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Quasi-boson approximation yields accurate correlation energy in the 2D electron gas
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We report the successful adaptation of the quasi-boson approximation, a technique traditionally employed
in nuclear physics, to the analysis of the two-dimensional electron gas. We show that the correlation energy
estimated from this approximation agrees closely with the results obtained from quantum Monte Carlo simula-
tions. Our methodology comprehensively incorporates the exchange self-energy, direct scattering, and exchange
scattering for a particle-hole pair excited out of the mean-field ground state within the equation-of-motion frame-
work. The linearization of the equation of motion leads to a generalized random phase approximation (gRPA)
eigenvalue equation whose spectrum indicates that the plasmon dispersion remains unaffected by exchange
effects, while the particle-hole continuum experiences a marked upward shift due to the exchange self-energy.
Using the gRPA excitation spectrum, we calculate the zero-point energy of the quasi-boson Hamiltonian, thereby
approximating the correlation energy of the original Hamiltonian. This research highlights the potential and
effectiveness of applying the quasi-boson approximation to the gRPA spectrum, a fundamental technique in
nuclear physics, to extended condensed matter systems.

DOI: 10.1103/PhysRevResearch.6.033296

I. INTRODUCTION

The correlation energy, defined as the difference between
the exact ground-state energy and the self-consistent Hartree-
Fock energy, plays an important role in shaping the phase
diagrams of various quantum many-body systems within nu-
clear and condensed matter physics [1,2]. The success in
estimating the correlation energy in nuclear matter for a
given nucleon-nucleon interaction profile is largely attributed
to the quasi-boson approximation, a method notable for its
adaptability and precision. Recent advances have seen this
approximation evolve in sophistication and application, as
discussed in Ref. [3]. Despite its success in nuclear matter, the
quasi-boson approximation has not been extensively applied
to metals. This study seeks to bridge this gap by applying the
quasi-boson approximation to the two-dimensional electron
gas (2DEG) system.

The electron gas model has a long history [4–10], with
the first estimation of correlation energy traced back to the
random phase approximation (RPA) introduced by Bohm and
Pines [9]. The RPA only retains terms in the diagrammatic
perturbation series where different Fourier components of
the Coulomb interaction Vq are uncoupled. The RPA is an
excellent approximation for describing long-distance (q → 0)
collective phenomena such as screening since it contains the
most diverging geometric series in perturbation theory. How-
ever, its efficacy diminishes for short-distance phenomena,
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where exchange scattering and the particle-particle ladder pro-
cesses become important. To overcome the limitations of the
RPA, an approach often employed introduces the so-called
local-field factors into the particle-hole response function
[11–14]. This method incorporates short-distance correlations
while preserving the original RPA structure, which makes it
eminently practical. The first inception of this idea dates back
to Hubbard [11], who observed that the exchange contribution
of a diagram in the perturbation series will tend to cancel
one-half of the direct contribution. He used this insight to
approximately evaluate an infinite series of bubble-exchange
diagrams and compute the correlation energy. This approach
was later refined by Singwi, Tosi, Land and Sjölander (STLS)
[12] by using a self-consistent semiclassical approximation
for the local-field factors. More recently, similar ideas have
been studied in the context of density functional theory as
exact-exchange-kernel (or RPAx) methods [15,16]. Currently,
the quantum Monte Carlo [14,17,18] calculation is recognized
as providing the most accurate estimation of correlation en-
ergy, setting a benchmark for comparison in this field.

In this study, we adopt an equation of motion approach
to numerically sum over the complete geometric series of
bubble-exchange diagrams, thereby obtaining the particle-
hole excitation spectrum. Subsequently, we leverage this
spectrum to compute the correlation energy. This computa-
tion is based on the assumption that the commutator of the
particle-hole annihilation operator (bni) and the particle-hole
creation operator (b†

m j) can be replaced by its Hartree-Fock
(HF) expectation value, i.e.,

[bni, b†
m j] ≈ 〈HF|[bni, b†

m j]|HF〉 = δmnδi j, (1)

where m, n (i, j) label particle (hole) states and |HF〉 is the
Hartree-Fock ground state. This is known as the quasi-boson
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FIG. 1. Correlation energy vs electron gas parameter rs in the
2DEG obtained in the QBA for the generalized RPA spectrum. The
quasi-boson approximation yields results in good agreement with
the QMC and the local-field method (STLS) over a wide range
of rs. The QMC fit and STLS data are from Refs. [17] and [13],
respectively. For QBA, we used a Yukawa screening wave vector of
κ = 0.1dk, where dk is the discretization.

approximation (QBA) because the above equation would have
been exact if bni and b†

m j truly were bosonic operators. Our re-
sults demonstrate that the correlation energy calculated within
the QBA is in good agreement with quantum Monte Carlo
(QMC) results, as shown in Fig. 1. This intriguing finding
suggests that while the exact 2DEG ground state |0〉 is surely
orthogonal to the Hartree-Fock ground state, 〈0|HF〉 ≈ 0, the
expectation value of the above commutator is well approxi-
mated by its HF value,

〈0|[bni, b†
m j]|0〉 ≈ 〈HF[bni, b†

m j]|HF〉. (2)

In terms of the many-body wave function, the QBA introduces
zero-point quantum fluctuation into the HF ground state [19].
While the QBA is a widely used method in nuclear many-body
physics [3,20,21], it remains largely uncharted in condensed
matter physics, likely due to its computational complexities.

This paper is structured as follows: Sec. II revisits the
application of the equation of motion to derive the generalized
RPA equation. We then numerically solve this equation to
obtain the excitation eigenspectrum and response functions
of the electron gas across varying density parameters rs. We
discuss the impact of exchange self-energy and exchange scat-
tering on the plasmon dispersion and particle-hole continuum.
In Sec. III, we employ a quasi-boson approximation to obtain
the 2DEG correlation energy as the ground-state energy of
a bosonic Hamiltonian for residual interactions. Making use
of the gRPA eigenspectrum then allows us to evaluate the
quasi-boson correlation energy at different rs. We conclude
with a discussion and outlook in Sec. IV.

II. EQUATION OF MOTION APPROACH

In this section, we use the equation of motion approach to
derive the generalized random phase approximation (gRPA)
eigenvalue equation and compute the excitation spectrum
associated with the creation of a single particle-hole pair
in 2DEG. To remind the reader, the 2DEG Hamiltonian in

momentum space is

H =
∑
kσ

εk c†
kσ

ckσ
+ 1

2

∑
q �=0

Vq : ρqρ−q :, (3)

where εk = h̄2k2/2m is the dispersion, c(†)
kσ

destroys (creates)
an electron with spin σ and momentum k, ρq = ∑

kσ c†
k+qσ

ckσ

is the density operator, Vq = 2πe2/A
√

q2 + κ2 is the Fourier
component of (screened) Coulomb potential, and : · : denotes
normal ordering with respect to the vacuum state. A is the
area of the 2DEG and κ � 0.1dk is the Thomas-Fermi cutoff
parameter, which we choose to be small compared to our
momentum discretization dk to recover the long-range limit
[22]. Expressing Eq. (3) in units of effective Bohr radius
aB = h̄2/(me2) and Rydberg energy Ry = e2/(2aB) allows
to parametrize the 2DEG by the dimensionless Wigner-Seitz
radius rs aB = (π n)−1/2. The latter can be interpreted as the
average distance between electrons given the electronic den-
sity n. For high densities (rs → 0) the kinetic term dominates,
while at low densities (rs → ∞) Coulomb interactions will
take over. In the Hartree-Fock approximation, the ground state
is a Slater determinant state |HF〉 of plane waves and the
quasiparticle has the energy dispersion

εHF
k = εk + �F

k , (4)

where �F
k = −∑

|k′|<kF
Vk−k′ is the exchange self-energy.

A. Generalized RPA and time-dependent mean field

Given the many-body ground state |0〉, we consider charge-
neutral excitations |νq〉 = Q†

νq |0〉 with momentum q created
by operators

Q†
νq =

∑
k∈K+

q

(Xνq)kc†
k+qck −

∑
k∈K−

q

(Yνq)kc†
kck−q. (5)

The summations account for all particle-hole pairs con-
sistent with the Pauli-exclusion principle, described by
K±

q = {k | εk <εF <εk±q}. The number of pairs, Mq = |K±
q |,

is finite due to discretization. The first term in Eq. (5) cre-
ates a particle-hole pair with momentum +q since |k|<kF ,
|k + q|>kF . The second term annihilates a particle-hole pair
with momentum since |k|<kF , |k − q|>kF . Here and in what
follows, holes are labeled with momentum k, k′ and particles
are labeled with k ± q and k′ ± q. The spin index is being
summed over and hence omitted [23].

The Hartree-Fock state |HF〉 is the vacuum of the annihila-
tion operator Qνq|HF〉 = 0 only when Y = 0. The many-body
state annulled by Qνq when Y �= 0 is sometimes called the
gRPA state,

Qνq|0〉 = 0. (6)

In contrast to state |HF〉, which is void of any particle-hole
pairs, a state satisfying Eq. (6) must inherently incorporate
such pairs, resulting in a better approximation to the ground
state.

The amplitudes Xνq, Yνq have to satisfy the many-body
Schrödinger equation

[H, Q†
νq] |0〉 = h̄ωνqQ†

νq |0〉 , (7)
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FIG. 2. Diagrammatic interpretation for the matrix elements of
A, B in the excitation eigenequation for the 2DEG [cf. Eq. (9a)].
(a) Bare noninteracting propagator and self-consistent propagator
accounting for Fock self-energy renormalization. (b) TDHF matrix
elements with direct and exchange contributions to the scattering
(Ã) and to the double-excitations (B). Note that for A, we only show
the contributions Ã without the trivial kinetic term. Spin summation
leads to factors of 2 in the direct diagrams.

where h̄ωνq is the excitation energy. The formidable task of
solving Eq. (7) becomes possible using Eq. (5), the vacuum
condition (6), and the quasi-boson approximation [3,20]. We
multiply Eq. (7) from the left with Qνq and use Eq. (6) to find
the scalar equation

〈0| [Qνq, [H, Q†
νq]] |0〉 = h̄ωνq 〈0| [Qνq, Q†

νq] |0〉 . (8)

We now use the quasi-boson approximation [3,20] to evaluate
the commutator expectation values in Eq. (8) by replacing
|0〉 with the Hartree-Fock state |HF〉. We emphasize that this
substitution does not suggest that |HF〉 closely approximates
|0〉, but merely reflects the similarity of specific correlator
expectation values. With this approximation, Eq. (8) leads to
the gRPA eigenvalue equation [3,20,24]∑

k

[Mq]k′,k

[
Xνq

Yνq

]
k

= h̄ωνq

[
1 0
0 −1

][
Xνq

Yνq

]
k′
, (9a)

where the matrix elements of the matrix Mq are given by

[Mq]k′,k =
[

Ak′+q,k′; k+q,k Bk′+q,k′; k−q,k
(Bk′−q,k′; k+q,k)∗ (Ak′−q,k′; k−q,k)∗

]
(9b)

with

Ak′+q,k′;k+q,k = (
εk+q + �F

k+q − εk − �F
k

)
δk,k′ + 2Vq − Vk−k′ ,

Bk′+q,k′;k−q,k = 2Vq − Vk−(k′−q). (9c)

In Sec. III below, we see that Eqs. (8) and (9a) have the same
form as the equations of motion of a bosonic Hamiltonian.

For a specific q, Eq. (9a) represents a 2Mq × 2Mq eigen-
value problem, where Mq denotes the number of points in the
set K+

q (or K−
q ). The matrix elements of Mq represent various

scattering amplitudes for the mean-field quasiparticles, shown
as Feynman diagrams in Fig. 2. The matrix Mq captures both
the direct and the exchange scattering between particle-hole
pairs with momentum +q and −q. Matrix A characterizes
the scattering between two pairs in K+

q or two pairs in K−
q .

Conversely, matrix B describes the scattering involving one
particle-hole pair from K+

q and another from K−
q . The simplic-

ity and similarity of matrix elements in A and B result from the
fact that the Hartree-Fock quasiparticles in the 2DEG are just
plane wave states. In systems with additional orbital degrees
of freedom, form factors would enter the matrix elements.

The entirety of the eigenspectrum of Eq. (9a) provides
the basis for constructing the spectral representation of the
particle-hole Green function [1]. This foundation allows us
to express the density-density response function as

χ (q, ω) =
Mq∑

ν=−Mq

sgn(ωνq)
Rνq

ω − ωνq + i0+ . (10)

Here, Rνq represents the modulus squared of the sum of all
entries of a gRPA eigenvector, defined as

Rνq ≡ |〈νq|ρq|0〉|2 = 1

A

∣∣∣∣
Mq∑

k=1

(Xνq)k + (Yνq)k

∣∣∣∣
2

, (11)

which is the probability of finding one quanta of density
excitation in the excited state |νq〉. In this notation, Rνq is
proportional to the residue of χ (q, ω) at its simple pole
ων (q), serving as a metric for measuring the collectivity of
a particular gRPA eigenvector. Particularly in cases where
the excitation is an equal superposition of all particle-hole
pairs, such as when (Xνq)k + (Yνq)k = 1/Mq, Rνq peaks at
unity. Thus, Rνq allows to distinguish between collective
excitations and uncorrelated particle-hole pair excitations,
especially when the former merges into the particle-hole
continuum.

B. Results: Charge-neutral excitation spectrum
and density-density response

In this subsection, we designate the eigenvalue spectrum
derived from Eq. (9a) as the TDHF approximation and pro-
ceed to compare it with two other prevalent approximations.
The first of these is the TDH approximation, which involves
setting both the exchange self-energy and exchange-scattering
to zero, i.e., �F

k = Vk,k′ = Vk,k′−q = 0 in Eq. (9c). This ap-
proach is equivalent to the RPA approximation introduced
by Bohm and Pines. The second approach, denoted TDH∗

approximation, differs slightly; here, we retain the exchange
self-energy while setting the exchange scattering to zero,
i.e., �F

k �= 0, Vk,k′ = Vk,k′−q = 0 in Eq. (9c). Note that both the
TDHF and TDH are classified as conserving approximations,
following Baym’s criteria [25], whereas the TDH∗ is not.

Figures 3(a) and 3(b) present the excitation spectrum
computed using the TDH approximation for rs = 1 and
rs = 4, respectively. This spectrum consists of a continuum
of particle-hole excitations, which exhibit small Rνq values,
and one plasmon mode characterized by significantly large
Rνq values. As rs increases, the plasmon mode progressively
merges into the continuum at larger q.

Figures 3(c) and 3(d) depict the excitation spectrum de-
termined within the TDHF approximation for rs = 1 and
rs = 4. Notably, the plasmon mode is fully merged into the
particle-hole continuum. Moreover, the near-zero-frequency
excitations near 2kF exhibit an enhanced Rνq. A deeper insight

033296-3



TOBIAS M. R. WOLF AND CHUNLI HUANG PHYSICAL REVIEW RESEARCH 6, 033296 (2024)

FIG. 3. Spectrum, plasmon dispersion, and many-body stability of the 2DEG. (a)–(d) Excitation spectra, over an extended range of
q including 2kF , obtained using the gRPA equations [cf. Eq. (9a)] for time-dependent Hartree (TDH) and time-dependent Hartree-Fock
with exchange self-energy (TDHF). The color is the normalized density response residue R̂νq = Rνq/

∑
ν Rνq [cf. Eq. (11)]. (e)–(h) The

corresponding charge susceptibilities for each scheme. Results are presented for electron gas density parameters rs = 1.0, 4.0. Notably, in
the expanded q range, TDHF shows a tendency to forming charge-density waves, see main text. Here, we used dk = 0.08kF , κ = 0.15dk, and
q � 3dk.

into these effects can be obtained by analyzing the spectral
weight of the density fluctuations in Fig. 3(h). In the TDH
approximation, the spectral weight is concentrated around the
plasmon mode. This concentration becomes more pronounced
with increasing rs due to the larger energy separation be-
tween the particle-hole continuum and the plasmon mode.
Conversely, in the TDHF approximation, the spectral weight
is more uniformly spread across the continuum. A notable
peak in spectral weight is observed at wave number q = 2kF .
This mode represents an inherent instability of the electron
gas toward the formation of a charge (or spin) density wave
[15,26,27]. As rs increases, this mode gains more spectral
weight and moves closer to zero energy. When this mode
attains zero energy, we have to consider the charge-density
wave as competing ground state, and subsequently, examine
the excitation spectrum based on this state. The inclusion of
screening in our long-range Coulomb interaction, controlled
by κ , suppresses the charge-density wave instability. For a dis-
cussion on how the screening constant curbs the density wave
instability in a three-dimensional electron gas, see Ref. [28].

In Fig. 4, we focus on the small q region of the particle-
hole excitation spectrum. We use dashed lines to indicate the
classical plasmon-dispersion

h̄ωpl(q) = 2
√

2qaB

rs
Ry, (12)

and the maximum of the particle-hole continuum given by the
parabolic dispersion, i.e.,

max(εk+q − εk) = (2kF q + q2)a2
B Ry. (13)

Figures 4(a) and 4(b) demonstrate that the TDH approxi-
mation closely aligns with Eqs. (12) and (13). There is an
extensive q range where the plasmon mode is spectrally
isolated from the uncorrelated particle-hole spectrum. Fig-
ures 4(c) and 4(d) show the spectrum obtained in the TDHF
approximation. While the plasmon dispersion remains aptly

described by Eq. (12), the boundary of the particle-hole con-
tinuum shifts notably up compared to Eq. (13). The upward
shift of the particle-hole continuum boundary arises because
the exchange self-energy of the holes (i.e., occupied states) are
more negative than that of the particle state (i.e., unoccupied
state). Consequently, within the specified q range in Fig. 4,
the plasmon mode undergoes Landau damping. To provide a
contrasting perspective, Figs. 4(e) and 4(f) show the excitation
spectra for TDH∗. As discussed above, TDH∗ is not a con-
serving approximation: the exchange effect is only retained in
the single-particle propagator but omitted in the vertices [25].
While it describes the particle-hole continuum effectively, it
inadequately captures the plasmon mode dispersion.

Figures 4(g)–4(l) show the spectral function Imχ (q, ω)
of the density response computed with different approxi-
mation schemes. The most important feature in these plots
is that the spectral weight is almost completely exhausted
by the plasmon dispersion at small q. This characteristic
persists even when the plasmon dispersion slightly overlaps
with the continuum, as shown in Fig. 4(d). This observation
signals the validity for a powerful approximation that effec-
tively describes the long-wavelength limit of the dynamical
structure factor in the electron liquid. The method is known
as “single-mode approximation” such that Imχ (q, ω)/π ∼
f (q)δ[ω − ωpl(q)].

In Fig. 5, we show the dynamic and spatial correlation
function Reχ (q, ω) in different approximation schemes for
two density parameters rs. In all cases, the response undergoes
a sign change near the (renormalized) plasmon pole and has fi-
nite momenta and frequency regions where retarded screened
interactions can be attractive. At moderate density parame-
ter rs = 1 the approximations yield comparable correlation
functions, while at the smaller density (rs = 4) the Reχ is
enhanced near smaller frequencies and 2kF due to exchange
scattering. Furthermore, in the TDHF approximation, the sign
change is shifted toward lower frequencies and broadened
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FIG. 4. Long-wavelength spectrum and plasmon modes of the 2DEG. (a)–(f) Excitation spectra obtained as eigensolutions of the gRPA
equations [cf. Eq. (9a)] for three different approximation schemes: TDH, TDHF, and time-dependent Hartree with exchange self-energy
(TDH∗). The color is the normalized density response residue R̂νq = Rνq/

∑
ν Rνq [cf. Eq. (11)]. (g)–(l) The corresponding charge suscepti-

bilities for each scheme. All results are plotted for two electron gas density parameters, rs = 1.0, 4.0, as indicated to the left of each row.
Color intensities in the spectra and susceptibilities represent the magnitude of the spectral weight R̂ν (q) and the imaginary part of the charge
susceptibility χ (q, ω), respectively. The plasmon modes for TDH and TDHF are comparable as a result of a conserving approximation. Note
that TDH∗ gives unphysical results, see main text. Here, we used dk = 0.03kF , κ = 0.15dk, and q � 3dk.

where the plasmon mode merged into the particle-hole con-
tinuum [cf. Figs. 3(h) and 5]. These observations highlight
the importance of taking into account exchange contributions
to correlation functions and effective screened interactions,
already at density parameters rs ∼ 4.

III. QUASI-BOSON APPROXIMATION
AND CORRELATION ENERGY

In this section, we use the gRPA eigenvalue spectrum in
Sec. II to compute the correlation energy using a quasi-boson
approximation. To begin, let us revisit some fundamental
properties of the bosonic quadratic Hamiltonian

K = Ab†b + 1
2 (Bb†b† + B∗bb), (14)

where A and B are parameters, and b† and b are bosonic cre-
ation and annihilation operators. Due to its quadratic nature,

FIG. 5. Comparison of the correlation function Reχ (q, ω) for
momenta q and real frequencies ω of the 2DEG at density param-
eters rs = 1.0 (top) and rs = 4 (bottom) and different approximation
schemes: (a) and (b) TDH, (c) and (d) TDHF, and (e) and (f) TDH∗.
Here, we used dk = 0.08kF , κ = 0.15dk, and q � 3dk.

the double commutator of K with the creation and annihilation
operators yields scalars instead of operators. To transform K
into the diagonal form K = ω Q†Q, where [Q, Q†] = 1, we
define Q† = Xb† − Y b and evaluate its double commutator
with K ,

[Q, [K, Q†]]

= [X ∗ Y ∗]

[
[b, [K, b†]] −[b, [K, b]]

−[b†, [K, b†]] [b†, [K, b]]

][
X
Y

]

= [X ∗ Y ∗]

[
A B
B∗ A

][
X
Y

]
= ω. (15)

Using |X |2 − |Y |2 = 1, Eq. (15) leads to the eigenvalue equa-
tion [

A B
B∗ A

][
X
Y

]
= ω

[
1 0
0 −1

][
X
Y

]
, (16)

which has the same structure as gRPA equation (9a).
Next, we implement the quasi-boson approximation Eq. (1)

by assuming that the fermion bilinears bk+q,k ≡ c†
kck+q satisfy

the bosonic commutation relation [bk+q,k, b†
k′+q,k′ ] ≈ δk,k′ . A

bosonic Hamiltonian, denoted as HB, is then constructed by
equating the double commutators of HB with the quasi-boson
creation and annihilation operators to the matrix elements of
the gRPA equation, i.e.,

[b
k′+q,k′ , [HB, b†

k+q,k]] = Ak′+q,k′;k+q,k, (17a)

[b†
k′+q,k′ , [HB, b†

k−q,k]] = −Bk′+q,k′;k−q,k. (17b)

Analogous to the example in the beginning of this section, see
Eqs. (14)–(16), we find

HB =
∑
q,k,k′

(
Ak′+q,k′;k+q,k b†

k′+q,k′ bk+q,k

+ 1

2
Bk′+q,k′;k−q,k b†

k′+q,k′ b
†
k−q,k + c.c.

)
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= 1

2

∑
k,k′,q

[b†
k′+q,k′ bk′−q,k′][Mq]k′,k

[
bk+q,k

b†
k−q,k

]
− 1

2
tr A,

(18)

where we used b†b = 1
2 (b†b + bb† − 1) and Mq from gRPA

equation (9a). Leveraging the eigenvalue spectrum leads to

HB = 1

2

∑
q

Mq∑
ν=1

h̄ωνq[Q†
νqQνq + QνqQ†

νq] − tr A

2

= 1

2

∑
q

Mq∑
ν=1

h̄ωνqQ†
νqQνq + Ezp, (19)

where Q†
νq is defined in Eq. (5). Here, ν = 1, . . . , Mq labels

the positive eigenvalues. The Hamiltonian HB describes a
portion of the residual interaction within mean-field theory as
a collection of harmonic oscillators and the zero-point energy
Ezp. A similar bosonic Hamiltonian can be derived using a
path-integral approach, as detailed in Chap. 4 of Ref. [29].
The ground-state energy of HB is

Ezp = 1

2

∑
q

Mq∑
ν=1

h̄ωνq − 1

2

∑
k,q

Ak+q,k;k+q,k. (20)

In Fig. 1, we show the total correlation energy per particle
Ecorr = Ezp/N at different rs, where N = neA is the number
of electrons. Our results show good agreement with those ob-
tained from QMC studies as well as the STLS approximation.
We note that our correlation energy calculation is formally
equivalent to a series of ring-exchange diagrams, and is thus
inherently free from log divergences as they would appear in
a truncated perturbative expansion. The TDH approximation
discussed in Sec. II B is mathematically equivalent to a series
of ring diagrams [7,9].

IV. DISCUSSION AND OUTLOOK

To summarize, we have studied the charge-neutral particle-
hole excitation spectrum and response function of the 2DEG
by formulating the generalized RPA eigenvalue equation for
extended systems. We used the resulting excitation spec-
trum to evaluate the 2DEG correlation energy by invoking
the quasi-boson approximation. The gRPA and QBA method
presented in this work has a convenient diagrammatic
construction and systematically accounts for both direct scat-
tering and exchange scattering (i.e., TDH and TDHF).

In stark contrast, the most commonly used RPA method
based on coupling constant integration is exclusively a
TDH method [4], i.e., it does not account for exchange
effects. In that method, the susceptibility simplifies to

χλ(q, ω) = χ0(q, ω)/[1 − λVqχ0(q, ω)], where χ0 is the
noninteracting susceptibility and λ the coupling constant.
The correlation energy Ecorr is given analytically through
coupling-constant integration involving χλ(q, iω). While such
a momentum-local RPA approximation is powerful for ana-
lytical studies, it (1) is only strictly valid at high densities
(rs � 1) and (2) can only be extended to include exchange
effects by introducing semiclassical self-consistent local-field
factors [12,13] or exchange kernel approximations [15,16].
Such local-field methods are not easily applied to mul-
tiorbital systems and their validity is not easily checked.
While more recent exchange kernel methods can reproduce
TDHF response functions to leading order, they typically
still require systematic kernel approximations. Our gRPA and
QBA method has none of these limitations. However, our
method requires careful diagrammatic construction, choice of
discretization, particle-hole basis truncation, and large-scale
numerical diagonalization. As we showed in this work, these
issues can be overcome, leading to results that rival STLS
and QMC methods. Further controlled improvements of the
gRPA + QBA method presented here are possible through
self-consistent RPA, see Ref. [3]. In this extension, ground-
state correlations are taken into account when evaluating
expectation values in Eq. (8). This strategy significantly in-
creases the computational cost, but could allow to study cases
when correlations are exceptionally strong and minimizes the
Pauli principle violation implied by the bosonization.

Recent discoveries of correlated states and superconduc-
tivity in multilayer graphene [30–32] and Wigner crystals
in TMDs [33–38] provide strong motivation to study gRPA
correlation effects in these materials. In particular, this may
allow to understand why their mean-field descriptions tend
to have some systematic issues. In this context, we highlight
that the formalism in this work straightforwardly generalizes
to multicomponent 2DEG-like problems, such as spin, valley,
and sublattice in the continuum models of graphene and TMD
multilayers. It also generalizes to other types of particle-hole
excitation spectra and response functions, including those for
spin- and valley-flip excitations.

To conclude, this work opens exciting possibilities by pro-
viding a practical way to explore and understand correlations
in complex two-dimensional condensed matter systems.
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