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Entanglement signature in quantum work statistics in the slow-driving regime
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In slowly driven classical systems, work is a stochastic quantity and its probability distribution is known to
satisfy the work fluctuation-dissipation relation, which states that the mean and variance of the dissipated work
are linearly related. Recently, it was shown that generation of quantum coherence in the instantaneous energy
eigenbasis leads to a correction to this linear relation in the slow-driving regime. Here, we go even further by
investigating nonclassical features of work fluctuations in setups with more than one system. To do this, we first
generalize slow control protocols to encompass multipartite systems, allowing for the generation of quantum
correlations during the driving process. Then, focusing on two-qubit systems, we show that entanglement
generation leads to a positive contribution to the dissipated work, which is distinct from the quantum correction
due to local coherence generation known from previous work. Our results show that entanglement generated
during slow control protocols, e.g., as an unavoidable consequence of qubit crosstalk, comes at the cost of
increased dissipation.
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I. INTRODUCTION

The last few decades have seen the emergence of the
fields of stochastic thermodynamics and quantum informa-
tion. Classical stochastic thermodynamics entails fluctuations
of thermodynamic quantities, such as work and heat, in
nonequilibrium processes at the nanoscale. Examples of
landmark research achievements include the discovery of
fluctuation theorems [1–5], which generalize the second law
of thermodynamics for nonequilibrium systems, and thermo-
dynamic uncertainty relations (TURs) [6–9], which express
a trade-off between the relative fluctuation of observables
and entropy production. As for quantum information, it can
provide tools and insights for furthering the understanding
of nonclassical signatures in fluctuations in nonequilibrium
systems governed by quantum dynamics, such as coherence
and entanglement quantifiers [10–12]. In this sense, interdis-
ciplinary approaches involving these two fields can enable
promising research avenues, as indicated by recent literature
on quantum fluctuation theorems [13–19], classical TUR vi-
olations [20–23], and TURs including quantum corrections
[24,25].
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In the same vein, the work fluctuation-dissipation relation
(FDR), a paradigmatic result in stochastic thermodynam-
ics, was originally derived for classical systems close to
equilibrium [26–28], but it has recently been generalized to
encompass quantum dynamics [29,30]. Given a classical sys-
tem coupled to a bath at temperature T and subjected to a
slow change of its Hamiltonian, the distribution for the work
W done in the process satisfies the work FDR, which is
given by

〈Wdiss〉 − β

2
Var(W ) = 0, (1)

where Wdiss ≡ W − �F , �F is the change in the equilib-
rium free energy, Var(W ) ≡ 〈W 2〉 − 〈W 〉2 is the variance of
the work distribution, and β = 1/kBT , kB is the Boltzmann
constant. The work FDR implies that whenever dissipation
occurs in classical systems close to equilibrium, fluctuations
are produced. Equation (1) reflects the Gaussianity of the
work distribution in slowly driven classical systems [31,32]
and can be derived from the Jarzynski equality [26,33]. The
work FDR has been experimentally tested and verified in a
number of systems, including a colloidal particle in a feedback
trap [34] and a semiconductor quantum dot system [35].

The generalization of the work FDR protocol [30] is built
upon the discretization of a quasi-isothermal thermodynamic
process into N steps [36–39] and the two-point measurement
(TPM) scheme [40]. Given two fixed system Hamiltonians HI

and HF as endpoints for the process, N � 1 ensures that it is
sufficiently slow [30]. Before each step of the protocol, the
system is in thermal equilibrium with the bath, and there-
fore in a Gibbs state. A first projective measurement in the
system’s energy eigenbasis is performed, and the outcome is
recorded. Then, a quench on the Hamiltonian may generate
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coherence in the instantaneous system’s energy eigenbasis.
Finally, a second measurement in the new energy eigenbasis is
performed and the result is recorded. The difference between
the two recorded energy eigenvalues, obtained via projective
measurements, corresponds to the work in that step of the
protocol, as defined by the TPM scheme. Generation of coher-
ence in the protocol leads to a correction of the work FDR in
Eq. (1) [30]. This correction has recently been experimentally
verified using a single trapped-ion qubit [41]. These results
have important consequences for the energetics of quantum
information processing, e.g., they imply that the generation
of coherence during information erasure comes at the cost of
increased dissipation [42,43].

Given that generation of coherence leads to a clear sig-
nature in the work statistics, it is logical to ask if other
features of quantum dynamics can also give rise to charac-
teristic thermodynamic signatures. In this paper, we address
this question in the context of multipartite quantum systems,
where quantum correlations play a role. Focussing on two-
qubit systems, we show that entanglement generation during
slow control protocols increases the mean dissipated work, via
a universal correction to the classical FDR that is distinct from
the contribution due to local coherences. Indeed, when only
local (separable) unitary controls are applied, we show that
this entanglement correction vanishes. In this case, we retrieve
previous results, where the excess work variance arises from
the generation of coherence in the local energy eigenbasis
[29,30,41].

II. THE WORK FDR PROTOCOL

The work FDR protocol for quantum systems introduced
in Ref. [30] involves the discretization of a process with fixed
endpoints, from the system Hamiltonian HI to HF , into N
steps. The system is in equilibrium with the bath at the be-
ginning of the protocol. In each step i, for i = 0, . . . , N − 1,
the Hamiltonian is Hi at the beginning of the step, such that
H0 = HI and HN−1 = HF . The following two procedures are
performed in each step i:

(1) Quench on the Hamiltonian, changing it from Hi to
Hi+1. This process is very fast and does not change the state
of the system.

(2) Thermalization procedure, in which the system’s state
is driven to a Gibbs state in the Hamiltonian’s Hi+1 basis after
interacting with the bath for a sufficiently long time,

πi+1 = 1

Zi+1
e−βHi+1 , (2)

where Zi = tr{e−βHi}.
As the system starts in equilibrium with the bath, its

state at the beginning of the protocol is π0. In this way,
the system is always in the Gibbs state πi before the ith
step. A measurement of πi is then performed on the basis
of Hi. A second measurement is performed on the basis of
Hi+1 after the quench (i.e., after the completion of the step).
The difference between the two energy eigenvalues corre-
sponds to the stochastic work in the step, wi. Concretely,
given discrete Hamiltonians Hi = ∑

j E i
j |Ei

j〉〈Ei
j | and Hi+1 =∑

j E i+1
j |Ei+1

j 〉〈Ei+1
j |, where {|Ei

j〉} and {|Ei+1
j 〉} are the

eigenbases of Hi and Hi+1 and Ei
j and Ei+1

j are eigenvalues,

then the stochastic work will be wi = Ei+1
l − Ei

k when the
outcomes Ei

k and Ei+1
l are obtained for the first and second

measurement, respectively.
An experimental example of a quantum violation of the

classical FDR was reported in Ref. [41] using a trapped-ion
qubit. The initial and final Hamiltonians are HI = εσ̂z/2 (we
assume ε = 1 throughout) and HF = Û †HIÛ , with

Û = e−i θσ̂x
2 =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
, (3)

where σ̂k , k = x, y, z are Pauli matrices. The protocol de-
scribed above implies that, in each step i, a rotation of �θ =
θ/N is performed, such that Ûi = e−i�θσ̂x and

Hi �−→ Û †
i HiÛi ≡ Hi+1. (4)

Note that, in this case, the eigenvalues do not change as

Hi+1 ≡
∑

j

E i+1
j

∣∣Ei+1
j

〉〈
Ei+1

j

∣∣
=

∑
j

E i
jÛ

†
i

∣∣Ei
j

〉〈
Ei

j

∣∣Ûi = Û †
i HiÛi. (5)

The probability of getting the work wi = Ei+1
l − Ei

k is
given by

Pi(wi) =
∑

Ei+1
l −Ei

k=wi

〈
Ei

k

∣∣πi

∣∣Ei
k

〉∣∣〈Ei
k

∣∣Ei+1
l

〉∣∣2
. (6)

In the computational basis, we have that

πi = 1

Z

(
1 0
0 e−β

)
, (7)

where Z = (1 + e−β )−1. The outcomes for the energy mea-
surements in the instantaneous Hamiltonian basis, before and
after the quench, are defined as either 0 or 1, when the system
is in the ground or excited state, respectively. In this way, the
possible values for the work in step i are wi = −1, wi = 0,
and wi = 1. Thus, we can write

〈wi〉 =
∑
wi

wiPi(wi ), (8)

〈
w2

i

〉 =
∑
wi

w2
i Pi(wi). (9)

After all N steps, the total work is given by the sum of
the work obtained in all steps, W = ∑N

i wi, which is also
a stochastic quantity. Note that the thermalization resets the
system state at the beginning of the step, making the protocol
effectively Markovian [41]. Therefore, all Pi(wi) in each of
the N steps are statistically identical and independent, which
allows us to write

〈W 〉 = N〈wi〉, (10)

〈W 2〉 = N
〈
w2

i

〉
. (11)

Since the initial and final Hamiltonians are connected via a
unitary transformation (3), the change in free energy is zero,
i.e., �F = 0.
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The correction to the work FDR is defined as

Q ≡ 〈Wdiss〉 − β

2
Var(W). (12)

In the case above, using Eqs. (10) and (11), the correction is
found to be [41]

Q = N sin2

(
�θ

2

)⎡
⎣β

2

(
1 − sin2

(
�θ

2

)
tanh2(β/2)

)
− tanh(β/2)

⎤
⎦.

(13)

As the process is slow and close to equilibrium, N must be
large. This implies that �θ � 1. By expanding Q for small
�θ , the correction can be approximated as

Q ≈ N
(�θ )2

4
f (β ), (14)

where

f (β ) ≡ β

2
− tanh(β/2). (15)

We note that f (β ) is a monotonic function, which goes to zero
when β goes to zero. This implies that the correction of the
work FDR due to the generation of coherence tends to vanish
as the temperature of the bath is increased.

III. MULTIPARTITE WORK FDR PROTOCOL

We now generalize the work FDR protocol to multipartite
systems. To keep the presentation simple, we focus on a bipar-
tite system. However, the protocol for a multipartite system
follows directly by considering a larger number of systems.

Consider two systems, namely, SA and SB, coupled to a
bath at inverse temperature β. We focus on a single step i
of the protocol, as introduced in the previous section, and
therefore we omit the index i throughout, as all N steps are
identical and statistically independent. At the beginning of the
step, the Hamiltonian of each subsystem is HA and HB. Given
that {|EA

j 〉} and {|EB
k 〉} are the eigenbases of HA and HB, then

{|EA
j 〉 |EB

k 〉} is the eigenbasis of the total Hamiltonian HAB =
HA ⊗ HB, and the corresponding projectors associated with
the first energy measurement are P̂jk = |EA

j 〉|EB
k 〉〈EA

j |〈EB
k |.

After local quenches on HA and HB, the new Hamiltonian
will be H ′

AB = H ′
A ⊗ H ′

B, and the projectors associated with
the new measurement of the TPM scheme are given by P̂′

jk =
P̂′

j ⊗ P̂′
k , where P̂′

j and P̂′
k are local projectors on the local

Hamiltonians’ eigenbases.
To include the possibility of interaction between the two

systems, and therefore entanglement generation, we add an
extra procedure within each step (procedure 2 below), cor-
responding to a unitary transformation of the system’s state,
the other two procedures being essentially the same as before
(procedures 1 and 3):

(1) Quench on the Hamiltonian HAB = HA ⊗ HB, which
becomes H ′

AB = H ′
A ⊗ H ′

B.
(2) Unitary evolution of the global system’s state ρAB,

ρAB �−→ R̂ρABR̂†, (16)

where R̂ is a unitary operator. Entanglement may be generated
in this process for interacting systems.

FIG. 1. Sketch of the TPM scheme in one step of the work FDR
protocol for a two-qubit system. The system state πA ⊗ πB is projec-
tively measured on the basis of HAB = HA ⊗ HB. The quench is then
applied to the Hamiltonian, which becomes H ′

AB = H ′
A ⊗ H ′

B, while a
unitary transformation described by R̂ = R̂xx acts on the system state.
Finally, the second measurement in the TPM scheme is performed on
the basis of H ′

AB.

(3) The system is thermalized to a Gibbs state in the basis
of HAB = HA ⊗ HB, at inverse temperature β: πAB = πA ⊗ πB,
with

πA = e−βHA

ZA
, and πB = e−βHB

ZB
, (17)

where ZA = tr{e−βHA} and ZB = tr{e−βHB}.

IV. TWO-QUBIT EXAMPLE

To illustrate how entanglement generation can affect work
fluctuations in slow processes, we examine an example with
two qubit systems using our new protocol. We consider HA =
HB = σz/2, the eigenstates of σz being |0〉 and |1〉. As in
the example for the one-qubit system discussed above, we
consider local quenches given by

V̂A = V̂B = e−i �θ
2 σ̂x . (18)

The local Hamiltonians are therefore transformed as follows:

HA �−→ V̂ †
A HAV̂A = H ′

A, (19)

HB �−→ V̂ †
B HBV̂B = H ′

B. (20)

The global unitary R̂ acting on the system’s state will be
considered as the following global rotation:

R̂ = R̂xx(�φ) ≡ e−i �φ

2 σ̂x⊗σ̂x . (21)

Note that we introduced a new parameter, �φ = φ/N , which
discretizes the total rotation angle φ, in the same way that
�θ = θ/N discretizes θ . In this case, procedures 2 and 3
together can be seen as single discrete unitary transformation,
as defined in Ref. [38]. Before the step, the system’s state is
πAB = πA ⊗ πB. Since HA = HB = σ̂z/2, we have that

πA = πB = 1

Z

(
1 0
0 e−β

)
. (22)

The eigenstates of the Hamiltonian HAB are |E0〉 ≡ |00〉,
|E1〉 ≡ |10〉, |E2〉 ≡ |01〉, and |E3〉 ≡ |11〉 with correspon-
dent eigenvalues E0 = 0, E1 = E2 = 1, and E3 = 2, and the
eigenstates of H ′

AB will be denoted by |E ′
0〉 ≡ V̂ † |00〉, |E ′

1〉 ≡
V̂ † |10〉, |E ′

2〉 ≡ V̂ † |01〉, and |E ′
3〉 ≡ V̂ † |11〉, with eigenvalues

E ′
0 = 0, E ′

1 = E ′
2 = 1, and E ′

3 = 2. We sketch a step of the
protocol in Fig. 1, including the measurements in the TPM
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scheme on the respective local Hamiltonians eigenbasis, be-
fore and after the quench.

The probability of getting the work w in a step of the
protocol can therefore be expressed as

P(w) =
∑

E ′
l −Eu=w

〈Eu|πAB|Eu〉|〈E ′
l |R̂|Eu〉|2. (23)

There are now four possible values for the work w = E ′
l − Eu

in each step: w = −2, w = 1, w = 0, w = 1, and w = 2. As
before, given the total work W after all N steps, we have that

〈W 〉 = N〈w〉, (24)

〈W 2〉 = N〈w2〉. (25)

Since N must be large for a process in the slow driving regime,
using Eq. (23) and the small angle approximation, we obtain
from Eq. (12) the following correction:

QAB ≈ N

[
(�θ )2

2
f (β ) + (�φ)2

2
g(β )

]
, (26)

where f (β ) is given in Eq. (15) and

g(β ) ≡ β

1 + sech β
− tanh (β/2). (27)

We note that both functions are monotonic and vanish for
large temperature T (or small β). Furthermore, in the absence
of R̂ (for �φ = 0), Eq. (26) becomes

QAB = 2Q = N

[
(�θ )2

2
f (β )

]
, (28)

where Q is the correction for a single qubit given in Eq. (14).
This is consistent with the fact that, in this case, only local
coherences contribute to QAB, the factor of 2 accounting for
the fact that the system is now constituted of two qubits. The
function f (β ), therefore, expresses the dependence of the cor-
rection on the bath temperature due to coherence generation
in the local instantaneous energy eigenbasis.

To see if entanglement is generated in the protocol, we
employ an entanglement quantifier. Given a state ρAB, an
entanglement monotone is given by its negativity [44],

N (ρAB) ≡
∣∣∣∣ρ
A

AB

∣∣∣∣
1 − 1

2
� 0, (29)

where ρ

A
AB is the partial transpose of ρAB with respect to

subsystem A, and ||X ||1 = tr
√

X †X . To use the negativity as
a quantifier of the entanglement generated in the protocol,
we consider each of the four possible eigenstates |Eu〉, with
u = 0, 1, 2, 3, which result from the first energy measurement,
as inputs to which the unitary operation R̂ will be applied. We
calculate the negativity of each possible resulting entangled
state, R̂ |Eu〉 〈Eu| R̂† (see Appendix C). Since �φ is very small,
we expand the negativity in terms of this parameter, which to
first order in �φ is given by

N (R̂ |Eu〉 〈Eu| R̂†) ≈ �φ, (30)

for all u. This implies that entanglement is generated in each
step of the protocol, vanishing only for �φ = 0. We can there-
fore conclude that the second term in the right-hand side of
Eq. (26) will be different from zero as long as entanglement is

generated in the protocol. The function, g(β ), in turn, captures
the temperature dependence of the entanglement signature in
the work fluctuations.

The difference between g(β ) and f (β ) in Eq. (26) is
given by

g(β ) − f (β ) = β

2
tanh2(β/2) � 0. (31)

For β � 1, we find that

g(β ) − f (β ) = O(β3). (32)

Therefore, for small β or large bath temperature, the two
functions become indistinguishable and it becomes harder
to see a distinct entanglement signature in the dissipated
work. By contrast, in the low-temperature limit we have
limβ→∞ g(β )/ f (β ) = 2, i.e., the quantum correction from en-
tanglement is twice as large as the one from local coherences.

V. WORK FDR WITH GENERALIZED
TWO-QUBIT ENTANGLER

By choosing a specific entangling unitary, given by R̂xx in
Eq. (21), we showed that entanglement generation leads to a
separate correction to the work FDR. Here, we generalize this
result by considering a general two-qubit unitary operator in
SU(4) [45],

Ô = [Â1 ⊗ B̂1]e−i(c1σ̂x⊗σ̂x+c2σ̂y⊗σ̂y+c3σ̂z⊗σ̂z )[Â2 ⊗ B̂2], (33)

where Ai, Bi ∈ SU(2) are arbitrary single qubit unitary oper-
ations. As Ai and Bi cannot generate entanglement, we define
the unitary operator R̂ as

R̂ ≡ e−i(c1σ̂x⊗σ̂x+c2σ̂y⊗σ̂y+c3σ̂z⊗σ̂z ). (34)

We assume that all parameters c1, c2, c3 scale with N−1, just as
�θ does. This assumption follows the same logic as presented
before for Eq. (21), where �φ ∝ N−1, as the entire protocol
is discretized into N statistically independent steps. Using
Eq. (23), we follow similar steps as described in the previous
section (see Appendix A for details) to find the following
correction to the work FDR in the slow driving regime:

QAB ≈ N

[
(�θ )2

2
f (β ) + 2(c1 − c2)2g(β )

]
. (35)

Note that Eq. (21) is a particular case of the general uni-
tary operator in Eq. (34), for which c1 = �φ/2 = φ/2N and
c2 = c3 = 0. Thus, the correction in Eq. (26) is obtained from
Eq. (35) for these particular values of c1, c2, and c3.

As in the example of the previous section, we calculate
the negativities Nu ≡ N (R̂ |Eu〉 〈Eu| R̂†), R̂ being given in
Eq. (34) (see Appendix C). For N large, we get

N1 = N2 ≈ c1 + c2, (36)

N0 = N3 ≈ c1 − c2. (37)

Therefore, entanglement is always generated in the protocol
even if c1 = c2, but in this case the contribution proportional
to g(β ) in Eq. (35) vanishes. This is due to the fact that the
work probability distribution depends only on the difference
between the parameters c1 − c2, as shown in the Appendix A.
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In this way, entanglement generated within the degenerate
subspace of local energy eigenstates, {|01〉 , |10〉}, does not
contribute to the correction g(β ). Only entanglement involv-
ing the non-degenerate eigenstates leads to a signature in the
work statistics.

Finally, we consider arbitrary separable unitaries R̂,

R̂ = R̂A ⊗ R̂B, (38)

where R̂A and R̂B are local arbitrary unitary operators. In
Appendix B, we show that for arbitrary R̂A and R̂B, the con-
tribution proportional to g(β ) in Eq. (35) disappears. The
only contribution to the correction QAB, in this case, is due
to generation of coherence in the local Hamiltonians basis,
which is proportional to f (β ).

VI. CONCLUSION

We proposed a generalization of the work FDR protocol
for multipartite systems, going beyond previous work [30,41]
by permitting the possibility of quantum correlations to de-
velop between locally thermalizing subsystems. In particular,
our framework allows for entanglement generation during the
driving stage, while assuming that the environment brings
the subsystems to local thermal equilibrium after each small
time step. Such local equilibration is a good description of
thermal dissipation for weakly coupled subsystems [46–48],
e.g., see Ref. [49] for an explicit construction of a local
thermodynamic Hamiltonian. In the slow-driving regime, we
derived the correction to the work FDR considering general
entangling operations acting on two-qubit systems. Using the
negativity as an entanglement quantifier, we identified an ad-
ditive correction to the dissipated work due to entanglement
generation, which dominates the quantum correction due to
local coherences at low temperatures.

The fact that quantum entanglement increases dissipa-
tion provides further evidence that quantum effects are
detrimental to the efficiency of thermodynamic tasks in
the near-equilibrium regime [29,30,42,43,50,51]. Notably,
however, we found that only entanglement generation that
involves non-degenerate local energy eigenstates plays a detri-
mental role. This contrasts with other recent findings that
energetic (i.e., nondegenerate) coherence can be a thermody-
namic resource outside of the slow-driving regime [52,53]. It
is also interesting to compare our results with those of Rolandi
et al. [54], who recently showed that collective operations may
greatly reduce dissipation in slow driving protocols. In that
case, however, the minimally dissipative protocols involve
Hamiltonians with classical (mutually commuting) interac-
tions, which cannot generate entanglement. This is fully
consistent with our conclusion that entanglement always in-
creases dissipation in the slow-driving regime.

Our findings imply an increased thermodynamic cost
for quantum information processing protocols where entan-
glement is unavoidably generated, e.g., cross talk between
superconducting qubits, which is an important source of noise
in near-term quantum devices [55–57]. We also expect that
the relative simplicity of our protocol will make it amenable
to implementation in a controlled setting, thus unlocking fur-
ther experimental exploration of quantum signatures in the
nonequilibrium thermodynamics of small systems.
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APPENDIX A: WORK FDR CORRECTION FOR GENERAL
TWO-QUBIT ENTANGLING UNITARIES

Here, we derive the work FDR correction in the bipartite
work FDR protocol with general entangling unitaries given
in Eq. (34). In the TPM scheme for systems A and B, we
define Pi j,mn as the probability distribution for outcomes i
and j from the measurements of HA and HB, while m and
n are the outcomes of the measurements of H ′

A and H ′
B (af-

ter the quench). As the eigenvalues do not change due to
the unitary quench, we have that i, j, m, and n can only
take =values 0 or 1. The work in one step of the protocol
can, therefore, be written as w = (m + n) − (i + j). For in-
stance, P00,01 represents the probability of obtaining i, j = 0
at the first measurement, followed by obtaining m = 0 and
n = 1 at the second measurement. The work in this scenario,
as determined by the TPM scheme, is w = 1. Considering
all combinations of outcomes such that w = 1, the corre-
sponding probability of getting this value for work will be
given by

P(w = 1) = P00,01 + P00,10 + P01,11 + P10,11. (A1)

Generally, from Eq. (23), we have that

P(w) =
∑

E ′
l −Ek=w

〈Ek|πi|Ek〉|〈El |(V̂A ⊗ V̂B)R̂|Ek〉|2. (A2)

We recall that, in the computational basis of both qubits,
{|Ek〉} = {|00〉, |01〉, |10〉, |11〉}. Given that tr{A|ψ〉〈φ|} =
〈φ|A|ψ〉, we can write

〈Ek|πi|Ek〉|〈El |(V̂A ⊗ V̂B)R̂|Ek〉|2

= 〈i j|πi|i j〉|〈mn|(V̂A ⊗ V̂B)R̂|i j〉|2

= tr{Mi jπi}tr{Mmnρ i j} = Pi j,mn. (A3)

In the expression above, Mi j = |i j〉〈i j| and Mmn = |mn〉〈mn|
are projectors on the computational basis of both qubits, ρ i j =
(V̂ †

A ⊗ V̂ †
B )R̂|i j〉〈i j|R̂†(V̂A ⊗ V̂B) and πi is the thermal state in

the computational basis of both qubits:

πi = 1

Z

⎛
⎜⎜⎜⎝

1 0 0 0
0 e−β 0 0
0 0 e−β 0
0 0 0 e−2β

⎞
⎟⎟⎟⎠. (A4)
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In this way, we can write Eq. (23) as

P(w) =
∑

(m+n)−(i+ j)=w

〈i j|πi|i j〉|〈mn|(V̂A ⊗ V̂B)R̂|i j〉|2

=
∑

(m+n)−(i+ j)=w

tr{Mi jπi}tr{Mmnρ i j}. (A5)

Given V̂ and R̂, we can now work out all the elements
Pi j,mn needed to characterize the entire distribution P(w). As
an example, to calculate P00,01, we use

M00 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, M01 =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠
(A6)

and

ρ00 = (V̂A ⊗ V̂B)R̂|00〉〈00|R̂†(V̂ †
A ⊗ V̂ †

B ). (A7)

The diagonal terms of ρ00 are given by

ρ00
11 = 1

8 (3 + 2 cos(2c1 − 2c2 − �θ ) + cos(2�θ )

+ 2 cos(2c1 − 2c2 + �θ )), (A8)

ρ00
22 = ρ00

33 = sin2(�θ )

4
, (A9)

ρ00
44 = cos4

(
�θ

2

)
sin2(c1 − c2) − cos2(c1−c2) sin4

(
�θ

2

)
.

(A10)

We can check that tr{ρ00} = 1. Finally, we can find that

P00,01 = tr{M00πi}tr{M01ρ00} = e2β sin(�θ )2

4(1 + eβ )2
. (A11)

From this and the other Pi j,mn terms, we are able to evaluate
the work distribution P(w):

P(−2) = cos4
(

�θ
2

)
sin2(c1 − c2) + sin4

(
�θ
2

)
cos2(c1 − c2)

(eβ + 1)2 ,

(A12)

P(−1) = sin2(�θ )

2(eβ + 1)
, (A13)

P(1) = eβ sin2(�θ )

2(eβ + 1)
, (A14)

P(2)

= e2β
(
cos4

(
�θ
2

)
sin2(c1 − c2) + sin4

(
�θ
2

)
cos2(c1−c2)

)
(eβ + 1)2 .

(A15)

Note that we do not write P(0) out since it will not contribute
when calculating the work cumulants we need. As discussed
before, the free energy change is zero, �F = 0, since the
quench is a unitary transformation. Thus, all we need are the
cumulants of work to find the correction function for the entire
protocol:

QAB = 〈Wdiss〉 − β

2
Var(W). (A16)

Using Eqs. (24) and (25) in the main text, we get

QAB

N
= 1

2
β

{
−

[
2e2β

(
cos4

(
�θ
2

)
sin2(c1 − c2) + sin4

(
�θ
2

)
cos2(c1 − c2)

)
(eβ + 1)2

− 2
(
cos4

(
�θ
2

)
sin2(c1 − c2) + sin4

(
�θ
2

)
cos2(c1 − c2)

)
(eβ + 1)2 + (e2β − 1) sin2(�θ )

2(eβ + 1)2

]2

+ 4e2β
(
cos4

(
�θ
2

)
sin2(c1 − c2) + sin4

(
�θ
2

)
cos2(c1 − c2)

)
(eβ + 1)2 + 4

(
cos4

(
�θ
2

)
sin2(c1 − c2) + sin4

(
�θ
2

)
cos2(c1 − c2)

)
(eβ + 1)2

+ sin2(�θ )

2

}
+ 2

(
cos4

(
�θ
2

)
sin2(c1 − c2) + sin4

(
�θ
2

)
cos2(c1 − c2)

)
(eβ + 1)2

− 2e2β
(
cos4

(
�θ
2

)
sin2(c1 − c2) + sin4

(
�θ
2

)
cos2(c1 − c2)

)
(eβ + 1)2 − (e2β − 1) sin2(�θ )

2(eβ + 1)2 (A17)

As discussed in the main text, c1, c2, c3, and �θ are all
proportional to N−1, where N is the number of the steps in
the entire protocol. As the slow driving regime corresponds to
large N , c1 − c2 and �θ will be small, so we can expand the
expression above to leading order,

QAB ≈ N

[
(�θ )2

2
f (β ) + 2(c1 − c2)2g(β )

]
, (A18)

where f (β ) and g(β ) are given in Eqs. (15) and (27) in the
main text.

APPENDIX B: WORK FDR CORRECTION
FOR ARBITRARY SEPARABLE UNITARIES

In Eq. (33) in the main text, we considered R̂ to be an insep-
arable unitary operator. In this case, we found that generation
of entanglement can lead to an extra term in the correction
of the work FDR. Here, we set R̂ to be an arbitrary separable
unitary operator. We will show that separable operators cannot
lead to that extra term in the correction, which supplements
our conclusion that it corresponds to a signature of entangle-
ment generation in the protocol.
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We start by considering R̂ to be an arbitrary separable two-
qubit unitary given by

R̂ = R̂S ≡ R̂A ⊗ R̂B, (B1)

where R̂A and R̂B are arbitrary local unitary operators for
systems A and B. Note that R̂A and R̂B can be decomposed
in terms of the following operators:

RX (θ ) = e−i θ
2 σx =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
, (B2)

RY (θ ) = e−i θ
2 σy =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, (B3)

RZ (θ ) = e−i θ
2 σz =

(
e−i θ

2 0
0 ei θ

2

)
. (B4)

We now decompose R̂S into the X-Z-X form. We note that the
last R̂X in the decomposition for each qubit can be absorbed
into the quench V̂A and V̂B as V̂A = V̂B = e−i�θσx . Thus, we can
write

R̂S(c, l, m, n) = R̂X (c)R̂Z (l ) ⊗ R̂X (m)R̂Z (n), (B5)

so

P(w) =
∑

E ′
l −Ei

k=ω

〈Ek|πi|Ek〉|〈El |(V̂A ⊗ V̂B)R̂S|Ek〉|2. (B6)

Proceeding as in Appendix A, we can then evaluate all the terms of the probability distribution P(w), which are given by

P(−2) = sin2
(

c+�θ
2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 , (B7)

P(−1) = sin2
(

c+�θ
2

)
cos2

(
m+�θ

2

)
(eβ + 1)2 + eβ cos2

(
c+�θ

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 + cos2

(
c+�θ

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2

+ eβ sin
(

c+�θ
2

)
cos

(
m+�θ

2

)(− 1
2 sin

(
c
2

)
sin

(
m
2

)
sin(�θ ) + sin

(
c
2

)
cos

(
m
2

)
cos2

(
�θ
2

))
(eβ + 1)2

+ eβ sin
(

c+�θ
2

)
cos

(
m+�θ

2

)
cos

(
c
2

)
sin

(
�θ
2

)
cos

(
m+�θ

2

)
(eβ + 1)2 , (B8)

P(1) = eβ sin2
(

c+�θ
2

)
cos2

(
m+�θ

2

)
(eβ + 1)2 + e2β sin2

(
c+�θ

2

)
cos2

(
m+�θ

2

)
(eβ + 1)2 + e2β cos2

( c+β

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2

+ eβ cos
(

c+�θ
2

)
sin

(
m+�θ

2

)(− 1
2 sin

(
c
2

)
sin

(
m
2

)
sin(�θ ) − sin

(
c
2

)
cos

(
m
2

)
sin2

(
�θ
2

))
(eβ + 1)2

+ eβ cos
(

c+�θ
2

)
sin

(
m+�θ

2

)
cos

(
c
2

)
cos

(
�θ
2

)
sin

(
m+�θ

2

)
(eβ + 1)2 , (B9)

P(2) = e2β sin2
(

c+�θ
2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 . (B10)

With the work probability distribution of the work obtained above, we can calculate the correction QAB in Eq. (A16). From
Eqs. (24) and (25) in the main text, we get

〈W 2〉
N

= 4e2β sin2
(

c+�θ
2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 + 4 sin2

(
c+�θ

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 + eβ sin2

(
c+�θ

2

)
cos2

(
m+�θ

2

)
(eβ + 1)2

+ e2β sin2
(

c+�θ
2

)
cos2

(
m+�θ

2

)
(eβ + 1)2 + sin2

(
c+�θ

2

)
cos2

(
m+�θ

2

)
(eβ + 1)2 + eβ cos2

(
c+�θ

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2

+ e2β cos2
(

c+�θ
2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 + cos2

(
c+�θ

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2

+ eβ sin
(

c+�θ
2

)
cos

(
m+�θ

2

)(− 1
2 sin

(
c
2

)
sin

(
m
2

)
sin(�θ ) + sin

(
c
2

)
cos

(
m
2

)
cos2

(
�θ
2

))
(eβ + 1)2

+ eβ sin
(

c+�θ
2

)
cos

(
m+�θ

2

)
cos

(
c
2

)
sin

(
�θ
2

)
cos

(
m+�θ

2

)
(eβ + 1)2
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+ eβ cos
(

c+�θ
2

)
sin

(
m+�θ

2

)(− 1
2 sin

(
c
2

)
sin

(
m
2

)
sin(�θ ) − sin

(
c
2

)
cos

(
m
2

)
sin2

(
�θ
2

))
(eβ + 1)2

+ eβ cos
(

c+�θ
2

)
sin

(
m+�θ

2

)
cos

(
c
2

)
cos

(
�θ
2

)
sin

(
m+�θ

2

)
(eβ + 1)2 (B11)

〈W 〉
N

= 2e2β sin2
(

c+�θ
2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 − 2 sin2

(
c+�θ

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 + eβ sin2

(
c+�θ

2

)
cos2

(
m+�θ

2

)
(eβ + 1)2

+ e2β sin2
(

c+�θ
2

)
cos2

(
m+�θ

2

)
(eβ + 1)2 − sin2

(
c+�θ

2

)
cos2

(
m+�θ

2

)
(eβ + 1)2 + e2β cos2

(
c+�θ

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2

− eβ cos2
(

c+�θ
2

)
sin2

(
m+�θ

2

)
(eβ + 1)2 − cos2

(
c+�θ

2

)
sin2

(
m+�θ

2

)
(eβ + 1)2

− eβ sin
(

c+�θ
2

)
cos

(
m+�θ

2

)(− 1
2 sin

(
c
2

)
sin

(
m
2

)
sin(�θ ) + sin

(
c
2

)
cos

(
m
2

)
cos2

(
�θ
2

))
(eβ + 1)2

− eβ sin
(

c+�θ
2

)
cos

(
m+�θ

2

)
cos

(
c
2

)
sin

(
�θ
2

)
cos

(
m+�θ

2

)
(eβ + 1)2

+ eβ cos
(

c+�θ
2

)
sin

(
m+�θ

2

)(− 1
2 sin

(
c
2

)
sin

(
m
2

)
sin(�θ ) − sin

(
c
2

)
cos

(
m
2

)
sin2

(
�θ
2

))
(eβ + 1)2

+ eβ cos
(

c+�θ
2

)
sin

(
m+�θ

2

)
cos

(
c
2

)
cos

(
�θ
2

)
sin

(
m+�θ

2

)
(eβ + 1)2 . (B12)

By expanding the expression of QAB obtained from
Eqs. (B11) and (B12) to leading order, we obtain

QAB ≈ N f (β )

[
(c + �θ )2

4
+ (m + �θ )2

4

]
, (B13)

where f (β ) is given in Eq. (15) in the main text. By setting
c = m = 0, the single-qubit result in Eq. (28) is recovered.

In conclusion, we show that an arbitrary separable unitary
evolution in the protocol can be understood as a modification
of the quench, which cannot bring any extra term. In that
case, there is only the term proportional to f (β ) which comes
from coherence generation, as discussed in the main text.
This shows that the correction term proportional to g(β ) only
occurs when there is entanglement generation.

APPENDIX C: CALCULATION OF THE NEGATIVITY

For R̂ given by Eq. (34), we start by evaluating N0 = N (R̂|E0〉〈E0|R̂†), where |E0〉 = |00〉, as an example. Notice that

R̂(|E0〉 〈E0|)R̂† =

⎛
⎜⎜⎝

cos2(c1 − c2) 0 0 i
2 sin(2c1 − 2c2)

0 0 0 0
0 0 0 0

− i
2 sin(2c1 − 2c2) 0 0 sin2(c1 − c2)

⎞
⎟⎟⎠. (C1)

In turn, the eigenvalues of the partial transpose of the matrix are given by

{ − 1
2

√
sin2(2c1 − 2c2), 1

2

√
sin2(2c1 − 2c2), cos2(c1 − c2), sin2(c1 − c2)

}
. (C2)

Taking the absolute value of the negative eigenvalue and expanding the result, for c1 − c2 � 1, gives N0 ≈ c1 − c2.
More generally, we can calculate N (R̂Mi j R̂†), where i, j takes 0 or 1, and Mi j are the projectors defined just after Eq. (A3).

The results are given by

N (R̂M01R̂†) = N (R̂M10R̂†) = 1
2 | sin(2c1 + 2c2)|, (C3)

N (R̂M00R̂†) = N (R̂M11R̂†) = 1
2 | sin(2c1 − 2c2)|. (C4)

As explained in the main text, we assume that all three parameters, c1, c2, c3, are proportional to N−1. Therefore, in the slow-
driving regime, for N � 1, we obtain Eqs. (36) and (37) in the main text.
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