer. However, we
should emphasize that the exact state preparation method in
Ref. [54] generates a quantum circuit composed of 2L − L − 1
controlled-NOT gates and 2L − L/2 − 1 single-qubit gates. In
contrast, in the AQCE algorithm, the number M of unitary
operators is an input parameter and an optimal quantum cir-
cuit might be found with a reasonable accuracy even when
M � 2L.

In terms of the optimization method, one of the features in
the AQCE algorithm is that the fidelity introduced as the cost
function always monotonically increases after every update of
unitary operators, simply because a better unitary operator is
always adopted. This is in contrast to various gradient-based
methods where the fidelity might decrease, depending on the
size of the learning rate, i.e., a step size used to update a
unitary operator. Since it is generally difficult to discuss an-
alytically whether one heuristic method is better than other
heuristic ones, we shall examine the performance of different
methods numerically in the next section.

III. NUMERICAL SIMULATION

In this section, we demonstrate by numerical simulations
the AQCE algorithm for quantum many-body states and for

classical data. In particular, the latter application is potentially
useful for quantum machine learning in preparing an input
quantum state that represents classical data [55]. For the pur-
pose of demonstration, we consider the unitary operators {Ûm}
acting on two qubits. However, the AQCE algorithm can also
be applied to general cases for K qubits with K > 2.

A. Quantum circuit encoding of quantum many-body states

Here, we show the numerical demonstration of the
quantum circuit encoding for the ground states of the
one-dimensional spin S = 1/2 isotropic antiferromagnetic
Heisenberg model and XY model. The Hamiltonian of these
models is given as

Ĥ =
L∑

i=1

(X̂iX̂i+1 + ŶiŶi+1 + �ẐiẐi+1), (48)

where X̂i, Ŷi, and Ẑi are the x-, y-, and z-components of
Pauli operators, respectively, at site i on a one-dimensional
chain with L sites under periodic boundary conditions, i.e.,
X̂L+1 = X̂1, ŶL+1 = Ŷ1, and ẐL+1 = Ẑ1. The Hamiltonian Ĥ
with � = 1 and 0 corresponds to the isotropic Heisenberg and
XY models, respectively, and the ground states of these two
models are at criticality with algebraically decaying correla-
tion functions.

The ground states |�〉 of these models are calculated
numerically by the standard Lancozs method within the
accuracy of the ground state energy 10−12. Although the
AQCE algorithm is formulated deterministically, it turns
out that the resulting structure of the quantum circuit
depends on the numerical tiny error of the quantum state
|�〉 obtained by finite precision arithmetic. This is simply
because even when the fidelity tensor F̂m for equivalent pairs
of qubits is exactly the same theoretically, a particular
pair of qubits I = {i, j} may be selected because of
the numerical error due to finite precision calculations.
Therefore, here we perform 100 AQCE calculations for each
system size L, in which the ground state |�〉 is prepared
by the Lanczos method with 100 different initial Lanczos
vectors, thus implying that the ground state |�〉 to be
encoded is slightly different numerically among these 100
different calculations, and select the best circuit Ĉ in
terms of the absolute value of the fidelity F given in
Eq. (5). In addition, we perform 1000 sweeps to further
optimize the unitary operators in the best circuit using
the quantum circuit encoding algorithm (Algorithm 3).
The parameters for the AQCE algorithm are
(M0, N, δM, Mmax) = (L, 20, L/2, L(L − 5)/2) for the XY
model and (M0, N, δM, Mmax) = (L, 20, L/2, L2/2) for the
isotropic Heisenberg model. We set that a set of bonds B is
composed of all pairs of two sites (i.e., qubits) {i, j} with
i, j ∈ L, thus including pairs of distant sites.

Figure 4 shows the fidelity per site between the ground
state |�〉 of the XY model and the quantum circuit state
Ĉ|0〉 obtained by the AQCE algorithm. Here we use the
fidelity per site rather than the fidelity itself because it is
better suited for comparing results of different system sizes
together, including the thermodynamic limit, which is similar
to the energy per site being considered rather than the energy
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FIG. 4. (a) Fidelity per site between the ground state |�〉 of the
one-dimensional S = 1/2 XY model and the quantum circuit state
Ĉ|0〉 optimized by the AQCE algorithm for different system sizes
L. (b) Semilog plot of panel (a). Vertical dashed lines with numbers
in panel (b) indicate the number of local two-qubit unitary operators,
Me = L2/4, required to represent the exact ground state by the DQAP
ansatz [57].

itself [56]. We should first recall the previous results by the
discretized quantum adiabatic process (DQAP) ansatz [57], a
similar approach to digitized adiabatic quantum computing re-
ported in Refs. [58,59], where a parametrized quantum circuit
with brick-wall type structure is constructed on the basis of
digitized quantum adiabatic process expressed by a product
of local time-evolution unitary operators and the variational
parameters are optimized to minimize the expectation value of
energy, as in the variational quantum eigensolver (VQE) [2].
It is found in Ref. [57] that the optimized DQAP ansatz gives
the exact ground state of the XY model with the minimum
number Me = L2/4 of local two-qubit unitary operators set by
the Lieb-Robinson bound for the brick-wall type structure. For
comparison, this number Me is also indicated for each system
size L in Fig. 4(b). We find that the AQCE algorithm can gen-
erate the quantum circuit state Ĉ|0〉 that represents essentially
the exact ground state |�〉 with M = Me for all system sizes
studied except for L = 16, for which the convergence of the
quantum circuit state Ĉ|0〉 toward the ground state |�〉 appears
slower with increasing M. However, we should note that the
quantum circuit state Ĉ|0〉 with M < Me is better in terms
of the fidelity than the DQAP ansatz composed of the same
number M of local time-evolution unitary operators even for
L = 16 [see Fig. 8(a)].

Figure 5 shows the fidelity per site between the ground
state |�〉 of the S = 1/2 isotropic antiferromagnetic Heisen-
berg model and the quantum circuit state Ĉ|0〉 obtained by
the AQCE algorithm. For smaller systems with L � 8, the
AQCE algorithm can construct a quantum circuit state Ĉ|0〉
that represents numerically exactly the ground state |�〉 with
a less number of M. For example, one of the resulting quantum
circuits describing the ground state for L = 6 is shown in

FIG. 5. Same as Fig. 4 but for the ground state |�〉 of the one-
dimensional S = 1/2 isotropic antiferromagnetic Heisenberg model.
The inset in panel (b) is the same plot but in a log-log scale.

Fig. 6(a). The number M of two-qubit unitary operators con-
tained in this particular circuit is M = 12 and the number of
independent real parameters, once these unitary operators are
represented by a standard set of quantum gates (see Fig. 16),
is 9 × 12 + 3 × 6 = 126 if we combine adjacent two single-
qubit Euler rotations into a single-qubit Euler rotation. In
contrast, the dimension of the Hilbert space for the L = 6
system is 2L = 64, suggesting that there are 128 − 2 = 126
independent real parameters, where two is subtracted because
of the overall phase factor and the normalization factor. It is
hence interesting to find that the number of the independent
real parameters in this quantum circuit Ĉ with M = 12 coin-
cides with that for the Hilbert space on which the quantum
state |�〉 is defined. However, it is highly nontrivial whether
the quantum circuit Ĉ composed of the limited number of
two-qubit unitary operators can always represent any quantum
state whenever the number of parameters in a quantum circuit
is the same as that for the Hilbert space.

We should also note that the two-qubit unitary operators
in the optimized quantum circuit Ĉ, representing the ground
state |�〉 essentially exactly for L = 6 and 8 (see Fig. 5), are
not uniformly distributed, as shown in Fig. 6, even though
the ground state |�〉 represented by the quantum circuit is
translational symmetric (apart from the finite precision numer-
ical error). Figure 6(b) shows one of the resulting quantum
circuits describing the ground state for L = 8. The circuit
structure is much more complicated than that for L = 6 shown
in Fig. 6(a). Nonetheless, we have confirmed numerically that
the resulting quantum circuit states Ĉ|0〉 for L = 6 and 8
are essentially translational symmetric and also spin rotation
symmetric.

In contrast, for the systems with L > 8, we find that
the convergence of the optimized quantum circuit state Ĉ|0〉
toward the ground state |�〉 is slower with the number
M of unitary operators, although the convergence is still
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FIG. 6. Optimized quantum circuit states Ĉ|0〉 obtained by the
AQCE algorithm, which represent essentially exactly the ground
states of the one-dimensional S = 1/2 isotropic antiferromagnetic
Heisenberg model for (a) L = 6 and (b) L = 8, containing 12 and
24 two-qubit unitary operators {Ûm}, respectively, denoted by black
squares with number m in them. The location of two qubits on which
each unitary operator acts is indicated by crosses. Each two-qubit
unitary operator can be decomposed into a standard set of quantum
gates (see Fig. 16) with having 15 independent real parameters (apart
from a single global phase). Since adjacent two single-qubit Euler
rotations are combined into a single single-qubit Euler rotation, the
total number of independent real parameters is 126 for L = 6 in panel
(a) and 240 for L = 8 in panel (b).

approximately exponential, as shown in Fig. 5(b). For exam-
ple, the error in fidelity of the optimized quantum circuit state
Ĉ|0〉 for L = 16 is still relatively large even when M/L = 8.
Moreover, we observe in Fig. 5(b) that the slope of the fidelity
as a function of M in the semilog plot becomes more flattered
with increasing the system size L. We speculate that this is
due to a difficulty of sequentially optimizing each unitary
operator Ûm, including the location of qubits on which the
unitary operator Ûm acts, when the system size is large.

In fact, previous studies in Refs. [60,61], which carefully
designed quantum circuit structures suitable for representing
the ground state of the one-dimensional Heisenberg model,
found that the accuracy of the ground state energy improves
linearly with the number of parameters in a logarithmic plot.
In contrast, our results, shown in the inset of Fig. 5(b), deviate
from this linear trend, specially in the region of a large number
of gates, exhibiting a nearly flattened behavior for L = 16.
Therefore, from an optimization perspective, our method of
automatically searching for an optimal quantum circuit en-
counters difficulties when dealing with larger system sizes.
Since further systematic analysis of larger system sizes re-
quires significantly more computational resources, we leave
this issue for future study.

FIG. 7. (a) Trotter-like circuit and (b) MERA-like circuit for a
16-qubit system. Two-qubit unitary operators {Ûm} are indicated by
back squares and the location of two qubits on which each unitary
operator acts is indicated by crosses. Shaded color layers are repeated
D times.

B. Quantum circuit encoding with fixed Trotter-
and MERA-like circuit structures

In this section, using numerical simulations, we shall
compare the results obtained by the AQCE algorithm,
which can automatically construct a quantum circuit with a
self-assembled optimal structure, and those obtained for a
quantum circuit with a fixed circuit structure. For this pur-
pose, here we consider two particular fixed circuit structures.
One is a Trotter-like circuit structure schematically shown
in Fig. 7(a). In this Trotter-like circuit, two-qubit unitary
operators {Ûm} acting on adjoining qubits are distributed as
if a time evolution operator of the whole system is Trotter
decomposed into two parts in a one dimensionally aligned
qubit ring. The quantum circuit is composed of D layers
and each layer corresponds to one Trotter step, containing L
two-qubit unitary operators {Ûm}. Therefore, the total number
M of unitary operators {Ûm} in the Trotter-like circuit is DL.

The other circuit structure considered here is inspired
by the MERA and is shown schematically in Fig. 7(b). In
this MERA-like circuit, each basic layer indicated by dif-
ferent shaded color in Fig. 7(b) represents a different length
scale and thus two-qubit unitary operators {Ûm} in different
basic layers act on two qubits that are located in differ-
ent (adjoining as well as distant) distances. To improve the
accuracy, we also increase the number of layers in each
basic layer D times [see Fig. 7(b)], and therefore the to-
tal number M of unitary operators {Ûm} in the MERA-like
circuit is D(L + L/2 + L/22 + L/23 + ··· + 4) + (2 − 1) =
2D(L − 2) + 1, assuming that the system size L is facto-
rial of 2. To optimize two-qubit unitary operators {Ûm} in
the Trotter- and MERA-like circuits for encoding a quan-
tum state |�〉, we perform 1000 sweeps of the forward and
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FIG. 8. (a) Fidelity per site between the ground state |�〉 of the
one-dimensional S = 1/2 XY model and the quantum circuit states
Ĉ|0〉 obtained by the AQCE algorithm and with the Trotter- and
MERA-like circuit structures for L = 16. (b) Same as panel (a) but
for the ground state |�〉 of the one-dimensional S = 1/2 isotropic
antiferromagnetic Heisenberg model. (c) Same as panel (a) but for
the ground state |�〉 of the one-dimensional S = 1/2 anisotropic an-
tiferromagnetic Heisenberg model with � = 4. The results obtained
by the AQCE algorithm in panels (a) and (b) are the same as those
shown in Figs. 4 and 5, respectively. Note that the ground states in
panels (a) and (b) are at criticality, while the ground state in panel
(c) is away from criticality.

backward updates sequentially (see Sec. II C), i.e., the quan-
tum circuit encoding algorithm, but with the fixed circuit
structure.

Figure 8(a) shows the fidelity per site between the ground
state |�〉 of the XY model and the optimized quantum circuit
states Ĉ|0〉 obtained by the AQCE algorithm and with the
Trotter- and MERA-like circuit structures for L = 16. First,
we find that the quantum circuit state with the Trotter-like
circuit structure can represent numerically exactly the ground
state |�〉 at M = 4L (corresponding to L2/4 for L = 16),
which is consistent with the previous study using the DQAP
ansatz [57]. This is understood simply because the Trotter-like
circuit and the DQAP ansatz have the same circuit structure,
although these two approaches employ different optimization
schemes to determine the optimal two-qubit unitary opera-
tors: In the DQAP ansatz, each two-qubit unitary operator is
parametrized with a single variational parameter [i.e., D̂ with
α1 = α2 and α3 = 0 in Eq. (A4) for the XY model] and the
variational parameters are optimized to minimize the expec-
tation value of energy, while the optimal unitary operators

in the Trotter-like circuit are determined by maximizing the
fidelity of the ground state in the quantum circuit encoding
algorithm with the fixed circuit structure. We also find in
Fig. 8(a) that the quantum circuit state Ĉ|0〉 obtained by the
AQCE algorithm is much better than that with the Trotter-
like circuit structure when M < 4L and it is competitive in
terms of the accuracy with that with the MERA-like circuit
structure.

Figure 8(b) shows the fidelity per site between the ground
state |�〉 of the isotropic antiferromagnetic Heisenberg model
and the optimized quantum circuit states Ĉ|0〉 obtained by
the AQCE algorithm and with the Trotter- and MERA-like
circuit structures for L = 16. Similar to the results for the XY
model in Fig. 8(a), the quantum circuit state Ĉ|0〉 obtained
by the AQCE algorithm exhibits the better accuracy than that
with the Trotter-like circuit structure and it is compatible
with that with the MERA-like circuit structure when M � 5L.
However, for M > 5L, all these three quantum circuit states
show the similar accuracy that is improved approximately
exponentially with increasing M.

The ground states in these two cases are both at criticality
and the MERA is known to be best suited for describing such
a quantum state [62]. Therefore, it is also interesting to study
a case for which the ground state is away from criticality.
Figure 8(c) shows the fidelity per site between the ground state
|�〉 of the anisotropic antiferromagnetic Heisenberg model
with � = 4 and the optimized quantum circuit states Ĉ|0〉
obtained by the AQCE algorithm and with the Trotter- and
MERA-like circuit structures for L = 16. In this case, the
ground state is gapped and is less entangled as compared to
those of the previous two models with � = 0 and � = 1.
Therefore, one expects that the number of two-qubit unitary
operators required to achieve given accuracy for � = 4 is
smaller than that for � = 0 and � = 1. We indeed find in
Fig. 8(c) that the fidelity is much closer to 1 even when the
number of two-qubit unitary operators is small for the opti-
mized quantum circuit states obtained by the AQCE algorithm
and with the MERA-like circuit structure, but not for the
optimized quantum circuit state with the Trotter-like circuit
structure. In the case of the Trotter-like circuit, the fidelity
first remains almost constant with increasing M until M = 4L
at which the fidelity suddenly jumps to a larger value and then
again remains almost constant afterward.

It is also interesting to observe in Figs. 8(b) and 8(c) that
the fidelity becomes approximately independent of the quan-
tum circuit structures employed when M/L is larger than 4 or
5. A possible reason for this is due to the effect of the barren
plateau phenomena. It is known that the unitary 2-design can
be realized in polynomial time (i.e., a polynomial number
of layers of gates) for a quantum circuit where two-qubit
unitary operators are randomly distributed [31]. As shown in
Fig. 6(b), the distribution of two-qubit unitary operators in the
quantum circuit obtained by the AQCE algorithm for L = 8
is quite random. Therefore, it is naturally expected that the
quantum circuit obtained exhibits the unitary 2-design and
thus might suffer from the barren plateaus phenomena. Since
the fidelities for other quantum circuits also exhibit similar
values, we expect that all of them might suffer from the
barren plateau phenomena. Indeed, we find that in all cases,
the change of the quantum circuit during the optimization
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iteration is very small when M is large. This implies that a
better quantum circuit can be generated more efficiently when
the number of two-qubit unitary operators is small enough
not to exhibit the unitary 2-design. However, we should note
that the small improvement of fidelity with further increasing
M also simply implies trapping of a local minimum of the
cost function. Additionally, we note that the two fixed circuit
structures in Fig. 7 adopt a design where brick-wall type
circuit structures are inserted to improve accuracy. However,
as the total number of these brick-wall layers increases, the
optimization is expected to become more difficult due to the
loss of locality [25,63].

C. Comparison with parametrized quantum circuit encoding
optimized by a gradient-based method

So far, we have demonstrated the quantum circuit encod-
ing algorithm that can generate an optimal quantum circuit
state Ĉ|0〉 approximately representing a quantum state |�〉.
In this section, we compare numerically the results of the
quantum circuit encoding algorithm with those obtained by
a parametrized quantum circuit encoding algorithm in which
the parameters are optimized with a gradient-based method.

In the conventional variational quantum algorithms such as
the VQE algorithm [1–3], we consider a parametrized circuit
Ĉ(θ) and intend to minimize the expectation value E (θ) of an
objective operator Ĥo,

E (θ) = 〈0|Ĉ†(θ)ĤoĈ(θ)|0〉, (49)

for a set of real parameters θ = {θ1, θ2, · · · , θP}. Therefore, if
we set the following objective operator:

Ĥo = 1 − |�〉〈�|, (50)

a quantum circuit Ĉ(θ∗) with an optimized set of parameters θ∗

can represent approximately a desired quantum state |�〉, i.e.,
|�〉 ≈ Ĉ(θ∗)|0〉. We refer to this algorithm as the parametrized
quantum circuit encoding algorithm.

A standard technique to optimize the parameters θ is a
gradient-based method and here we employ the natural gra-
dient method [21]:

θ′ = θ − τS−1 f , (51)

where θ′ indicates the updated parameters, and S and f are a
(P × P) matrix and a P-dimensional vector given by

[S]kk′ = Re

(
〈0|∂C

†

∂θk

∂C
∂θk′

|0〉 − 〈0|∂C
†

∂θk
C|0〉〈0|C† ∂C

∂θk′
|0〉

)

(52)
and

[ f ]k = Re

(
〈0|∂C

†

∂θk
ĤC|0〉 − 〈0|∂C

†

∂θk
C|0〉〈0|C†ĤC|0〉

)
,

(53)
respectively. τ is a learning rate and we set τ = 0.01 in
the following numerical demonstration. The quantum circuit
structure used in the parametrized quantum circuit encod-
ing algorithm is the Trotter-like circuit structure shown in
Fig. 7(a) and each two-qubit unitary operator is assigned
to a SU (4) gate that is composed of the elementary gates,
i.e., three controlled-NOT gates and parametrized single-qubit
gates, as shown in Fig. 16(c). Therefore, the total number M

FIG. 9. Fidelity per site between the ground state |�〉 of the
one-dimensional S = 1/2 XY model and the optimized quantum
circuit states Ĉ|0〉 and Ĉ(θ∗)|0〉 obtained, respectively, by the AQCE
algorithm (black lines and symbols, denoted as AQCE) and the
parametrized quantum circuit encoding algorithm (colored lines and
solid symbols, denoted as PQC) for (a) L = 8 and (b) L = 12. In
the parametrized quantum circuit encoding algorithm, we adopt the
Trotter-like circuit consisting of M two-qubit unitary operators [see
Fig. 7(a)]. For comparison, we also show the results obtained by the
quantum circuit encoding algorithm (colored lines and open sym-
bols, denoted as PQC) with the same circuit structure employed in
the parametrized quantum circuit encoding algorithm. The symbols
represent the best results and the thin lines show the next 20 best
results out of totally 100 independent simulations. In the AQCE
calculations, we perform the enlargement procedure up to M = L2/4
with δM = L and N = 20, and continue the optimization step with
the fixed M. The horizontal axis indicates the number of sweeps
for the AQCE and the quantum circuit encoding algorithms, and the
number of optimization iterations of the natural gradient method for
the parametrized quantum circuit encoding algorithm. Note that a
single iteration in the parametrized quantum circuit encoding algo-
rithm updates all the parameters in the parametrized quantum circuit
at once.

of the two-qubit unitary operators in the quantum circuit is
M = DL and the total number P of the real parameters is
P = 9M + 3L, assuming that adjacent two single-qubit Euler
rotations are combined into a single single-qubit Euler rota-
tion. As the initial condition for the optimization iteration in
Eq. (51), all these parameters are chosen randomly.

Figure 9 (Fig. 10) shows the fidelity per site between
the ground state |�〉 of the S = 1/2 XY model (isotropic
antiferromagnetic Heisenberg model) and the optimized quan-
tum circuit states Ĉ|0〉 and Ĉ(θ∗)|0〉 obtained by the AQCE
algorithm and the parametrized quantum circuit encoding al-
gorithms, respectively, for L = 8 and 12. In these numerical
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FIG. 10. Same as Fig. 9 but for the ground state |�〉 of the one-
dimensional S = 1/2 isotropic antiferromagnetic Heisenberg model.
In the AQCE calculation, we perform the enlargement procedure
up to M = L2/4 + L with δM = L and N = 20, and continue the
optimization step with the fixed M.

simulations, we perform 100 independent simulations for each
case and the best result (indicated by symbols) as well as the
next 20 best results (indicated by thin lines) after the fixed
amount of sweeps or iterations are shown in these figures.
We also set B as the set of all possible pairs of qubits. Ad-
ditionally, for comparison, we show the results obtained by
applying the quantum circuit encoding algorithm to circuits
of the same structure employed in the parameterized quantum
circuit encoding algorithm.

First, by comparing the results obtained by the quantum
circuit encoding algorithm and the parameterized quantum
circuit encoding algorithm, as shown in Figs. 9 and 10, we
observe a significant difference in fidelity from the very first
iteration. Despite using the same circuit structure with each
unitary operator initialized as the identity operator, the accu-
racy notably improves at the first iteration for the quantum
circuit encoding algorithm. A similar improvement does not
occur in the parameterized quantum circuit encoding algo-
rithm because the derivative of the cost function around the
identity matrix is close to zero, leading to an essentially negli-
gible change in the variational parameters at the beginning of
the iteration. One possible solution is to use a Haar random
matrix instead of the identity matrix for the initial unitary
matrix; however, this would exacerbate the barren plateau
effect. Therefore, this initialization issue is a drawback of the
gradient-based optimization method used in the parametrized
quantum circuit encoding algorithm. In contrast, this issue is
effectively avoided in the method using SVD, as employed in
the quantum circuit encoding algorithm.

Next, in terms of the number of iterations required for the
overall calculation, the AQCE and quantum circuit encoding
algorithms, both of which use the optimization based on SVD,
tend to converge faster that the parametrized quantum cir-
cuit algorithm. However, it is important to note that in the
parameterized quantum circuit encoding algorithm, the con-
vergence rate can be adjusted by increasing τ . Nevertheless,
if this parameter τ is set too large, then the calculation might
break down, necessitating careful tuning to find an optimal
τ . In contrast, since the AQCE and quantum circuit encoding
algorithms select the locally optimal solution, there is no need
for such fine tuning, which is a significant advantage of these
algorithms. Additionally, comparing the results obtained by
the AQCE algorithm with those obtained by the quantum
circuit encoding algorithm with a sufficient large number of
unitary operators, there is no significant difference in the num-
ber of sweeps required to achieve convergence. Therefore, the
AQCE algorithm is a convenient method for cases where an
appropriate circuit structure is not know a priori. For instance,
as shown in Fig. 9(b), in the XY model, all three algorithms
can achieve high accuracy with a comparable number of two-
qubit unitary operators. However, in the Heisenberg model
shown in Fig. 10(b), the parameterized quantum circuit en-
coding algorithm and the quantum circuit encoding algorithm
do not even reach an infidelity per site as small as 10−3, even
using 48 two-qubit unitary operators for L = 16. In contrast,
the AQCE algorithm achieves an infidelity smaller than 10−3

with 48 two-qubit unitary operators for the same system size.
The AQCE algorithm explores a better circuit structure, in-
cluding long-range gates, resulting in a better quantum circuit
state with the same number of two-qubit unitary operators.
However, selecting an optimal circuit structure, such as one
found here, is generally challenging.

D. Quantum circuit encoding of classical data

In this section, we demonstrate that the AQCE algorithm
is also useful to construct an optimal quantum circuit to
represent classical data such as a classical image. It is well
known that there are several ways to encode classical data to
a quantum state (for example, see Ref. [55]). However, it is
usually not obvious how to optimally prepare such a quantum
state encoding particular classical data in a quantum circuit
with a less number of quantum gates. We show that the AQCE
algorithm can be a promising approach for this purpose.

One way to express classical data in a quantum state is
the amplitude encoding [64], where the classical data x =
{x0, x1, ··· , xn, ··· , xN−1} is described by using a quantum
state

|�c〉 =
N−1∑
n=0

x̄n|n〉. (54)

Here, |n〉 is the basis labeled by Eq. (1) with L � log2 N and

x̄n = xn/
√

Vx, (55)

with Vx being a volume of x given by

Vx =
N−1∑
n=0

|xn|2. (56)
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FIG. 11. Quantum circuit encoding of a gray scale picture known as “Peppers” [72]. (a) Labeling of two-dimensional classical data (with
8 × 8 pixels, as an example). (b) Original picture with 256 × 256 pixels. (c)–(e) Pictures reconstructed by decoding the quantum circuit states
Ĉ|0〉 on L = 16 qubits with the different number M of two-qubit unitary operators, M = 32, 120, and 520. (f) Original picture divided into
16 pieces (ms = 1, 2, . . . , 16 indicated by yellow in the picture) with 64 × 64 pixels each. (g)–(i) Pictures reconstructed by decoding each
quantum circuit state Ĉ (ms )|0〉 on L = 12 qubits with the different number M of two-qubit unitary operators, M = 24, 48, and 480.

Each element xn in the classical data x is usually real number,
but the amplitude encoding can also be applied to the case
of complex number. There exist several proposals to imple-
ment the amplitude encoding [65–68]. However, these are in
general not best fit for a near-term application. A variational
quantum algorithm using a parametrized quantum circuit has
also been proposed recently [69–71].

In the previous sections, we have demonstrated the quan-
tum circuit encoding of a quantum state focusing on the
ground state of a typical many-body Hamiltonian encoun-
tered in condensed matter physics and quantum statistical
physics, which is in some sense simple. Instead, a quantum
state given in Eq. (54) representing classical data is relatively
complicated and moreover there is no prior knowledge of
such a quantum state. Therefore, the quantum circuit encoding
of such a quantum state in Eq. (54) is generally a difficult
task in any means. Here, we employ the AQCE algorithm to
demonstrate the quantum circuit encoding of a quantum state
representing a classical image.

As an example of a classical image, we consider the gray
scale picture shown in Fig. 11(b), which is also known as
“Peppers” available in Ref. [72]. The data size of this picture
is 256 × 256 pixels and each pixel in the two-dimensional
array is assigned to represent each part of the picture lo-
cated at a position labeled (ix, iy) with ix = 0, 1, 2, ··· , 255
(=28 − 1) in the horizontal axis from left to right and iy =
0, 1, 2, ··· , 255 in the vertical axis from top to bottom, as
shown in Fig. 11(a). Therefore, the picture is fully given by
a 216 dimensional vector xPep = {x0, x1, x2, ··· , xs, ··· , x65535}
of nonnegative real numbers, where label s = ix + 256iy. This
suggests that the data can be transformed into a quantum state
|�c〉 in the form given in Eq. (54) with L = 16 qubits. Using
numerical simulations, we perform the AQCE algorithm to
encode the quantum state |�c〉 into an optimal quantum circuit

state Ĉ|0〉. For this end, we set the control parameters in the
AQCE algorithm as (M0, N, δM ) = (16, 100, 8) with varying
the total number M of two-qubit unitary operators {Ûm} in the
generated quantum circuit (defined as Mmax in Sec. II F and
also in Algorithm 5).

Figures 11(c)–11(e) show the reconstructed pictures by
decoding the quantum circuit states Ĉ|0〉 with the different
number M of two-qubit unitary operators. In reconstructing
the classical data x′ = {x′

0, x′
1, ··· , x′

n, ··· , x′
N−1} from the am-

plitude x̄′
n = 〈n|Ĉ|0〉 of the quantum circuit state, we have

to rescale back the amplitude with the volume Vx, i.e., x′
n =√

V ′
x x̄′

n. It turns out that when the number M of two-qubit
unitary operators is extremely small, the reconstructed picture
looks more like a mosaic, as shown in Fig. 11(c) for M = 32.
However, as expected, the reconstructed pictures are improved
with increasing M [see Figs. 11(d) and 11(e)]. To be more
quantitative, we plot the fidelity between the quantum state
|�c〉 representing the original picture and the quantum circuit
state Ĉ|0〉 in Fig. 12. The fidelity improves rather rapidly with
increasing M for M up to 50, but the improvement becomes
somewhat slower for M > 100.

For the better performance, next we simply divide the
original classical data xPep = {x0, x1, x2, ··· , x65535} into 16
pieces, each representing a 64 × 64 pixels picture, as shown
in Fig. 11(f). This implies that each segment of the pic-
ture is given by a 212 dimensional vector, i.e., x(ms )

Pep =
{x(ms )

0 , x(ms )
1 , x(ms )

2 , ··· , x(ms )
4095} with ms = 1, 2, . . . , 16. Accord-

ingly, a quantum state |�̃c〉 for the whole picture is given by a
direct product of quantum states |�̃ (ms )

c 〉 representing different
segments of the original picture, i.e.,

|�̃c〉 =
16⊗

ms=1

∣∣� (ms )
c

〉
, (57)
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FIG. 12. Fidelity per site between the quantum state |�c〉
(|� (ms )

c 〉) on L = 16 (L = 12) qubits representing the original picture
in Fig. 11(b) [the msth segment of the original picture in Fig. 11(f)]
and the quantum circuit state Ĉ|0〉 (Ĉ (ms )|0〉) indicated by red triangles
(green crosses). Here, ms = 1, 2, . . . , 16 and thus 16 different results
are shown for the case where the picture is divided into 16 pieces.

where

∣∣� (ms )
c

〉 =
212−1∑
n=0

x̄(ms )
n |n(ms )〉, (58)

with x̄(ms )
n = x(ms )

n /
√

V (ms )
x and V (ms )

x = ∑212−1
n=0 |x(ms )

n |2. Note
that |n(ms )〉 in Eq. (58) is the basis labeled by Eq. (1) within the
msth segment. Therefore, each |� (ms )

c 〉 is properly normalized
within the segment, i.e., 〈� (ms )

c |� (ms )
c 〉 = 1. The quantum state

|� (ms )
c 〉 in Eq. (58) is now expressed with a smaller number

of qubits L = 12 and each |� (ms )
c 〉 is encoded separately into

a quantum circuit state Ĉ (ms )|0〉 using the AQCE algorithm,
which is expected to be easier than the case for L = 16. We
should however note that the total Hilbert space defining |�̃c〉
in Eq. (57) is now increased to 212×16 = 2192 from 216 for |�c〉
to represent the 216 dimensional classical data, suggesting that
the input classical data is mapped into a higher dimensional
space via a feature map |�̃c〉 [10,18,19,73]. Although we do
not perform any further explicit demonstration, this might find
an interesting application of quantum machine learning based
on a kernel method [10,18,19,73].

We employ the AQCE algorithm to encode separately
the quantum state |� (ms )

c 〉 representing the msth segment
of the picture with the control parameters (M0, N, δM ) =
(12, 100, 6) and varying the total number M of two-qubit
unitary operators in the quantum circuit Ĉ (ms ). Figures 11(g)–
11(i) show the reconstructed pictures by decoding the
quantum circuit states Ĉ (ms )|0〉 with properly rescaling back
the amplitude x̄(ms )′

n = 〈n(ms )|Ĉ (ms )|0〉 by the ms dependent vol-

ume
√

V (ms )
x . We find that the original picture is reconstructed

very efficiently with a much less number M of two-qubit
unitary operators, as compared with the results of encod-
ing the whole picture without the segmentation shown in
Figs. 11(c)–11(e). The fidelity between the quantum state
|� (ms )

c 〉 representing the msth segment of the picture and the
quantum circuit state Ĉ (ms )|0〉 is also shown in Fig. 12. We
observe that the fidelity can be improved much more effi-
ciently with increasing M when the whole picture is divided
into many pieces to decrease the dimension of the classical

data that is to be encoded into a quantum circuit with a less
number L of qubits.

Recall now that a 64 × 64 pixels picture is given by a
212 = 4096 dimensional vector. While an SU (4) operator (i.e.,
a two-qubit unitary operator with ignoring a global phase) is
parametrized by 15 independent real parameters, two consec-
utive single-qubit Euler rotations are redundant (see Fig. 16).
Removing these redundancies, the number of the independent
real parameters for a quantum circuit with M number of SU (4)
operators is 9M + 3L. Therefore, the number of the indepen-
dent real parameters for the quantum circuit with M = 480
on L = 12 qubits is almost equal to the dimension of the
segmented picture. As shown in Fig. 11(i), we indeed find that
the reconstructed picture reproduces the original picture with
a reasonable accuracy.

How is this quantum circuit encoding of classical data
potentially useful in the context of quantum machine learn-
ing? To make good use of quantum computers for machine
learning, classical data has to be implemented into a quantum
device in the first place. As explained above, a quantum state
representing classical data via, e.g., the amplitude encoding
is generally too complicated to be prepared in a quantum
device naively. The quantum circuit encoding proposed here
can be employed for this purpose to approximately construct a
quantum circuit representing a quantum state of classical data
with controlled accuracy. This can be done on a classical com-
puter and has been indeed recently applied in Ref. [74] using
the AQCE algorithm proposed here. The obtained quantum
circuit is then implemented in a quantum device for further
processing of machine learning. In the next section, we shall
demonstrate experimentally some of this procedure.

IV. EXPERIMENTAL DEMONSTRATION
USING A QUANTUM DEVICE

Although the quantum-classical hybrid computation of the
AQCE algorithm is in principle possible, we find that the
implementation using currently available quantum devices is
practically difficult. Therefore, here we instead experimen-
tally demonstrate that the AQCE algorithm indeed generates a
quantum circuit that can be implemented on a real quantum
device to produce a desired quantum state with reasonable
accuracy.

For this demonstration, we use a quantum device
(ibmq_lima) provided by IBM Quantum [49] with the Qiskit
Python API for programming the device [75]. The proces-
sor type of ibmq_lima is Falcon r4T with its qubit topology
shown in Fig. 13(a), and we used qubits labeled 0 and
1 for the two-qubit experiments and qubits labeled by 0,
1, and 2 for the three-qubit experiments. All experimental
data were collected on 15 October 2021. The qubit fre-
quencies ω, decoherence times T1 and T2, readout errors εr ,
and state-preparation-and-measurement errors εs (probabili-
ties measuring state |0〉i after preparing state |1〉i, which were
larger than probabilities measuring state |1〉i after preparing
state |0〉i) for qubits 0, 1, and 2 were (ω, T1, T2, εr , εs)
= (5.0297314 GHz, 112.76330 µs, 63.266823 µs, 0.0266,
0.0438), (5.1276895 GHz, 107.94655 µs, 127.49361 µs,
0.0292, 0.0464), and (5.2473447 GHz, 116.56877 µs,
109.85284 µs, 0.0286, 0.0458), respectively. The controlled-
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FIG. 13. (a) Qubit topology of ibmq_lima provided by IBM Quantum [49]. Numbers indicate labels of qubits and solid lines denote
connectivity of qubits. (b) Two-qubit unitary operator Ûi, j (θ) acting on qubit i and j is implemented on a quantum device by a standard set of
quantum gates with 15 parameters θ = {θ0, θ1, ··· , θ14} for the rotation angles of single-qubit gates. (c) Quantum circuit Û2QS that generates
the singlet state |�2QS〉 in the two-qubit space. (d) Quantum circuit ÛGHZ that generates the GHZ state |�GHZ〉 in three-qubit space. (e), (f)
Quantum circuit structures obtained by the AQCE algorithm for a quantum state in the three-qubit space, containing two two-qubit unitary
operators acting on qubits that are physically connected in the quantum device employed here.

NOT error for qubits 0 and 1 was 0.0071634 and that for
qubits 1 and 2 was 0.0070542. However, we have obtained
essentially the same results on different dates and thus under
the different calibration conditions.

A. Quantum states in the two-qubit space

We first consider one of the simplest quantum states, i.e.,
the singlet state in the two-qubit space (one of the Bell states)
given by

|�2QS〉 = 1√
2

(|01〉 − |10〉), (59)

where |01〉 = |0〉0 ⊗ |1〉1 and |10〉 = |1〉0 ⊗ |0〉1, following
the notation introduced at the beginning of Sec. II A. We apply
the AQCE algorithm on a classical computer to encode the
quantum state |�2QS〉 and obtain within the machine precision
that

|�2QS〉 = Û0,1(θ)|0〉, (60)

where the quantum circuit Ûi, j (θ) operating on qubits i and j
is given as

Ûi, j (θ) = R̂z
j (θ14)R̂y

j (θ13)R̂z
j (θ12)R̂z

i (θ11)R̂y
i (θ10)R̂z

i (θ9)

× R̂x
j (π/2)R̂x

i (−π/2)Ĉi(X̂ j )ĤiŜi

× R̂z
j (2θ7)Ĉi(X̂ j )R̂z

j (−2θ8)ĤiR̂x
i (−2θ6)Ĉi(X̂ j )

× R̂z
j (θ5)R̂y

j (θ4)R̂z
j (θ3)R̂z

i (θ2)R̂y
i (θ1)R̂z

i (θ0),
(61)

and the resulting set of parameters θ = {θ0, θ1, ··· , θ14} is
displayed in Table I. Here, R̂z

i (θ ) = e−iθ Ẑi/2 represents a
single-qubit rotation around the z axis at qubit i, with sim-
ilar definitions for R̂x

i (θ ) and R̂y
i (θ ), and Ĉi(X̂ j ) denotes

the controlled-NOT (CNOT) gate where the NOT operation
acting on the jth qubit is controlled by the ith qubit. The
explicit form of the quantum circuit Ûi, j (θ) and the associated
quantum gates are shown in Fig. 13(b). Note that the singlet
state in Eq. (59) can also be prepared simply by

|�2QS〉 = Û2QS|0〉, (62)

with the quantum circuit

Û2QS = Ĉ0(X̂1)Ĥ0X̂1X̂0, (63)

as shown in Fig. 13(c).
By using the quantum device, we evaluate in Figs. 14(a)

and 14(b) the density matrix, [ρ]nn′ = 〈n|ρ̂|n′〉, of the singlet
state generated by the quantum circuits Û2QS in Eq. (63)
and Û0,1(θ) in Eq. (61), respectively. Here, |n〉 and |n′〉 with
n, n′ = 0, 1, 2, 3 are the basis states of L = 2 qubits labeled
as in Eq. (1). To evaluate the density matrix, we perform
the quantum state tomography by measuring 16 different sets
of Pauli strings (including the identity operator) with length
two [see Eqs. (42) and (43)]. Each Pauli string is measured
on the quantum device 4096 times and the density matrix
[ρ]nn′ shown in Figs. 14(a) and 14(b) is evaluated from the
averaged values over these measurements. These results are
also compared with the exact values. We find that the density
matrices evaluated on the quantum device with the two differ-
ent quantum circuits, one obtained by the AQCE algorithm,

TABLE I. Sets of parameters θ = {θ0, θ1, ··· , θ14} for the quan-
tum circuits Û0,1(θ) in Eq. (61) [also see Fig. 13(b)] generated by the
AQCE algorithm, encoding the singlet state |�2QS〉 and the random
state |�2QR〉 in the two-qubit space.

Singlet state Random state

θ0 1.6823068 2.0216448
θ1 3.1415927 1.3683389
θ2 0 −2.2863607
θ3 −0.9758576 −2.8429004
θ4 0 1.9027058
θ5 −1.6678105 −1.8420845
θ6 0.3926991 0.7086172
θ7 3.5342917 1.1534484
θ8 3.1355175 1.6383263
θ9 −2.6094912 −2.6132016
θ10 −3.1415927 −2.0676228
θ11 3.1204519 2.1424122
θ12 −1.6869951 −1.2293439
θ13 −3.1415926 −1.8418481
θ14 2.4721516 −2.6729236
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FIG. 14. (a) Density matrix [ρ]nn′ = 〈n|ρ̂|n′〉 evaluated on the
quantum device (ibmq_lima) with the quantum circuit Û2QS describ-
ing the singlet state |�2QS〉 in Eq. (59). (b) Same as panel (a) but
with the quantum circuit Û0,1(θ) in Eq. (61) generated by the AQCE
algorithm encoding the singlet state |�2QS〉. The parameter set θ is
provided in the column “singlet state” of Table I. Note that only the
real part of density matrix is shown in panels (a) and (b) because
the imaginary part is zero for the singlet state |�2QS〉. (c) Real and
(d) imaginary parts of density matrix [ρ]nn′ = 〈n|ρ̂|n′〉 evaluated on
the quantum device (ibmq_lima) with the quantum circuit Û0,1(θ)
in Eq. (61) generated by the AQCE algorithm encoding the random
state |�2QR〉 in Eq. (65) [also see Eq. (C1)]. The parameter set θ is
provided in the column “random state” of Table I. For comparison,
the exact results are also shown by orange bars. The density matrix is
evaluated on the quantum device by the quantum state tomography,
measuring 16 different sets of Pauli strings with length two, and the
results shown here are obtained from the averaged values over 4096
measurements of each Pauli string. |n〉 and |n′〉 with n, n′ = 0, 1, 2, 3
are the basis states of L = 2 qubits labeled as in Eq. (1).

are rather similar and can both reproduce the exact result with
reasonable accuracy.

For quantitative comparison, we now introduce the follow-
ing quantity:

Q = (Tr[ρ̂Aρ̂B])1/2, (64)

where ρ̂A and ρ̂B are the density operators of two quantum
states A and B. Here we employ this quantity as fidelity of two
quantum states because some of the eigenvalues of the den-
sity matrix evaluated from our experimental measurements
are negative. This can be justified when two quantum states
A and B are pure states, i.e., ρ̂A = |�A〉〈�A| and |�B〉〈�B|,
because in this case Q = |〈�A|�B〉|. Using the density ma-
trix evaluated experimentally in Fig. 14(b), we find that the
fidelity Q for the exact singlet state |�2QS〉 and the singlet state

generated by the quantum circuit Û0,1(θ) is as large as 0.9512.
This is indeed comparable to the fidelity Q = 0.9607 for the
exact singlet state |�2QS〉 and the singlet state generated by
the quantum circuit Û2QS.

Next, we consider the case where a quantum state is more
complex in the sense that the associated density matrix has
many nonzero elements. To this end, we examine a random
state described by the following state in the two-qubit space:

|�2QR〉 =
∑

σ0=0,1

∑
σ1=0,1

ψ r
σ0σ1

|σ0σ1〉, (65)

where |σ0σ1〉 = |σ0〉0 ⊗ |σ1〉1. The coefficients ψ r
σ0σ1

are ran-
domly determined as follows: We first use a random generator
in the c + + standard library for the normal distribution with
the mean 0 and the standard deviation 1 to determine the real
and imaginary parts of each coefficient and then normalize
the resulting state [76]. The values of coefficients ψ r

σ0σ1
used

in the demonstration can be found in Appendix C. We apply
the AQCE algorithm on a classical computer to encode the
quantum state |�2QR〉 and obtain the quantum circuit Û0,1(θ)
with the parameter set θ = {θ1, θ2, ··· , θ14} given in Table I,
which can represent |�2QR〉 exactly within the machine preci-
sion. The density matrix [ρ]nn′ of the random state generated
by the quantum circuits Û0,1(θ) is evaluated on the quantum
device in Figs. 14(c) and 14(d) by using the quantum state
tomography described above. Similar to the case of the singlet
state, we find that the results evaluated on the quantum device
are rather well compared with the exact values. Indeed, using
the density matrix evaluated experimentally in Figs. 14(c) and
14(d), we find that the fidelity Q for the exact random state
|�2QR〉 and the random state generated by the quantum circuit
Û0,1(θ) is as large as 0.9592.

B. Quantum states in the three-qubit space

The demonstrations shown above are focused on quantum
states in the two-qubit space. It is also highly interesting to
continue a similar demonstration for a quantum state in a
larger Hilbert space. Let us now consider the GHZ state in
the three-qubit space given by

|�GHZ〉 = 1√
2

(|000〉 + |111〉), (66)

where |000〉 = |0〉0 ⊗ |0〉1 ⊗ |0〉2 and |111〉 = |1〉0 ⊗ |1〉1 ⊗
|1〉2, following the notation introduced at the beginning of
Sec. II A. It is known that the GHZ state can be prepared
simply by

|�GHZ〉 = ÛGHZ|0〉, (67)

with the quantum circuit

ÛGHZ = Ĉ1(X̂2)Ĉ0(X̂1)Ĥ0 (68)

acting on qubits 0, 1, and 2, as shown in Fig. 13(d).
We also perform the AQCE algorithm on a classical

computer to encode the GHZ state into a quantum circuit.
Considering a set of bonds B in the AQCE algorithm, it is wise
to include only pairs of qubits that are physically connected in
the quantum device to decrease the number of extra quantum
gates. In the quantum device employed in this demonstration,
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TABLE II. Sets of parameters θm = {θm
0 , θm

1 , ··· , θm
14} (m = 0

and 1) for the quantum circuit Û0,1,2(θ) in Eq. (70) [also see
Fig. 13(e)] generated by the AQCE algorithm, encoding the GHZ
state |�GHZ〉 in the three-qubit space.

m = 0 m = 1

θm
0 0.70081942 0

θm
1 1.59343588 0

θm
2 −2.99819974 0

θm
3 3.01209222 0.03670498

θm
4 1.45398911 1.57079633

θm
5 −2.86368415 0

θm
6 0.25868788 0.25573854

θm
7 0.14505637 0

θm
8 −0.63764672 −2.35619449

θm
9 −1.71718177 0

θm
10 −2.80049545 −3.14159265

θm
11 −2.60125707 0.04066063

θm
12 −2.13304918 −1.57079633

θm
13 1.68590984 −1.57079633

θm
14 −2.04727870 −1.11421776

there are only two pairs of qubits: B = {{0, 1}, {1, 2}}. How-
ever, it is not obvious in advance how many two-qubit unitary
operators Ûi, j (θ) are necessary to encode the GHZ state. By
performing the AQCE algorithm on a classical computer, we
find within the machine precision that

|�GHZ〉 = Û0,1,2(θ)|0〉, (69)

with the quantum circuit Û0,1,2(θ) being composed of two
two-qubit unitary operators,

Û0,1,2(θ) = Û1,2(θ1)Û0,1(θ0), (70)

where θ = {θ0, θ1} and the resulting sets of parameters θm =
{θm

0 , θm
1 , ··· , θm

14} (m = 0 and 1) for Û0,1(θ0) and Û1,2(θ1) are
provided in Table II with Ûi, j (θ) being defined in Eq. (61) and
Fig. 13(b). The schematic structure of the quantum circuit is
shown in Fig. 13(e). Notice in Table II that θ1

0 = θ1
1 = θ1

2 = 0
because these parameters correspond to the first Euler rotation
(acting on qubit 1) of the second two-qubit unitary operator
Û1,2(θ1), which can be absorbed into the last Euler rotation
of the first two-qubit unitary operator Û0,1(θ1). We should
also note that since the GHZ state is translational symmetric,
the quantum circuit with the structure shown in Fig. 13(f) is
topologically equivalent. The AQCE algorithm select one of
them and, in this particular demonstration, the quantum circuit
with the structure shown in Fig. 13(e) is selected.

Next, using the quantum device, we evaluate in Figs. 15(a)
and 15(b) the density matrix, [ρ]nn′ = 〈n|ρ̂|n′〉, of the GHZ
state generated by the quantum circuits ÛGHZ in Eq. (68)
and Û0,1,2(θ) in Eq. (70), respectively. Here, |n〉 and |n′〉
with n, n′ = 0, 1, 2, . . . , 7 are the basis states of L = 3 qubits
labeled as in Eq. (1). Similar to the cases of L = 2 qubits
discussed in Sec. IV A, we evaluate the density matrix by
performing the quantum state tomography, where 64 different
sets of Pauli strings (including the identity operator) with
length three [see Eqs. (42) and (43) for L = 2 qubits] are
measured. The density matrix [ρ]nn′ shown in Figs. 15(a) and
15(b) is evaluated from the averaged values of Pauli strings

FIG. 15. (a) Density matrix [ρ]nn′ = 〈n|ρ̂|n′〉 evaluated on the
quantum device (ibmq_lima) with the quantum circuit ÛGHZ describ-
ing the GHZ state |�GHZ〉 in Eq. (66). (b) Same as panel (a) but with
the quantum circuit Û0,1,2(θ) in Eq. (70) generated by the AQCE
algorithm encoding the GHZ state |�GHZ〉. The parameter set θ is
provided in Table II. Note that only the real part of density matrix is
shown in panels (a) and (b) because the imaginary part is zero for the
GHZ state |�GHZ〉. (c) Real and (d) imaginary parts of density matrix
[ρ]nn′ = 〈n|ρ̂|n′〉 evaluated on the quantum device (ibmq_lima) with
the quantum circuit Û ′

0,1,2(θ) in Eq. (73) generated by the AQCE
algorithm encoding the random state |�3QR〉 in Eq. (71) [also see
Eq. (C2)]. The parameter set θ is provided in Table III. For compar-
ison, the exact results are also shown by orange bars. The density
matrix is evaluated on the quantum device by the quantum state
tomography, measuring 64 different sets of Pauli strings with length
three, and the results shown here are obtained from the averaged
values over 4096 measurements of each Pauli string. |n〉 and |n′〉 with
n, n′ = 0, 1, 2, . . . , 7 are the basis states of L = 3 qubits labeled as
in Eq. (1).

measured 4096 times each. Although the number of quantum
gates in the quantum circuit Û0,1,2(θ) is much larger than
that in the quantum circuit ÛGHZ, we find that the density
matrices evaluated on the quantum device with these two dif-
ferent quantum circuits are rather similar and are in reasonable
agreement with the exact values. More quantitatively, using
the density matrix evaluated experimentally in Fig. 15(b), we
find that the fidelity Q for the exact GHZ state |�GHZ〉 and
the GHZ state generated by the quantum circuit Û0,1,2(θ) is as
large as 0.8906. This is comparable to the fidelity Q = 0.9189
for the exact GHZ state |�GHZ〉 and the GHZ state generated
by the quantum circuit ÛGHZ.

Finally, we examine a random state in the three-qubit
space:

|�3QR〉 =
∑

σ0=0,1

∑
σ1=0,1

∑
σ2=0,1

ψ r
σ0σ1σ2

|σ0σ1σ2〉, (71)
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TABLE III. Sets of parameters θm = {θm
0 , θm

1 , ··· , θm
14} (m = 0

and 1) for the quantum circuit Û ′
0,1,2(θ) in Eq. (73) [also see

Fig. 13(f)] generated by the AQCE algorithm, encoding the random
state |�3QR〉 in the three-qubit space.

m = 0 m = 1

θm
0 1.39099869 0.12699636

θm
1 1.22253363 1.49657252

θm
2 −1.22510250 −0.96112628

θm
3 −1.04474694 0

θm
4 1.85347535 0

θm
5 −2.24417198 0

θm
6 −1.06037512 −0.39222573

θm
7 −0.87968547 0.60984155

θm
8 −0.05457889 −0.07696758

θm
9 0.03359139 0.48406694

θm
10 2.27862931 −0.36703453

θm
11 0.49867804 0.19553219

θm
12 2.89140237 −1.17312888

θm
13 −0.80188802 −2.29176295

θm
14 1.52534544 −3.06220240

where |σ0σ1σ2〉 = |σ0〉0 ⊗ |σ1〉1 ⊗ |σ2〉2, and the coefficients
are randomly determined as in the case of the random state
|�2QR〉 in Eq. (65). The values of coefficients ψ r

σ0σ1σ2
used in

the demonstration can be found in Appendix C. We perform
the AQCE algorithm on a classical computer and obtain within
the machine precision that

|�3QR〉 = Û ′
0,1,2(θ)|0〉, (72)

with the quantum circuit

Û ′
0,1,2(θ) = Û0,1(θ1)Û1,2(θ0), (73)

where θ = {θ0, θ1} and the resulting sets of parameters θm =
{θm

0 , θm
1 , ··· , θm

14} (m = 0 and 1) for Û1,2(θ0) and Û0,1(θ1) are
provided in Table III with Ûi, j (θ) being defined in Eq. (61)
and Fig. 13(b). The schematic structure of the quantum circuit
Û ′

0,1,2(θ) is shown in Fig. 13(f). Here, we should note that,
depending of the initialization process, the AQCE algorithm
also finds a quantum circuit forming the structure shown in
Fig. 13(e) with a different set of parameters θ, which can
encode the random state |�3QR〉 exactly within the machine
precision. This implies that two two-qubit unitary operators
are enough to encode any quantum state in the three-qubit
space.

We perform the quantum state tomography on the quantum
device to evaluate the density matrix [ρ]nn′ of the random state
generated by the quantum circuit Û ′

0,1,2(θ). The 64 different
Pauli strings with length three are measured 4096 times each
and the density matrix shown in Figs. 15(c) and 15(d) is ob-
tained from the averaged values of these measurements. Using
the density matrix evaluated experimentally in Figs. 15(c) and
15(d), we find that the fidelity Q for the exact random state
|�3QR〉 and the random state generated by the quantum circuit
Û ′

0,1,2(θ) is as large as 0.9051, suggesting good accordance
with the exact result.

V. SUMMARY

We have proposed the quantum circuit encoding algorithm
to encode a given quantum state |�〉 onto a quantum circuit Ĉ
composed of K-qubit unitary operators {Ûm} by maximizing
the absolute value of the fidelity F = 〈0|Ĉ†|�〉. The fidelity
|F | can be maximized by sequentially optimizing each unitary
operator Ûm one by one via SVD of the fidelity tensor matrix
Fm, a similar scheme used for the optimization in the tensor
network method. The most demanding part of the algorithm
is to construct the fidelity tensor matrix Fm and we have
shown how a quantum computer can be utilized for this task.
The AQCE algorithm proposed here determines not only the
form of the individual unitary operators but also the optimal
location of qubits on which each unitary operator acts in the
quantum circuit. Therefore, it allows us to generate an opti-
mal quantum circuit of a given quantum state automatically.
The elementary single- and two-qubit gates are algebraically
assigned when the encoded quantum circuit is composed of
two-qubit unitary operators. We emphasize that the AQCE
algorithm proposed here does not rely on any parametrized
quantum circuit as in variational quantum algorithms such as
VQE and thus the associated parameter optimization is not
required.

Using numerical simulations, we have demonstrated the
AQCE algorithm to encode a ground state of a quantum many-
body system, such as the spin-1/2 isotropic antiferromagnetic
Heisenberg model and the spin-1/2 XY model in one spatial
dimension, onto a quantum circuit composed of two-qubit
unitary operators. We have also compared the results with
the quantum circuit encoding of the same quantum state onto
a quantum circuit in a given circuit structure such as the
Trotter-like and MERA-like circuit structures and found that
the quantum circuit generated by the AQCE algorithm is better
than the Trotter-like circuit and is equally competitive with the
MERA-like circuit.

We have also demonstrated that the AQCE algorithm can
be applied to encode a quantum state representing classical
data such as a classical image. As a concrete example, we
considered a gray scale picture of 256 × 256 pixels, which
can be expressed as a quantum state |�c〉 on 16 qubits by
using the amplitude encoding, and thus can be encoded onto
a quantum circuit Ĉ by employing the AQCE algorithm. Al-
though the picture reconstructed by decoding the quantum
circuit state Ĉ|0〉 improves its quality systematically with
increasing the number of two-qubit unitary operators in the
quantum circuit Ĉ, the improvement is relatively slow if the
size of the picture is large. Therefore, we have also made
a different attempt by dividing the original picture into 16
pieces, which thus allows us to represent each segment of
the picture of 64 × 64 pixels with a quantum state |� (ms )

c 〉 on
12 qubits for ms = 1, 2, . . . , 16. This implies that the original
classical data is represented by a direct product of 16 quantum
states |� (ms )

c 〉, which is thus defined in a higher dimensional
space than the input classical data. We have encoded each
quantum state |� (ms )

c 〉 separately onto a different quantum
circuit Ĉ (ms ) and found that the quality of the reconstructed
picture by decoding all these quantum circuit states Ĉ (ms )|0〉
is much improved. This is encouraging for a near-term ap-
plication because, depending on available quantum devices,
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one can adjust the number of qubits by dividing classical
data into multiple pieces. In the context of quantum machine
learning, the AQCE algorithm would be potentially useful for
finding an optimal quantum circuit, which can be done clas-
sically, to prepare a quantum state representing classical data
that is to be processed on a quantum computer for machine
learning.

Moreover, we have used the quantum device provided by
IBM Quantum to demonstrate experimentally that quantum
circuits generated by the AQCE algorithm can be imple-
mented on a real quantum device to produce a desired
quantum state with reasonable accuracy. For this purpose, we
have considered the well-known quantum states, such as the
singlet state and the GHZ state, as well as random states in the
two- and three-qubit spaces, and shown that the density matrix
evaluated on the quantum device for the quantum circuits
obtained by the AQCE algorithm is indeed compatible with
the exact values.

As clearly demonstrated for several examples, the AQCE
algorithm can encode a given quantum state onto a quantum
circuit with controlled accuracy by varying the number M
of unitary operators {Ûm} in the quantum circuit. One of the
advantages of the AQCE algorithm is that it requires very little
adjustable parameters, regardless of the problem. For exam-
ple, the VQE algorithm requires many adjustable parameters
to be set such as circuit ansatz and learning rate, but the AQCE
algorithm requires only the number of iterations. However,
we have observed that the improvement of accuracy with
increasing M becomes sometimes slower when the number of
qubits is large. For example, the results for 16 qubits show the
accuracy of the fidelity per site, 1 − |F |, as good as 0.003, but
it is expected that the optimization will become more difficult
for larger system sizes.

There are two possible ways to further improve the AQCE
algorithm. One is to improve the procedure of increasing the
number of unitary operators by δM in the enlargement step of
the algorithm (see Fig. 3). The procedure adopted as a proto-
type algorithm in this paper is to simply insert δM new unitary
operators at the end of the quantum circuit. We have found
that this simple strategy is not the most efficient. Instead, one
may as well insert these new unitary operators in any location
among already existing unitary operators. However, this is
certainly more costly if a brute-force search is used.

Another way to improve the AQCE algorithm is related to
how to generate and update unitary operators in the quantum
circuit. In all the demonstrations, a quantum state is encoded
directly onto a quantum circuit composed of unitary operators
acting only on two qubits. However, as described in Secs. II,
the space on which unitary operators act is not necessary the
two-qubit space but the AQCE algorithm can encode a quan-
tum state more generally onto a quantum circuit composed of
K-qubit unitary operators with K > 2. One possible strategy
is to encode a quantum state first onto a quantum circuit
composed of unitary operators acting on a large qubit space,
and these unitary operators are then decomposed into unitary
operators acting on a smaller qubit space. We have found that
this procedure can improve the accuracy significantly when
the number of qubits is large and more details will be reported
elsewhere.
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APPENDIX A: DECOMPOSITION OF A GENERAL
TWO-QUBIT UNITARY OPERATOR

1. Decomposing into elementary quantum gates

In this Appendix, we briefly outline a procedure to de-
compose an arbitrary two-qubit unitary gate into elementary
quantum gates [53]. As proven in Ref. [53], any two-qubit
unitary operator Û acting on qubits i and j can be decomposed
into a product of elementary gate operations in the following
canonical form [also see Fig. 16(a)]:

Û = e−iα0R̂′
iR̂′

jD̂R̂iR̂ j, (A1)

where α0 is an overall phase factor, not relevant for the as-
signment, R̂′

q and R̂q are single-qubit Euler rotations acting
on qubit q (= i, j) given by

R̂q = e−iξ q
1 Ẑq/2e−iξ q

2 Ŷq/2e−iξ q
3 Ẑq/2 (A2)

and

R̂′
q = e−iζ q

1 Ẑq/2e−iζ q
2 Ŷq/2e−iζ q

3 Ẑq/2, (A3)

and D̂ is a two-qubit entangled operator

D̂ = e−i(α1X̂iX̂ j+α2ŶiŶj+α3Ẑi Ẑ j ). (A4)

By following the proof of Eq. (A1) in Ref. [53], the parameters
ξ

q
k (k = 1, 2, 3, q = i, j) and ζ

q
k (k = 1, 2, 3, q = i, j) for the

Euler rotations and αk (k = 1, 2, 3) for D̂ as well as α0 are
determined algebraically. For completeness, the derivation of
Eq. (A1) is also provided in Appendix A 2. The total number
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FIG. 16. General form of a two-qubit unitary gate acting on
qubits i and j. (a) Any unitary operator Û is decomposed into four
single-qubit Euler rotations and two-qubit operator D̂. (b) D̂ is fur-
ther decomposed into a product of the most standard quantum gates,
including three controlled-NOT gates. (c) Decomposition of a unitary
operator Û into a standard set of the most elementary quantum gates.
Each single-qubit operation is defined in the text.

of parameters in the right hand side of Eq. (A1) is 16 and is
identical to the number of free real parameters in a general
U (4) matrix.

Next, as shown in Fig. 16(b), D̂ can be represented by a
product of the most standard quantum gates [77,78]

D̂ = ŵiŵ
†
j Ĉi(X̂ j )û

3
i v̂

3
j Ĉi(X̂ j )û

2
i v̂

2
j Ĉi(X̂ j ). (A5)

Here, Ĉi(X̂ j ) denotes the controlled-NOT gate defined previ-
ously in Eq. (61), and other gates are single qubit gates given
by

ŵi = eiπ X̂i/4, ŵ
†
j = e−iπ X̂ j/4, (A6)

û3
i = ĤiŜi, v̂3

j = e−iα2Ẑ j , (A7)

û2
i = Ĥie

iα1X̂i , v̂2
j = eiα3Ẑ j , (A8)

with Ĥi and Ŝi being the Hadamard and shift gates, respec-
tively. The matrix representations H and S for these quantum
gates Ĥi and Ŝi in the computational basis are given, respec-
tively, by

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
. (A9)

Inserting the expression of Eq. (A5) into Eq. (A1), we
obtain that

Û = û4
i v̂

4
j Ĉi(X̂ j )û

3
i v̂

3
j Ĉi(X̂ j )û

2
i v̂

2
j Ĉi(X̂ j )û

1
i v̂

1
j , (A10)

where

û1
i = R̂i, v̂1

j = R̂ j, (A11)

û4
i = R̂′

iŵi, v̂4
j = R̂′

jŵ
†
j . (A12)

This is also schematically shown in Fig. 16(c). Note that once
the matrix representation for a single-qubit unitary operator
is obtained, we can reparametrize any sequential product of
single-qubit operators by using an overall phase factor and a

single Euler rotation algebraically (see Appendix B), suggest-
ing that all ûk

i (k = 1, 2, 3, 4) and v̂k
j (k = 1, 2, 3, 4) can be

represented as single Euler rotations (apart from an overall
phase factor). We should also note that when a matrix rep-
resentation U of a unitary operator Û happens to be O(4),
instead of U (4), the corresponding two-qubit operator for Û in
Fig. 16(c) can be constructed with two controlled-NOT gates
[79].

2. Derivation of Eq. (A1)

Here, we shall summarize the derivation of Eq. (A1)
following Ref. [53]. Let us first introduce the magic ba-
sis {|φ0〉, |φ1〉, |φ2〉, |φ3〉} defined on the two-qubit system
I = {i, j}:

|φ0〉 = 1√
2

(|00〉 + |11〉), (A13)

|φ1〉 = − i√
2

(|00〉 − |11〉), (A14)

|φ2〉 = 1√
2

(|01〉 − |10〉), (A15)

|φ3〉 = − i√
2

(|01〉 + |10〉), (A16)

where |00〉 = |0〉i ⊗ |0〉 j , |11〉 = |1〉i ⊗ |1〉 j , |01〉 = |0〉i ⊗
|1〉 j , and |10〉 = |1〉i ⊗ |0〉 j . The unitary transformation M̂
from the magic basis {|φ0〉, |φ1〉, |φ2〉, |φ3〉} to the com-
putational basis {|0〉, |1〉, |2〉, |3〉} = {|00〉, |10〉, |01〉, |11〉} is
given by

M̂ =
3∑

n=0

3∑
k=0

|n〉[M]nk〈φk|, (A17)

where [M]nk = 〈n|φk〉, i.e.,

M = 1√
2

⎛
⎜⎜⎝

1 −i 0 0
0 0 −1 −i
0 0 1 −i
1 i 0 0

⎞
⎟⎟⎠. (A18)

Any state |ψ〉 on the two-qubit system I can be represented
by |ψ〉 = ∑3

k=0 μk|φk〉, where μk is generally complex.
Now let {|ψk〉}3

k=0 be a basis where 〈ψk|ψk′ 〉 = δkk′ and
|ψk〉 are all maximally entangled. We refer to such a basis
{|ψk〉}3

k=0 as a maximally entangled basis. This representation
has several interesting properties. Here, we list only the es-
sential ones to construct the quantum circuit representation of
any unitary operator acting on two qubits.

(i) If |ψ〉 is real in the magic basis (μk ∈ R), then |ψ〉 is
maximally entangled. If |ψ〉 is maximally entangled, then one
can choose |ψ〉 real in the magic basis except for the global
phase factor.

(ii)
∑3

k=0 μ2
k = 0 for |ψ〉 = ∑3

k=0 μk|φk〉 if and only if
|ψ〉 is a product state.

(iii) Let {|ψk〉}3
k=0 be a maximally entangled basis. Then,

one can obtain local unitary operators R̂i and R̂ j and a phase
ξk such that

R̂iR̂ je
iξk |ψk〉 = |φk〉. (A19)
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(iv) For any unitary operator Û acting on two qubits, there
exist a phase εk and two maximally entangled bases {|ψk〉}3

k=0
and {|ψ ′

k〉}3
k=0 such that

Û |ψk〉 = eiεk |ψ ′
k〉. (A20)

(v) The magic states |φk〉 are the eigenstates of the opera-
tor

D̂ = e−i(αx X̂iX̂ j+αyŶiŶj+αz Ẑi Ẑ j ), (A21)

namely, D̂|φk〉 = e−iλk |φk〉 with λk being given as

λ0 = αx − αy + αz + 2πn0, (A22)

λ1 = −αx + αy + αz + 2πn1, (A23)

λ2 = −αx − αy − αz + 2πn2, (A24)

λ3 = αx + αy − αz + 2πn3, (A25)

where nk (k = 0, 1, 2, 3) are integers. The proof of the above
properties (i)–(v) is outlined in Ref. [53]. Here, we briefly
comment on how to find R̂i, R̂ j , and eiξk in property (iii), and
{|ψk〉}3

k=0, {|ψ ′
k〉}3

k=0, and eiεk in property (iv).
In property (iii), one can always choose |ψk〉 = eiηk |ψ̄k〉,

where |ψ̄k〉 is a real in the magic basis [property (i)]. If we de-
fine |μ〉 = (|ψ̄0〉 + i|ψ̄1〉)/

√
2 and |ν〉 = (|ψ̄0〉 − i|ψ̄1〉)/

√
2,

then |μ〉 and |ν〉 are product states such that |μ〉 = |a〉i|b〉 j ≡
|ab〉 and |ν〉 = |ā〉i|b̄〉 j ≡ |āb̄〉 [80]. Since |ψ̄0〉 and |ψ̄1〉
are maximally entangled states and 〈μ|ν〉 = 0, |a〉i and |ā〉i

(|b〉 j and |b̄〉 j) are orthogonal to each other. Similarly, the
remaining states |ψ̄2〉 and |ψ̄3〉 are represented by using
the linear combination of |a〉i|b̄〉 j ≡ |ab̄〉 and |ā〉i|b〉 j ≡ |āb〉.
Without loss of generality, one can find that |ψ̄2〉 = (eiδ|ab̄〉 −
e−iδ|āb〉)/

√
2 and thereby |ψ̄3〉 = −i(eiδ|ab̄〉 + e−iδ|āb〉)/

√
2.

In this case, if we define

R̂i = (|0〉i )(i〈a|) + (|1〉i )(i〈ā|)eiδ, (A26)

R̂ j = (|0〉 j )( j〈b|) + (|1〉 j )( j〈b̄|)e−iδ, (A27)

then we can obtain the relation in Eq. (A19) by choosing
appropriately the phase factor ξk , i.e., ξk = −ηk . In this way,
we can obtain the local unitary operators R̂i and R̂ j , and the
phase factors ξk in property (iii).

In property (iv), for a given unitary operator Û , let |ψk〉
be the eigenstates of the operator Ŵ = Û t Û with the corre-
sponding eigenvalues e2iεk , where Û t is the transpose of Û .
From the fact that Ŵ†Ŵ = 1̂ and Ŵ t = Ŵ , the eigenstates
|ψk〉 can be chosen as real in the magic basis and hence
{|ψk〉}3

k=0 is a maximally entangled basis. From the eigen-
value equation (Ŵ − e2iεk )|ψk〉 = 0, one can readily show
that |ψ ′

k〉 ≡ e−iεk Û |ψk〉 is real in the magic basis, suggesting
that {|ψk′ 〉}3

k=0 is also a maximally entangled basis. There-
fore, we obtain the maximally entangled bases {|ψk〉}3

k=0 and
{|ψ ′

k〉}3
k=0, and the phase factor εk in property (iv)

Now, let |ψk〉 and |ψ ′
k〉 be the states that satisfy property

(iv) for a unitary operator Û . From property (iii), one can find
the set of the local operators R̂i and R̂ j and the phase ξk for
|ψk〉 such that

|ψk〉 = e−iξkR̂†
i R̂

†
j |φk〉. (A28)

Similarly, we can also find R̂′
i, R̂′

j , and ξ ′
k for |ψ ′

k〉 such that

|ψ ′
k〉 = e−iξ ′

kR̂′
iR̂′

j |φk〉. (A29)

Inserting Eqs. (A28) and (A29) into Eq. (A20), we obtain that

Ûe−iξkR̂†
i R̂

†
j |φk〉 = eiεk e−iξ ′

kR̂′
iR̂′

j |φk〉. (A30)

Multiplying (R̂′
iR̂′

j )
† from the left, we obtain that

(R̂′
i)

†(R̂′
j )

†ÛR̂†
i R̂

†
j |φk〉 = e−i(ξ ′

k−ξk−εk )|φk〉. (A31)

Equation (A31) suggests that the operator (R̂′
i )

†(R̂′
j )

†ÛR̂†
i R̂

†
j

becomes identical to e−iα0D̂ if we choose

α0 + λk = ξ ′
k − ξk − εk + 2πnk (A32)

for k = 0, 1, 2, 3. Inserting Eqs. (A22)–(A25) into Eq. (A32),
we can determine the phase factors αμ (μ = 0, x, y, z) and
therefore obtain the following form of the unitary operator Û :

Û = e−iα0R̂′
iR̂′

jD̂R̂iR̂ j . (A33)

Since R̂′
i, R̂′

j , R̂i, and R̂ j are the single-qubit unitary opera-
tors, they can always be represented by the Euler rotations, as
described in Appendix B. The two-qubit unitary operator D̂
is represented by the elementary single- and two-qubit gates
[77,78], as given in Eq. (A5) and also in Fig. 16(b).

Finally, we note the practical procedure to determine the
quantum gates explicitly for a given unitary operator Û . To
assign quantum gates properly for a unitary operator Û , one
has to select an appropriate set of integers nk for k = 0, 1, 2, 3
in Eq. (A32). In addition, there might also be additional phases
when the single-qubit unitary operators are represented by
the standard single-qubit rotation gates (see Appendix B).
Since the number of possible combinations is limited, one can
always find the appropriate set of integers nk by checking all
combinations, in practice.

APPENDIX B: PHASE FACTORS IN A SINGLE-QUBIT
UNITARY OPERATOR

As shown in Eqs. (A1) and (A33), a two-qubit unitary oper-
ator Û is generally decomposed into Û = e−iα0R̂′

iR̂′
jD̂R̂iR̂ j ,

where R̂′
i, R̂′

j , R̂i, and R̂ j are single-qubit unitary operators.
It is well known that these single-qubit operators can be as-
signed by using the Euler rotation operator given as

R̂(θ1, θ2, θ3) = e−iθ3Ẑ/2e−iθ2Ŷ /2e−iθ1Ẑ/2, (B1)

where Ŷ and Ẑ are the Pauli operators acting on the target
qubit i or j. However, this is true only when we introduce the
overall phase factor θ0, as explicitly shown below.

Let us now denote V̂ ∈ {R̂′
i, R̂′

j, R̂i, R̂ j} and assume that

V̂ is given in the computational basis as

V̂ =
∑

σ=0,1

∑
σ ′=0,1

|σ 〉[V ]σσ ′ 〈σ ′|, (B2)

where V is the matrix representation of V̂ with the element
[V ]σσ ′ = vσσ ′ . The single-qubit operator V̂ can be assigned
by using the Euler rotation operator as

V̂ = e−iθ0/2R̂(θ1, θ2, θ3). (B3)
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Here, the matrix representation R of R̂(θ1, θ2, θ3) in the com-
putational basis is given by

R =
(

e−i(θ3+θ1 )/2 cos(θ2/2) −e−i(θ3−θ1 )/2 sin(θ2/2)
ei(θ3−θ1 )/2 sin(θ2/2) ei(θ3+θ1 )/2 cos(θ2/2)

)
.

(B4)
Therefore, one can deterime θ0, θ1, θ2, and θ3 by solving the
following simultaneous nonlinear equations:

v00 = e−i(θ0+θ3+θ1 )/2 cos(θ2/2), (B5)

v10 = e−i(θ0−θ3+θ1 )/2 sin(θ2/2), (B6)

v01 = −e−i(θ0+θ3−θ1 )/2 sin(θ2/2), (B7)

v11 = e−i(θ0−θ3−θ1 )/2 cos(θ2/2). (B8)

We can readily find that the solution of these equations is
given as

θ0 = i ln (v00v11 − v10v01) + 2πm0, (B9)

θ1 = i

2
ln

(
−v00v10

v11v01

)
+ πm1, (B10)

θ2 = ± arccos
v00v11 + v10v01

v00v11 − v10v01
+ 2πm2, (B11)

θ3 = i

2
ln

(
−v00v01

v11v10

)
+ πm3 (B12)

for v01v10 �= 0 and v00v11 �= 0. Here, mi (i = 0, 1, 2, 3) is an
integer number that is determined to reproduce the sign of the
original matrix elements vσσ ′ .

For v01 = v10 = 0 but v00v11 �= 0, we can set θ2 = 0 and
thus the Euler rotation is simply the rotation around the z axis.
Therefore, only θ1 + θ3 is relevant and we set θ3 = 0 without
losing generality. The solution is thus given as

θ0 = i ln (v00v11) + 2πm0, (B13)

θ1 = i ln

(
v00

v11

)
+ 2πm1, (B14)

θ2 = 0, (B15)

θ3 = 0. (B16)

For v00 = v11 = 0 but v01v10 �= 0, we can set θ2 = π with-
out losing generality. Similar to the previous case, we can also
set θ3 = 0 because e−iπŶ /2 = −iŶ and thus θ3 − θ1 is relevant.
The solution is therefore given as

θ0 = i ln (−v10v01) + 2πm0, (B17)

θ1 = i ln

(
−v10

v01

)
+ 2πm1, (B18)

θ2 = π, (B19)

θ3 = 0. (B20)

APPENDIX C: ADDITIONAL INFORMATION
FOR THE EXPERIMENTAL DEMONSTRATION

Here, we provide the coefficients ψ r
σ0σ1

and ψ r
σ0σ1σ2

in the
ramdom states |�2QR〉 and |�3QR〉, respectively, as defined in
Eqs. (65) and (71). These random states are used for the ex-
perimental demonstration in Sec. IV. The method to generate
the random states is described in Sec. IV A.

The random state |�2QR〉 in the two-qubit space used for
the experimental demonstration is given by

|�2QR〉 = (0.36179353 + i0.42519915)|00〉
+ (0.14876111 + i0.33156910)|10〉
+ (−0.02356009 + i0.68066637)|01〉
+ (0.23101109 − i0.19752287)|11〉. (C1)

The random state |�3QR〉 in the three-qubit space used for the
experimental demonstration is given by

|�3QR〉 = (−0.41507377 + i0.14526187)|000〉
+ (0.03169105 + i0.35848024)|100〉
+ (−0.23166622 + i0.21332733)|010〉
+ (−0.32248929 − i0.06104028)|110〉
+ (−0.11551530 + i0.13972069)|001〉
+ (0.26960898 − i0.03973709)|101〉
+ (0.00215509 + i0.44364270)|011〉
+ (0.01417350 + i0.40747913)|111〉. (C2)
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