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Scalable multiphoton generation from cavity-synchronized single-photon sources
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We propose an efficient, scalable, and deterministic scheme to generate multiple indistinguishable photons
over independent channels, on demand. Our design relies on multiple single-photon sources, each coupled to a
waveguide, all interacting with a common cavity mode. The cavity synchronizes and triggers the simultaneous
emission of one photon by each source, which are collected by the waveguides. In a state-of-the-art circuit QED
implementation, this scheme supports the creation of single photons with 99% purity, indistinguishability, and
efficiency at rates of ∼ MHz. We also discuss conditions to produce up to 100 photons simultaneously with
generation rates of hundreds of kHz. This is orders of magnitude more efficient than previous demultiplexed
sources for boson sampling and enables the realization of deterministic multiphoton sources and scalable
quantum information processing with photons.
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I. INTRODUCTION

Efficient sources of single and indistinguishable photons
[1–3] are a fundamental requirement to perform all kinds of
quantum information tasks with photons: photonic quantum
computation [4–8], networking [9], simulation [10,11], com-
munication [12–14], cryptography [15], metrology [16,17],
boson sampling [18–21], or even quantum optical neural net-
works [22]. Scaling up these protocols requires the generation
of a large product-state of N � 1 indistinguishable photons,

|�N 〉 = |1〉1 ⊗ |1〉2 ⊗ · · · ⊗ |1〉N , (1)

propagating along N or more channels. The generation of
this state with high fidelity and efficiency demands the use of
nearly deterministic, nearly identical, and perfectly synchro-
nized single-photon sources (SPSs), each of them producing
just one photon.

The best on-demand SPSs for this task rely on few-
level quantum systems [23], which can be deterministically
excited [24,25] and decay spontaneously, producing indi-
vidual photons that are collected into the desired channels.
The great experimental progress in controlling single quan-
tum systems with cavity-enhanced light-matter interactions
has allowed many realizations of nearly deterministic SPSs.
A long list of setups includes single atoms [26,27], single
molecules [28–30], trapped ions [31–34], and atomic ensem-
bles [35–38], as well as solid-state systems [39] such as quan-
tum dots [40–48] or color centers in diamond [49–58]. In the
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microwave regime, superconducting quantum circuits have
been used to create nearly deterministic SPSs [59–66],
which have the advantage of being externally tuneable
[61,62,64], fast [60,66], and readily integrated on-chip with
very low losses [66]. Currently, quantum dots in micropillar
cavities provide the best overall numbers including genera-
tion efficiencies, distinguishability, and single-photon purity
[48,58,67], but it is hard to manufacture many of them identi-
cally, and tuning them also remains elusive for more than two
emitters [68–72].

Despite remarkable experimental progress, scaling up to
large number of identical SPSs remains a great challenge
[3,21,73–75]. Active optical multiplexing is a promising al-
ternative, which is based on repeating the single-photon
generation—in time [73,76–79], space [80–85], or frequency
[86–88]—and then on synchronizing and rerouting the emit-
ted photons using adaptive delay lines and switches. This
method, originally developed to increase the efficiency of
heralded SPSs [73,76,80,89], has been adapted to prepare
N-photon states (1) using just one nearly deterministic source
[19–21,74,75,90]. This temporal-to-spatial demultiplexing re-
quires high quality SPSs that can emit a long stream of nearly
indistinguishable photons [45,47,48,91,92], as well as an ac-
curate circuit that demultiplexes, routes and synchronizes the
photons into multiple spatial channels. This technique enabled
boson sampling with multiphoton states (1) from N = 3 to
N = 14 single photons, albeit at a low photon rate of ∼ kHz
to ∼ mHz [19–21,74,75,90].

Apart from errors in the collection and detection of pho-
tons, optical multiplexing schemes are inherently slow and
suffer from increased losses caused by delay lines [84,93] and
optical switches of the synchronizing circuit [75,94,95]. For a
pulsed source with repetition rate R, the N-photon generation
rate CN of producing the state |ψN 〉 reads [75]

CN = R(P1)N SN , (2)
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with P1 the probability of generating an individual photon
pulse on each of the N channels independently, and SN the
correlation error introduced by the synchronizing circuit. An
ideal scheme should scale exponentially (SN = 1), creating N
synchronous and completely uncorrelated photons. However,
typical active demultiplexing schemes introduce errors that
scale as SN = 1

N [ηN + (N − 1)( 1−η

N−1 )N ] [75], where η char-
acterizes the switching efficiency. Imperfect switching is a
critical issue in any large photonic circuit [96], but even in the
limit of lossless switches (η = 1), the demultiplexing scheme
introduces a detrimental factor SN = 1/N to the scaling in
Eq. (3). This can significantly limit the achievable N-photon
generation rates in practical applications requiring N � 1
such as single-photon boson sampling.

In this paper, we propose a scheme to synchronize deter-
ministic SPSs and generate N photons with a nearly negligible
correlation error SN ≈ 1. The emitters reside in a bad cavity,
and interact both with the common electromagnetic mode
and with independent waveguides (cf. Fig. 1). A strong co-
herent drive acting on the cavity excites the emitters in a
perfectly synchronized way. When the drive ends, all emitters
relax, producing individual photons that are collected by the
waveguides. If the emitters relax faster than the timescale
of cavity-mediated correlations, the photons are nearly inde-
pendent and approach the state |ψN 〉. In a thorough study,
we identify the optimal parameter conditions to suppress
residual cavity-mediated interactions and superradiance. Us-
ing master equation and quantum trajectories simulations, we
characterize the performance and scaling of the synchronized
multiphoton generation, accounting for imperfections and re-
alistic noise sources. In particular, we find that the probability
PN of producing the N-photon state |ψN 〉 in Eq. (1) scales
nearly exponentially,

PN = (P1)N (1 + DN ), (3)

except for a small error DN = [PN − (P1)N ]/(P1)N � 1,
characterizing the residual correlation or dependence between
photons. This small deviation is shown to be quadratic in N ,

DN = εN (N − 1), (4)

with the correction factor ε stemming from residual cavity-
induced correlations. We work out the parameter conditions to
reach ε ∼ 10−4 − 10−7, making the multiphoton generation
scheme scalable up to N ∼ 100 − 1000 � ε−1/2, depending
on the implementation and the noise sources. The N-photon
generation rate is then obtained as CN = RPN with R the
repetition rate.

To show the favorable scaling of the scheme in a re-
alistic setup, we study a circuit-QED implementation with
flux-tunable transmon emitters and microwave transmission
lines [60,97,98], considering dephasing noise, internal loss,
and disorder. As shown in Fig. 1(b), this implementation
is fully integrated on-chip, which allows the output anten-
nas to have collection and transmission efficiencies above
99% [66]. Moreover, the use of the cavity as a common
synchronizer has a low overhead compared to having and
calibrating a large number of N independent control lines and
driving sources, which may lead to serious limitations in the
wiring and the scalability of the superconducting chip [99].

FIG. 1. Cavity-QED scheme for deterministically generating a
large number of synchronized and independent single photons.
(a) Idealized implementation with N two-level emitters coupled to
a common driven cavity mode. Each emitter additionally couples
to independent output channels, which collect the N emitted single
photons in parallel for later usage. (b) Efficient on-chip imple-
mentation using circuit-QED. Here, transmon qubits realize the N
two-level emitters, each of them capacitively coupled to an indepen-
dent transmission-line antenna and to a common transmission-line
resonator. Controlling the shape �(t ) of the resonator drive, we
can trigger all SPSs simultaneously and on demand. The N emitted
microwave single photons are collected by the on-chip antennas with
high efficiency. These antennas are also used to send a DC current
to each qubit and calibrate their frequencies into resonance with the
resonator drive.

Using state-of-the-art parameters, we show it is feasible to
build microwave SPSs with single-photon purity and indis-
tinguishability of 99%, as measured via standard Hanbury
Brown and Twiss (HBT), and Hong-Ou-Mandel (HOM)
experiments. Most importantly, we predict an overall single-
photon probability or brightness of P1 � 0.99 and the
possibility to efficiently synchronize up to N = 100 SPSs with
large multiphoton probabilities such as P10 ∼ 0.90, P30 ∼
0.72, and P100 ∼ 0.16, for N = 10, 30, and 100 SPSs, re-
spectively. This means that for pulsed microwave SPSs with
a repetition rate of R ∼ 0.4 MHz, we can achieve 30-photon
generation rates of C30 ∼ 700 kHz, and 100-photon rates of
C100 ∼ 200 kHz. Remarkably, this is more than seven orders
of magnitude more efficient than state-of-the-art boson sam-
pling experiments with up to N = 14 single photons [21].
The performance of our synchronized multiphoton generation
scheme benefits from the high efficiency of the supercon-
ducting circuit implementation, as well as from the absence
of switches and other optical elements. We show that our
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predictions are robust to small inhomogeneities in the SPS pa-
rameters, and to the multimode structure of the synchronizing
cavity. Finally, we also consider the parameter conditions to
synchronize up to N = 1000 SPSs, which may be possible
in more advanced circuit QED setups with weak and highly
symmetric cavity-emitter couplings [100,101].

The paper is organized as follows. In Sec. II we intro-
duce the setup, model, main approximations, and identify
the optimal parameter regime of the scheme. In Sec. III, we
introduce realistic parameter sets for a circuit-QED imple-
mentation and quantify its performance via the single- and
multiphoton generation efficiencies, single-photon purity, and
indistinguishability. The most important results of the paper
are presented in Sec. IV, where we characterize the scalabil-
ity of the synchronized N-photon generation. In Sec. V we
analyze the effects of inhomogeneities and disorder in the
SPS parameters and in Sec. VI the effects of the multimode
nature of the cavity. Finally in Sec. VII we summarize our
conclusions. We complement the discussion with analytical
and numerical methods to quantify the photon counting and
photon correlations, which are presented in Appendixes A–C.

II. SETUP AND SYNCHRONIZATION

In this section, we introduce a general cavity-QED model
and possible nanophotonic implementations of the multipho-
ton emitter (cf. Sec. II A). We then discuss how to achieve
cavity-mediated synchronization (cf. Sec. II B), and finally
we explain the basic working principle and the parameter
conditions to achieve an efficient multiphoton generation (cf.
Sec. II C).

A. General cavity-QED model

Let us consider N two-level systems or “qubits” coupled
to an optical or microwave cavity as shown in Figs. 1(a) and
1(b). This cavity mode of frequency ωc is externally driven
by a coherent field with time-dependent amplitude �(t ) and
frequency ωd . The total Hamiltonian of the system reads

H (t ) = ωca†a + 2�(t ) cos(ωdt )(a + a†)

+ 1

2

N∑
j=1

ω
q
j σ

z
j +

N∑
j=1

g j (a + a†)(σ−
j + σ+

j ). (5)

Here, a†, a are the cavity creation and annihilation opera-
tors, whereas σ+

j = |e〉 j〈g|, σ−
j = |g〉 j〈e| and σ z

j = |e〉 j〈e| −
|g〉 j〈g| are standard Pauli operators for qubits j = 1, . . . , N ,
with ground and excited states denoted by |g〉 j , and |e〉 j , re-
spectively. Each qubit j has a possibly different frequency ω

j
q

and a coupling g j to the common cavity mode. Note that we do
not assume rotating wave approximation (RWA) to allow for
a large cavity occupation 〈a†a〉 � 1. We control the emitters
by modulating the envelope of the cavity drive

�(t ) = �0 f (t ), (6)

using a smooth square pulse f (t ) of duration T and maximum
amplitude �0.

Additionally, each qubit j is coupled to an independent de-
cay channel or “antenna”, which collects the emitted photons

[cf. Figs. 1(a) and 1(b)]. We describe this qubit-antenna inter-
action in the Born-Markov approximation, introducing the γ j

at which a qubit deposits photons into its antenna. We also in-
troduce a photon loss rate γ

j
loss characterizing the emission of

photons into any other unwanted channel. Finally, we consider
the cavity decay rate κ and introduce white noise dephasing
rates γ

j
φ on each of the qubits. The complete dynamics of this

open system are described with a master equation,

ρ̇(t ) = − i[H (t ), ρ] + κD[a]ρ +
N∑

j=1

γ jD[σ−
j ]ρ

+
N∑

j=1

γ
j

lossD[σ−
j ]ρ +

N∑
j=1

2γ
j

φD[σ+
j σ−

j ]ρ, (7)

modelling the mixed quantum state of the qubits and the cavity
mode ρ(t ), with the system Hamiltonian H (t ) from Eq. (5),
and the Lindblad terms D[x]ρ = xρx† − (x†xρ + ρx†x)/2.

The idealized setup in Fig. 1(a) admits various implemen-
tations. The two-level systems σ−

j could be neutral atoms
[102] or ions [103] trapped inside an optical cavity field a
that is localized between macroscopic mirrors. In this pro-
totypical cavity-QED implementation the individual decay
channels of each qubit would require the use of high-aperture
lenses [104] or tapered nanofibers [105] to collect the pho-
tons independently, which is very challenging to integrate and
to scale-up with high collection efficiencies. Nanophotonic
structures such as photonic crystals [106] or integrated pho-
tonic circuits [90,107] are other promising platforms to realize
our setup. The common mode and the independent output
channels can be integrated and scaled up. In this scenario, the
main limitation arises from the creation of nearly identical or
tuneable emitters such as quantum dots [71], or the trapping
of many atoms [108] or ions [107] near these surfaces.

However, in this paper we will focus on circuit-QED to
discuss an efficient and scalable integration of multiple two-
level emitters with individual decay channels. As sketched
in Fig. 1(b), one may use superconducting transmon qubits
as quantum emitters [60,97,98]. These qubits may be capaci-
tively coupled to both a common transmission-line resonator,
as well as to individual transmission-line waveguides that effi-
ciently collect the microwave single photons [66]. In Secs. III
and IV we analyze in detail the state-of-art parameters,
the performance and the scalability of this superconducting
circuit platform.

B. Cavity-mediated synchronization and residual correlations

The key mechanism to achieve an efficient cavity-mediated
synchronization of the SPSs is to generate a large coherent
state |α| � 1 in the cavity mode. This can be achieved via
a strong drive, |�0| � κ, |�|, where � = ωd − ωc is the
cavity-drive detuning. We model the resulting state using a
displacement of the Fock operator

a = α + δa, (8)

where the amplitude α(t ) is given by the classical harmonic
oscillator equation

α̇(t ) = − [κ/2 + iωc]α(t ) − 2i�0 f (t )cos(ωdt ). (9)
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Once the pulse is switched on ( f (t ) = 1), |α(t )| grows and
stabilizes around the steady-state value

|αss| = �0√
(κ/2)2 + �2

� 1. (10)

Similarly, once we switch the drive off ( f (t � T ) = 0), the
cavity displacement vanishes in a time scale ∼1/κ.

As shown in Appendix A 2, our control of the cavity
displacement translates into a cavity-mediated driving on all
coupled qubits, given by the effective Hamiltonian,

�(t ) cos(ωdt )(a + a†) →
∑

j

g jRe{α(t )}(σ−
j + σ+

j ). (11)

This is the mechanism that allows us to excite all SPSs si-
multaneously. For our cavity-mediated control to succeed,
the qubit back-action, cavity-induced interactions, and cor-
relations between qubits must be suppressed. To do so, we
restrict the couplings and detunings to keep the system in the
bad-cavity limit

g j, |δ j | � κ, |�|� ω
q
j , ωc, (12)

where δ j = ωd − ω
j
q is the detuning between qubit j and

cavity drive. These conditions ensure that the cavity reaches
a steady state (10), where small quantum fluctuations δa �
|αss| can be adiabatically eliminated and fast oscillations ne-
glected. As shown in Appendix A 3, the dynamics of the
qubit’s reduced state ρ̃(t ) = Trc{ρ(t )} can then be modeled
by an effective master equation, which in the rotating frame
with the drive frequency ωd reads

˙̃ρ(t ) = − i[H̃ (t ), ρ̃] +
N∑

j=1

γ jD[σ−
j ]ρ̃+

N∑
j,l=1

γ jl
cmD̃[σ−

j , σ−
l ]ρ̃

+
N∑

j=1

γ
j

lossD[σ−
j ]ρ̃ +

N∑
j=1

2γ
j

φD[σ+
j σ−

j ]ρ̃. (13)

Here, the effective Hamiltonian H̃ (t ) has the form

H̃ (t ) = − 1

2

N∑
j=1

(
δ j − δ j

cm

)
σ z

j +
N∑

j=1

� j
cm f (t )(σ−

j + σ+
j )

+
∑
j>l

J jl
cm(σ+

j σ−
l + σ+

l σ−
j ), (14)

with �
j
cm the cavity-mediated driving given by

� j
cm = |αss|g j, (15)

with the steady-state coherent amplitude |αss| given in
Eq. (10). In addition, the qubits experience a Lamb shift

δ j
cm = (g j )2�

(κ/2)2 + �2
, (16)

and undergo long-range cavity-mediated interactions, with
couplings

J jl
cm = g jgl�

(κ/2)2 + �2
. (17)

The cavity also induces a collective decay or “superradi-
ance” on the qubits, described by a generalized Lindblad term

D̃[x, y]ρ = xρy† − (y†xρ + ρy†x)/2 in Eq. (13) and cavity-
mediated decay rates

γ jl
cm = g jglκ

(κ/2)2 + �2
. (18)

Finally, the effective dynamics of the qubits also include local
decay and dephasing rates γ j, γ loss

j , and γφ , as described by
the normal Lindblad terms in Eq. (13).

C. Synchronization dynamics and parameter regime

Our goal is to realize the synchronized excitation and emis-
sion of each qubit so that they act as nearly independent SPSs.
The first stage of operation involves exciting each two-level
system from the ground state |g〉 j to the excited state |e〉 j via a
fast cavity-mediated π pulse of duration T ∼ π/(2�

j
cm ). We

then expect that all emitters will produce synchronized pho-
tons, one on each of the antennas, on a timescale t � 1/γ j .
To ensure that this procedure efficiently generates N nearly
indistinguishable and independent single photons, the system
parameters must satisfy the conditions,

�cm � γ � Jcm, γcm, γloss, γφ, (19)

and δ = δcm, as explained in the following.
First, to achieve synchronization and indistinguishability

of the photon emissions, the system parameters should be
as homogeneous as possible, especially the qubit frequencies
ωq ≈ ω

j
q, couplings g ≈ g j , and antenna decays γ ≈ γ j . In the

remainder of the paper, we will thus assume that all system
parameters are homogeneous, except in Sec. V, where we
analyze inhomogeneities and disorder.

Second, to achieve high efficiency and purity of single-
photon emission we need to drive the emitters on resonance
(δ = δcm). We must also excite the qubits very fast (�cm � γ )
to suppress events where the qubit emits two photons—it
creates a photon during the excitation pulse, gets excited by
the remaining of the pulse, and emits a second photon. Note
that we can mitigate this effect using three-level emitters as
SPSs [23], but this is not the focus of the present paper.

Third, to achieve nearly independent photons in a product
state (1), the photons must be created faster than the speed
of the cavity mediated correlations and interactions (γ �
Jcm, γcm). This is the only intrinsic limitation of the proposed
multiphoton scheme, and its effect can be mitigated in the case
of a bad cavity g � κ with strong coherent drive |αss| � 1.
In Secs. III and IV we show that state-of-the-art circuit-QED
setups satisfy this requirement and allow the synchronization
of N ∼ 100 − 1000 nearly independent SPSs.

The fourth condition, γ � γloss, ensures an efficient collec-
tion of photons by the antennas, with minimal losses, while
the last condition, γ � γφ , ensures that those photons are
phase-coherent and indistinguishable as detected by HOM in-
terference (cf. Sec. III E). The degree to which we satisfy these
conditions is limited by the technology of the SPSs—atoms,
dots, superconductors, etc., but we will see that they are well
met by state-of-the-art circuit-QED setups (cf. Sec. III).

Figures 2(a) and 2(b) illustrates the two processes in the
cavity-mediated synchronization method, using two synchro-
nized SPSs with parameters that satisfy Eq. (19). Figure 2(a)
displays the short-time dynamics: the creation of a large
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FIG. 2. Synchronization of two deterministic SPSs via a cavity.
(a) Short-time dynamics: The cavity pulse is switched on ( f (t ) =
1) and a large coherent state with 〈a†a〉 ∼ |αss|2 ∼ 102 photons is
quickly created in the cavity with fast oscillations as a result of
the non-RWA terms (cf. red-solid and black-dashed lines). This
induces an effective cavity-mediated driving �cm = |αss|g, which
resonantly excites both qubits 〈σ+

j σ−
j 〉 synchronously (cf. blue-

dash-dotted line). After a π -pulse time T ∼ π/(2�cm ), the cavity
pulse is switched off ( f (t ) = 0), 〈a†a〉 decays in a fast timescale
∼1/κ , and both qubits are left in their excited states 〈σ+

j σ−
j 〉 ≈

1. (b) Long-time dynamics: Both qubits spontaneously decay in a
timescale t ∼ 15/γ , and each of them generates a single photon
with probability P1 ≈ 0.99 on its antenna (cf. green-dashed line).
Since these spontaneous emission processes are much faster than
the timescale for the cavity-mediated interactions (Jcm/γ ∼ 10−2)
and collective decay (γcm/γ ∼ 10−4), both single photons are nearly
perfectly synchronized and independent as manifested by the two-
photon probability satisfying P2 ≈ (P1)2 ≈ 0.98 (cf. yellow-dotted
line). [(c),(d)] Deviations D(x) = |xexact − xeff | between the exact (7)
and effective (13) models for the qubit occupations x = 〈σ+

j σ−
j 〉,

and photon generation probabilities x = P1, P2 as a function of time.
We observe great agreement and no heating effects despite the large
cavity driving strength �0 = 4ωd � κ, |�|. These and the rest of the
parameters correspond to a state-of-the-art circuit-QED implementa-
tion shown in row A of Table I and discussed in Sec. III A.

coherent state in the cavity, which induces an oscillatory oc-
cupation around the large steady-state value, 〈a†a〉 ∼ |αss|2 ∼
102 (cf. red-solid line and dashed-black line), while mediating
the simultaneous excitation of the qubits up to 〈σ+

j σ−
j 〉 ≈ 1

(when the cavity driving is switched off) (cf. blue-dash-dotted
line). Figure 2(b) shows the long-time dynamics, in which
the photons are generated. Each emitter decays almost inde-
pendently in a timescale t ∼ 15/γ , depositing a photon into
its own antenna (cf. blue-dash-dotted line). To quantify the
efficiency of these emission processes, we display the single-
photon and synchronized two-photon generation probabilities,
P1 and P2, calculated using the definitions and methods in
Secs. III B and III C. For nonoptimized parameters satisfying
Eq. (19), we reach P1 ≈ 0.99 (cf. green-dashed line) and
P2 ≈ (P1)2 ≈ 0.98 (cf. yellow-dotted line). This demonstrates
that both emitted photons are highly independent of each other
[S2 ≈ 1 in Eq. (3)] and that cavity-induced correlations are
indeed negligible during photon emission processes (Jcm/γ ∼
10−2 and γcm/γ ∼ 10−4).

We performed the numerical simulations in Figs. 2(a) and
2(b) using both the full model in Eqs. (5)–(7) and the effective
model in Eqs. (13)–(18). They show an excellent agree-
ment with small deviations D(x) = |xexact − xeff | < 10−2 in
the qubit and photon counting observables [cf. Figs. 2(c) and
2(d)], despite the large cavity population of 〈a†a〉 ∼ 102 � 1.
This demonstrates that the strong cavity driving �0 � κ, |�|
does not introduce heating in the system, but only creates a
large coherent state in the cavity with some fast oscillations
around the mean value |αss|2 � 1 [cf. solid-red and dashed-
black lines in Fig. 2(a)]. Since these fast oscillations have
no detrimental impact on the functionality of our multiphoton
generation scheme, in the remainder of the paper we use the
simpler effective model (13), which uses the mean steady
value (10) for describing the effect of the cavity field (see
Appendix A for more details on the approximations involved
in the model).

III. PERFORMANCE OF A CIRCUIT-QED
IMPLEMENTATION

In this section, we describe typical state-of-the-art param-
eters to realize the synchronized multiphoton emitter in a
circuit-QED implementation (cf. Sec. III A). Subsequently,
we quantify the performance of the scheme using four fig-
ures of merit: (i) efficiency of single-photon generation P1 (cf.
Sec. III B), (ii) efficiency of synchronized N-photon genera-
tion PN (cf. Sec. III C), (iii) single-photon purity as quantified
by HBT correlations, p = 1 − g(2)

HBT[0] (cf. Sec. III D), and
(iv) photon indistinguishability as quantified by HOM inter-
ference, I = 1 − g(2)

HOM[0] (cf. Sec. III E).

A. State-of-the-art parameters

In Fig. 1(b) we sketch a possible setup to implement the
synchronized multiphoton emitter using superconducting cir-
cuits. For the cavity mode a, we consider a superconducting
transmission line resonator with decay rate κ/2π = 50 MHz,
and resonance frequency ωc on the order of a few GHz.
These superconducting resonators support strong drives and
can hold a large number of photons in steady state |αss|2 � 1
[109–111], as it is required in our scheme. In particular, we
consider |αss|2 ≈ 100 of average photons in steady state, in-
duced by a cavity driving of �0/2π = 14 GHz and a detuning
of �/2π = 1400 MHz. For standard transmission line res-
onators such as in Ref. [109], this order of driving strength �0

is obtained with a voltage source of power Pin ∼ −50 dBm.
As two-level emitters, we consider flux-tunable transmon

qubits [60,97,98,112] weakly coupled to the resonator mode
with strength g/2π = 4 MHz. The cavity mediated driving
amplitude then reads �cm/2π = |αss|g/2π ≈ 40 MHz. This
is strong but still smaller than typical transmon anharmonic-
ities U/2π ∼ 300 − 400 MHz [60,66,113], thus preventing
leakage to higher excitation states. The frequency of the
qubits—which will be in the few GHz range—can be fine-
tuned by sending a DC current through the antenna that is
coupled to each qubit [cf. Fig. 1(b)]. This is required to bring
the qubits in resonance with the external drive, and to compen-
sate any cavity-induced shifts such as Lamb shifts δq ∼ δcm
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TABLE I. Parameters and figures of merit for a circuit-QED implementation of two synchronized SPSs. We consider four parameter sets:
A and B correspond state-of-the-art parameters g, κ, �, and |αss|2 for different values of antenna couplings γ and decoherence rates γloss, γφ .
C and D correspond to more challenging long-term parameters because of the lower coupling g and larger |αss|2. All parameters lead to
the same effective cavity-mediated drive �cm/2π ≈ 40 MHz. The detuning of the qubits is chosen to compensate for any cavity-mediated
shift, including the Lamb-shift δq ∼ δcm or residual Bloch-Siegert shifts. Depending on the couplings and decoherence rates of sets A–D, the
inequalities in Eq. (19) are satisfied differently, as shown in columns eighth to tenth, and this influences the performance of figures of merit in
the last four columns: single-photon generation probability P1 (cf. Sec. III B), synchronized two-photon generation efficiency or probability
P2 ≈ (P1)2 (cf. Sec. III C), multiphoton contamination g(2)

HBT[0] (cf. Sec. III D), and photon distinguishability g(2)
HOM[0] (cf. Sec. III E). All these

quantities are calculated using the full master equation (7), the methods in Appendixes B 1 and C, and evolving up to a final time t = 15/γ .

g/2π κ/2π �/2π |αss|2 γ /2π γloss/2π γφ/2π γ /�cm γcm/γ Jcm/γ P1 P2 g(2)
HBT[0] g(2)

HOM[0]
[MHz] [MHz] [MHz] [kHz] [kHz] [kHz]

A 4.0 50 1400 102 966 5 10 2.4×10−2 4.2×10−4 1.2×10−2 0.989 0.979 1.4×10−2 1.4×10−2

B 4.0 50 1400 102 3000 10 20 7.5×10−2 1.4×10−4 3.8×10−3 0.982 0.964 2.8×10−2 7.0×10−3

C 0.2 400 50 4×104 400 1 1 1.0×10−2 9.4×10−4 1.2×10−4 0.994 0.989 4.4×10−3 2.5×10−3

D 0.2 400 50 4×104 1000 1 1 2.6×10−2 3.8×10−4 4.7×10−5 0.991 0.983 1.3×10−2 7.7×10−3

or residual Bloch-Siegert shifts [109] (see Sec. V for small
deviations of this condition).

The antenna of each qubit is not only used for frequency
calibration, but its main purpose is to collect the photons
emitted by each qubit [cf. Fig. 1(b)]. The coupling rate γ

between the qubit and antenna can be chosen to optimally
fulfill the inequalities in Eq. (19) and it also determines the
time-scale of photon emission t ∼ 15/γ . For the circuit QED
parameters discussed above, we consider two values of γ :
Parameter set A with γ /2π ≈ 0.97 MHz optimized to max-
imize the emission probabilities P1 ≈ 0.99 and P2 ≈ 0.98, as
well as parameter set B with γ /2π = 3 MHz optimized for
faster emission rate C2 ≈ 1.2 MHz and lower cavity-mediated
effects, Jcm/γ ∼ 10−3. The value of γ also limits the max-
imum unwanted decoherence rates γloss and γφ that can be
tolerated by the device to work properly. In particular, we
consider γloss, γφ ∼ 2π×10 kHz � γ as realized in state-of-
art experiments [98,113–115].

Table I summarizes all the parameter sets considered in this
paper and their main figures of merit as discussed below. Note
that we also consider extra parameter sets C and D, which
reduce cavity-mediated effects by two orders of magnitude
compared to A and B, respectively. This is achieved by having
a 20-fold lower cavity-emitter coupling rate g/2π = 0.2 MHz
compensated by a larger cavity mean photon number |αss|2 ∼
4×104 so that the effective drive on the qubits is preserved,
�cm = g|αss| ∼ 2π×40 MHz. Engineering such a low cou-
pling with high homogeneity on all emitters is challenging
with current circuit QED technology because the coupling
becomes of the same order as parasitic capacitive couplings
typically found in superconducting circuits [112]. Neverthe-
less, reducing the inhomogeneity of these parasitic couplings
may be possible in the long term via highly symmetric
ring resonators [100,101]. Parameters C and D consider this
possibility and below we discuss how the scalability can
reach up to N ∼ 1000 SPSs in this case. The second impor-
tant requirement of parameters C and D is the large mean
photon displacement |αss|2 ∼ 4×104, but this is well below
the values 105 − 109 photons reported with current technol-
ogy [109,110] and is achieved by having a lower detuning
�/2π = 50 MHz, larger cavity drive �0/2π = 40 GHz and
a decay of κ/2π = 400 MHz. We note the strong drive

required by our scheme is not harmful to the superconducting
device since most of its energy is reflected by the cavity and
it mainly induces a coherent displacement with no thermal
component (see Appendix A for more details). In addition,
in Sec. VI C, we show that using a long superconducting
resonator L ∼ 66 cm [116,117] the multimode structure of the
cavity allows to reduce the required external drive down to
�0/2π ∼ 2.6 GHz while having the same effective quantities
considered in sets C and D.

In the remainder of the paper, we use the four param-
eter sets A–D in Table I to characterize the performance
and scaling of the synchronized SPSs for this circuit-QED
implementation.

B. Efficiency of single-photon generation

Without loss of generality, in our discussion about photon
generation efficiencies or probabilities, we assume perfect
photodetectors [118]. In this scenario, the efficiency of a
single-photon source can be extracted from the photon emis-
sion statistics. For a single emitter, P1 is the probability of
generating exactly an isolated photon in a Fock state [2].
Similarly, we define P j

n as the probability for the synchronized
SPS to emit a Fock state of n photons in the jth antenna.
Formally,

P j
n = Tr

{
� j

nρext (t )
}
, (20)

where ρext (t ) is the state of the extended system including the
photons emitted in all antennas. The operator �

j
n = |n〉 j〈n|

projects ρext (t ) on the Fock state |n〉 j of n photons propagating
in the independent antenna j. Computing P1 or P j

n seems
to require a large Hilbert space, but there are shortcuts, such
as the quantum jump formalism or our new photon counting
approach based on master equations (cf. Appendix B).

A nearly deterministic single-photon source should have
P1 ≈ 1, other few-photon probabilities P0 and P2 should
be strongly suppressed, and Pn�3 ≈ 0 negligible. This also
applies to each of the probabilities P j

n in our synchronized
setup, if we want it to operate as a collection of N independent
emitters. To verify this, in Figs. 3(a)–3(f) we have computed
the few-photon probabilities P0 (green), 1 − P1 (blue), and
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FIG. 3. Few-photon statistics Pn and two-photon dependence D2 as a function of various system parameters such as (a) cavity occupation
|αss|2, (b) qubit-cavity coupling g/κ , (c) qubit-antenna decay γ /�cm, (d) qubit-drive detuning (δ − δcm )/�cm, (e) dephasing γφ/γ , and (f)
relaxation loss γloss/γ . The probabilities P0 (green), 1 − P1 (blue), and P2 (brown) are plotted using the left vertical axis, whereas the two-
photon dependence D2 (red), corresponds the right vertical axis. All quantities are computed with the effective master equation (13) using
parameter set A of Table I, except for the quantity that is changed on each subplot.

P2 (brown) for a setup with N = 2 superconducting qubits,
varying different parameters around the set A of Table I.

In Fig. 3(a) we plot the effect of cavity occupation |αss|2
(controlled via the cavity drive �0) on the single-photon ef-
ficiency of the SPS. All errors reduce or at least stay nearly
constant when increasing the cavity population |αss|2, because
a larger cavity-mediated driving �cm = |αss|g increases the
speed at which the qubit is excited and reduces the probability
of emitting two consecutive photons. However, the driving
strength is limited by our need to have an off-resonant cavity
and by the anharmonicity of the qubits (cf. Sec. III A).

Figure 3(b) illustrates the need to find an optimum value
of the coupling g, within inequalities in Eq. (19). Ini-
tially, increasing g increases the driving �cm and reduces
errors. However, a large coupling strength enhances the
cavity-mediated dipole-dipole interactions Jcm ∼ g2 and the
collective decay γcm ∼ g2. Both result in the transfer of ex-
citations between qubits, increasing the probability of no
emission P0 and two-photon emission P2. For the parame-
ters A in Table I we find an optimal operation point around
g/κ = 10−1.

In Fig. 3(c) we analyze the effect of the coupling to
the antenna coupling γ . Once more, there is an optimal
point that satisfies (19), balancing the imperfections caused
by unwanted reexcitations (�cm � γ ) and cavity-mediated
effects (γ � Jcm, γcm). The minima lay around γ /�cm ∼
[10−2, 10−1] for the parameter set A in Table I.

Figure 3(d) shows an optimal operation of the emitters
when they are on resonance with the drive δ ∼ δcm. At this
point, a π pulse excites the qubits with high fidelity, and
the Lamb shift is compensated, which is the main qubit’s
frequency shift in our setup.

Finally, in Figs. 3(e) and 3(f), we observe that the de-
phasing γφ and the losses into uncontrolled channels γloss

have a negligible influence on the few-photon statistics Pn as
long as they satisfy γφ, γloss � γ [cf. Eq. (19)]. Nevertheless,
when γφ, γloss ∼ γ we see a rapid increase of events where no

photon is detected P0. This is for the emitters becoming effec-
tively off-resonant from the drive when γφ ∼ γ , or because of
a decrease in the collection efficiency in the antenna, when
γloss ∼ γ .

C. Efficiency of synchronized N-photon generation

The quantity P1 is the probability of generating one photon
on a given antenna irrespective of the photons emitted in the
rest of the channels. To study SPS synchronization, however,
we are interested in the probability PN of emitting exactly one
photon on each of the N available antennas or channels. This
can be expressed using projectors onto single-photon Fock
states �

j
1 = |1〉 j〈1| on each the channels

PN = Tr
{
�1

1 · · · �N
1 ρext (t )

}
, (21)

An efficient generation of N synchronized and independent
single photons should satisfy PN ≈ (P1)N � P1, meaning that
the N-photon product state (1) is generated with high fidelity.
This happens for all parameter sets in Table I. The two-photon
generation probability satisfies P2 ≈ (P1)2 � 1, and deviates
from unity because of errors in the single-photon efficiency
P1 � 1.

To quantify more precisely the independence of the N
emitted photons, we compute the N-photon dependence or
demultiplexing error DN from the definition in Eq. (3) as

DN = PN

(P1)N
− 1, (22)

which describes the deviation from the ideal limit of N per-
fectly independent and synchronized SPSs.

We have computed PN and DN in the simplest case of two
SPSs as an example, using the same photon counting methods
introduced in Appendix B. The results of these simulations
are shown as red curves of Figs. 3(a)–3(f) (cf. red curves and
right vertical axis). We observe that D2 is nearly insensitive
to changes in the cavity occupation |αss|2, the detuning δ,
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FIG. 4. Multiphoton contamination of the SPS measured via the second-order correlation function. (a) Schematic of the Hanbury Brown
and Twiss (HBT) experiment using a beamsplitter (BS) and two-photon coincidence measurements. (b) HBT correlation function G(2)

HBT(τ ) as
a function of delay τ , in the case of a train of two excitation pulses with repetition rate R = γ /15. Parameters correspond to set A of Table I.
(c) Enlarged plot of G(2)

HBT(τ ) at the zeroth peak, τ ∼ 0, for three values of couplings g/κ = [2, 8, 20]×10−2. [(d),(e)] Normalized correlation
function g(2)

HBT[0] at zero delay, as function of dephasing γφ/γ and out-coupling inefficiency γloss/γ , respectively. Decoherence has a small
detrimental effect on the observed multiphoton contamination via g(2)

HBT[0].

the dephasing γφ/γ , and out-coupling efficiency γloss/γ , with
typical values on order D2 ∼ 10−4 for parameters around set
A of Table I. Nevertheless, the variables g and γ can drasti-
cally change D2 in various orders of magnitude. In particular,
for larger cavity coupling g or smaller antenna decay γ , D2

increases because the cavity-mediated correlations ∼g2 be-
come more important in the timescale of the photon emission
∼15/γ [cf. right inequality in Eq. (19)].

Finally, we note that the exact pulse shape f (t ) is not
relevant for the synchronization dynamics as long as it ap-
proximately induces a π pulse on the qubits. To study this,
we have performed the calculations in Figs. 3(a)–3(f) us-
ing an ideal square pulse and a smooth step pulse f (t ) =
1
2 tanh( t

τr
){2 − tanh( T

τr
) − tanh( t−T

τr
)} with duration T and

ramp time τr . When optimizing over T and τr of the smooth
pulse, we obtain a deviation smaller than 1% with respect to
the result of the simpler square π pulse with T = π/(2�cm ).
Therefore, in the remainder of the paper we safely consider
the ideal square pulse, but we keep in mind that a realistic
experimental pulse shape gives similar results when properly
optimized.

D. Single-photon purity

A standard figure of merit to experimentally quantify the
amount of multiphoton contamination of a SPS is the second-
order correlation function G(2)

HBT [23,119]. As sketched in
Fig. 4(a), this is measured in a Hanbury Brown and Twiss
(HBT) setup, where the output of a given SPS is beamsplitted
and measured via coincidences in two intensity detectors. For
pulsed emission, the correlation function G(2)

HBT(τ ) is defined
as [23,119]

G(2)
HBT(τ )=

∫
dt

〈
bj†

out (t )bj†
out (t + τ )bj

out (t + τ )bj
out (t )

〉
, (23)

where τ is the time delay between the two-photon detections,
and bj

out (t ) is the annihilation operator for an outgoing photon
on the jth antenna [120]. Appendix C contains details on the
input-output theory and the calculation of these correlations.
For simplicity, our analysis assumes a homogeneous setup and
thus we omit the j index in G(2)

HBT(τ ).
In Fig. 4(b) we show the behavior of the correlation

G(2)
HBT(τ ) in our setup for parameters A and a train of two

consecutive excitation pulses with a repetition rate

R = γ /15. (24)

We observe a clear peak at the repetition time τ = 1/R,
corresponding to the detection of two photons coming from
different pulses. Relevant to characterize the few-photon
statistics of the SPS is the small peak that appears near-
zero time delay, τ ∼ 0. A small area in this peak signals a
small probability of two- and multiphoton emission [119]. In
Fig. 4(c) we enlarge the region τ ∼ 0 and show that the area
of the zeroth peak increases with g/κ, consistently with the
behavior of P2 in Fig. 3(b) for the same parameters.

To quantify more precisely the amount of multiphoton
contamination of the SPS, and in a way that is independent
of the input power, it is convenient to define the normalized
correlation g(2)

HBT[0] at zero delay as [23]

g(2)
HBT[0] =

∫ 1/(2R)
0 dτG(2)

HBT(τ )( ∫ 1/(2R)
0 dt

〈
bj†

out (t )bj
out (t )

〉)2 . (25)

Here, the numerator corresponds to the area of the zeroth
peak at τ ∼ 0 and the normalization is the area of the high
peak at τ = 1/R, and thus g(2)

HBT[0] ∼ P2/(P1)2. In Figs. 4(d)
and 4(e), we plot the normalized correlation g(2)

HBT[0] as a
function of γφ/γ and γloss/γ , respectively. We observe that
g(2)

HBT[0] is very insensitive to both types of decoherence,
which is also consistent with the behavior of P2 in Fig. 3(e)
and 3(f) for the same parameters. For parameters A, we ob-
tain a two-photon contamination of g(2)

HBT[0]∼ 1.4×10−2. We
also calculated this quantity for parameters B and D of Ta-
ble I, for which we obtained g(2)

HBT[0] ∼ 2.8×10−2, g(2)
HBT[0] ∼

4.4×10−3, and g(2)
HBT[0] ∼ 1.3×10−2, respectively. Finally, we

note that the single-photon purity p is typically defined as p =
1 − g(2)

HBT[0], which for parameter sets A, B, C, and D read p =
0.986, p = 0.972, p = 0.996, and p = 0.987, respectively.
We see that slower sources have a larger single-photon purity
(see A and C compared to B and D).

E. Indistinguishability

Another important aspect of a high-performance mul-
tiphoton demultiplexing scheme is the degree of indistin-
guishability of the photons emitted by two different sources
[2]. Experimentally, the distinguishability of two sources is
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FIG. 5. Indistinguishability of single photons from two different SPSs quantified by Hong-Ou-Mandel (HOM) interference. (a) Schematic
of the HOM setup using a beamsplitter to interfere two nearly independent photons, followed by two-photon coincidence measurements.
(b) HOM correlation function G(2)

HOM(τ ) as a function of delay τ , in the case of a train of two excitation pulses with repetition rate R = γ /15.
Parameters correspond to set A of Table I. (c) Enlarged plot of G(2)

HOM(τ ) at the zeroth peak, τ ∼ 0, for three values of couplings g/κ =
[2, 8, 20]×10−2. [(d),(e)] Normalized correlation function g(2)

HOM[0] at zero delay, as function of dephasing γφ/γ and out-coupling inefficiency
γloss/γ , respectively. The indistinguishability dramatically reduces with dephasing, a behavior in good agreement with the analytical prediction
g(2)

HOM[0] ≈ (2γφ/γ )/(1 + 2γφ/γ ) [121].

typically quantified using Hong-Ou-Mandel (HOM) interfer-
ence as shown in Fig. 5(a). Photons coming from two sources
interfere on a beamsplitter (BS), and a pair of detectors count
coincidences. The result of these measurements are the HOM
correlations G(2)

HOM(τ ), which for pulsed emission read [23]

G(2)
HOM(τ )=

∫
dt

〈
b1†

BS(t )b2†
BS (t + τ )b2

BS (t + τ )b1
BS (t )

〉
, (26)

where τ is the delay time between the two-photon detections.
In addition, b1

BS (t ) = [b1
out (t ) + b2

out (t )]/
√

2, and b2
BS (t ) =

[b1
out (t ) − b2

out (t )]/
√

2, describe the output fields of photons
after interfering at the BS (cf. Appendix C).

Because of the bosonic nature of the emitted photons,
two perfectly indistinguishable photons will bunch on either
output port of the BS, resulting in a vanishing HOM correla-
tion G(2)

HOM(τ ) at zero-time delay τ ∼ 0. This is perfect HOM
interference, and any deviation from it (assuming an ideal BS)
can be used to quantify the distinguishability of the generated
single photons.

A standard figure of merit of indistinguishability that ac-
counts for losses and other imperfections is the normalized
HOM correlation function g(2)

HOM[0] [23],

g(2)
HOM[0] =

∫ 1/(2R)
0 dτG(2)

HOM(τ )∏2
k=1

( ∫ 1/(2R)
0 dt

〈
bk†

BS (t )bk
BS (t )

〉) . (27)

In analogy to Eq. (25), the numerator of Eq. (27) corresponds
to the area below the zeroth peak, and the normalization to
the area of the high peak at the repetition time τ = 1/R. The
indistinguishability of two SPSs can be simply defined as
I = 1 − g(2)

HOM[0].
We have computed G(2)

HOM(τ ) as a function of τ , for a setup
with two emitters, parameters A of Table I, and a train of two
excitation pulses [cf. Fig. 5(b)]. Here, we observe a clear peak
at the repetition time τ = 1/R resulting from the detection of
two nearly independent photons coming from two different
pulses. The correlations G(2)

HOM(τ ) are strongly suppressed at
the origin, τ ∼ 0, showing only a minor zeroth peak, which
is enlarged in Fig. 5(c). The small area of this zeroth peak
manifests the high indistinguishability of the single photons.
We also see that this behavior is nearly insensitive to the
coupling g/κ , but may strongly depend on the decoherence
parameters.

Figures 5(d) and 5(e) display g(2)
HOM[0] as a function of the

decoherence rates γφ/γ and γloss/γ . Note that in our imple-
mentation with parameters A we reach I = 0.986, whereas
for parameters B and D we obtain I = 0.993, I = 0.998, and
I = 0.992, respectively (cf. Table I). We also find that the
distinguishability g(2)

HOM[0] is quite insensitive to γloss/γ , but it
dramatically increases with dephasing, following the analyti-
cal prediction g(2)

HOM[0] ≈ (2γφ/γ )/(1 + 2γφ/γ ) [121]. This
contrasts with the behavior of D2 in Fig. 3(e), illustrating
that the dependence error D2 of two SPSs is qualitatively
different from the distinguishability g(2)

HOM[0] measured by
HOM interference. Consequently, both figures of merit have
to be considered when designing high-performance multi-
plexed and synchronized SPSs.

IV. SCALABILITY OF SYNCHRONIZED
MULTIPHOTON GENERATION

We are now in a position to discuss the most important
results of the present paper: the scalability performance of
the multiphoton emitter. To do so, we analyze the N-photon
generation probability PN and the demultiplexing error DN as
a function of N , for the four parameter sets of Table I.

We calculate PN in Eq. (21) by solving the master equation
(13), which includes all qubit-qubit correlations induced by
the cavity (∼Jcm, γcm), as well as the decoherence effects
(∼γφ, γloss). The Hilbert space of the system grows expo-
nentially as 2N , but using quantum trajectories (QT) (cf.
Appendix B 2) we can estimate the photon statistics of the
multiphoton emission and thereby PN up to moderately large
numbers of SPSs. Figure 6(a) displays PN as a function of
N computed from an average over M = 6000 trajectories and
considering the four parameter sets of Table I. In all these
cases and up to N = 12, we numerically confirm that the SPSs
are nearly perfectly synchronized and independent, satisfying
PN ≈ (P1)N within the statistical error �PN ∼ 10−3 [cf. black
lines in Fig. (6)]. The reduction of N-photon generation proba-
bility with N is thus mainly limited by the imperfections in the
single-photon efficiency P1 and not by the synchronizing and
demultiplexing scheme. For the state-of-the-art parameters
A and B, we predict a 10-photon efficiency of P10 ≈ 0.90
and 0.83, respectively [cf. inset in Fig. 6(a)]. The reduction
of efficiency for B is mainly the result of the larger γ , but
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FIG. 6. Scalability performance of the synchronized multiphoton generation scheme. (a) N-photon generation efficiency PN as a function
of N , for parameter sets A (green), B (blue), C (red), and D (grey), as given in Table I. Data points up to N = 12 correspond to QT calculations
averaged over M = 6000 trajectories, which show excellent agreement (within the statistical error �PN ∼ 10−3) with the prediction for
perfectly independent and synchronized SPSs, i.e., PN ≈ (P1)N (cf. black lines and inset). (b) N-photon generation rate CN = RPN for pulsed
excitation with repetition rate R = γ /15. Despite parameter set B shows the lowest efficiency PN , the faster repetition rate R ≈ 1.26 MHz
allows for appreciably higher CN . (c) Demultiplexing error DN up to N = 5, and quadratic fit DN = εN (N − 1) (cf. solid lines and inset). The
fitted scaling factor depends on the system parameters and reads εA = 1.3×10−4, εB = 1.2×10−5, εC = 6.7×10−7, and εD = 1.0×10−7 for
parameter sets A, B, C, and D, respectively. The extrapolation of all these calculations is valid as long as DN � 1.

this also allows it to have a much larger 10-photon emission
rate of C10 = 1.0 MHz compared to C10 = 0.4 MHz for A
[cf. Fig. 6(b)]. The long-term parameters C and D present
similar N-photon emission rates, but much larger efficiencies
of P10 ≈ 0.94 and 0.91, respectively.

To quantify more precisely the deviations from the ideal
scaling PN ≈ (P1)N in Figs. 6(a) and 6(b), we compute the
N-photon dependence or demultiplexing error DN as defined
in Eq. (22). For N = 2 we know this error is as small as
D2 ∼ 10−4 (cf. Fig. 3) and therefore the QT calculations with
an uncertainty �PN ∼ 10−3 do not provide enough precision.
To address this problem, we developed a photon counting
approach based on the master equation (cf. Appendix B 1),
which does not suffer from any statistical uncertainty. In this
alternative method, we simulate the photon counters at each
antenna by an additional two-level system. This increases
the Hilbert space dimension to 22N and thus limits the nu-
merical computations to a maximum of N ∼ 5 emitters. In
the inset of Fig. 6(c) we show the results of DN as a func-
tion N for the four parameter sets of Table I, and up to
N = 5. Importantly, we observe that the data is very well
approximated by the quadratic fit DN = εN (N − 1) stated in
Eq. (4), with a scaling factor ε � 1 that depends on the system
parameters. For parameter sets A, B, C, and D, we obtain
εA = 1.3×10−4, εB = 1.2×10−5, εC = 6.7×10−7, and εD =
1.0×10−7, respectively [cf. inset of Fig. 6(c)]. Notice that ε is
smaller when the conditions γcm, Jcm � γ are better fulfilled
overall, confirming that the synchronization performance is
limited mainly by residual cavity-induced correlations [cf.
Eq. (19)].

We will now analyze the validity limits of the quadratic
scaling DN = εN (N − 1). This is hard to do for the optimized
parameters A–D because the deviation is expected for N �
10 as a result of the low correlation errors ε. However, we can
reduce γ and/or increase g to observe the growth of the de-
multiplexing error with N up to DN � 1 with moderate system
sizes N � 10. In Fig. 7, we illustrate this analysis by calcu-
lating DN for two modified parameter sets similar to A but

with a 10-fold lower antenna decay γ /2π = 0.1 MHz (blue
diamonds), and with that lower decay and also larger coupling
[γ /2π, g/2π ] = [0.1, 6] MHz (red crosses). We also include
the results for the standard parameter set A as a reference (blue
circles). We perform quadratic fits DN = εN (N − 1) to the
three data sets up to N = 5, obtaining increasing correlation
errors: ε = 1.4×10−4 (green), ε = 8.5×10−3 (blue), and ε =
3.5×10−2 (red). Remarkably, we indeed observe the on-set
of deviations from the quadratic scaling only when DN � 1,
which occurs for the red data at N ∼ 7 (cf. solid-red line
in Fig. 7). For DN � 1, all these data sets show excellent
agreement with the quadratic scaling DN = εN (N − 1), and
this constitutes the range of validity of this approximation.

After analyzing the demultiplexing error DN as a func-
tion of N , and identifying the limits of scalability in the
condition DN � 1, we can safely extrapolate the results in
Figs. 6(a)–6(c) up to a large N � 1, only limited by the
correlation error as N � ε−1/2. As a criterion for the limit,
we use DNmax ∼ 0.1, where Nmax is the maximum number of

FIG. 7. Demultiplexing error DN calculated up to N = 9 with QT
averaged over M = 104 trajectories. Green circles correspond to the
parameter set A of Table I, whereas the other two data sets only differ
in having γ /2π = 0.1 MHz (blue diamonds) and [γ /2π, g/2π ] =
[0.1, 6] MHz (red crosses). Solid lines correspond to fits of DN =
εN (N − 1) up to N = 5, which result in the ε factors shown in
the legend. We observe that the quadratic scaling deviates only for
DN � 1, confirming the validity range DN � 1.
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sources that can be synchronized without appreciable corre-
lations, i.e., PN ∼ (P1)N . Evaluating for the scaling factors
obtained for parameters A–D (in the range ε ∼ 10−7 − 10−4)
[cf. Fig. 6(c) and caption], we predict that our multipho-
ton generation scheme can be scaled up to NA

max ∼ 30 for
parameter A, NB

max ∼ 100 for B, NC
max ∼ 400 for C, and

even reach ND
max ∼ 1000 for D. In particular, for state-of-art

parameters A, we predict a 30-photon generation probabil-
ity of P30 ∼ (0.989)30 ∼ 0.72, with a high-generation rate
of C30 ∼ 300 kHz [cf. solid black lines in Figs. 6(a) and
6(b)], whereas for state-of-art parameters B, one can reach
P100 ∼ (0.982)100 ∼ 0.16 with a 100-photon generation rate
of C100 ∼ 200 kHz. This is orders of magnitude more efficient
than the 3- to 14-photon generation and coincidence rates in
the range ∼ kHz − mHz that have been reported in single-
photon boson sampling experiments [19–21,74,75,90].

V. INHOMOGENEITY EFFECTS

So far, we have analyzed the performance of the scheme
assuming a perfectly homogeneous setup. In large-scale im-
plementations; however, the SPS parameters will unavoidably
present some degree of inhomogeneity. In this section, we
analyze the impact of these imperfections.

We consider inhomogeneity deviations on all qubit param-
eters, which we generically denote by

y j = y + δy j, (28)

where y = ωq, g, γ , γφ, γloss are the average qubit parameters
discussed in the previous sections (cf. Table I) and δy j are
random deviations over each of them. To statistically describe
each of these deviations δy j , we assume that they are dis-
tributed according to a Gaussian probability distribution,

�(δy j ) = 1√
2π (�y)2

exp

(
−1

2

[
δy j

�y

]2
)

. (29)

Here, �y denotes the standard deviation associated with the
disorder on each qubit parameter y = ωq, g, γ , γφ, γloss. To
quantify the impact of each of the inhomogeneities δy j on
the performance of the multiphoton emitter, we compute the
average N-photon efficiency 〈〈PN 〉〉y as

〈〈PN 〉〉y = 1

M

M∑
m=1

PN [m]y, (30)

where the probabilities PN [m]y are calculated with the master
equation method of Appendix B 1 for each realization m =
1, . . . , M of the independent disorder y.

The results of these computations for 〈〈PN 〉〉y in the case
of disorder on the antenna couplings �γ , as well as in the
decoherence rates �γφ and �γloss, are shown in Fig. (8).
We perform calculations up to N = 4 slightly inhomogeneous
photon sources, for parameters A and C, and we do not
observe any detrimental effect up to a disorder strength of
10% of the average values [cf. Figs. 8(a) and 8(b)]. This
is not surprising in the case of inhomogeneous decoherence
rates γ

j
φ and γ

j
loss since their effects have nothing to do with

the synchronization dynamics and are very marginally small
anyways γ

j
φ , γ

j
loss � γ . In the case of inhomogeneous an-

(a) (b)

FIG. 8. Average N-photon generation probabilities 〈〈PN 〉〉y, as a
function of disorder in antenna decay y = �γ/γ , qubit dephasing
y = �γφ/γφ , and waveguide loss y = �γloss/γloss. [(a),(b)] Up to a
disorder strength of 10%, we do not observe any impact of these
three disorder sources on the synchronization and demultiplexing
dynamics, as calculated up to N = 4 for parameter sets A and C,
respectively. All results are obtained from averaging M = 103 real-
izations for each type of disorder.

tenna couplings γ j = γ + δγ j , they imply slightly different
emission time scales for the emitted single photons,

t � 1

γ + δγ j
= 1

γ

(
1 − δγ j

γ
+ O2

)
, (31)

but since we consider a long average waiting time t = 15/γ ,
the effect of 10% inhomogeneity in δγ j/γ , is negligible on
that timescale.

On the other hand, inhomogeneities in the qubit frequen-
cies δω

j
q and in the couplings δg j are much more harmful to

the multiphoton synchronization performance and therefore
they need to be controlled more precisely in an experimen-
tal implementation of the device. Inhomogeneous couplings
g j , in particular, induce different cavity-mediated driving
strengths �

j
cm = �cm + |αss|δg j , and therefore different times

to realize an exact π -pulse on each qubit ∼π/(2�
j
cm ). Since

we control only the global duration of the cavity pulse, we
optimally set it to the average π -pulse time T = π/(2�cm ),
but this unavoidably leads to slightly different probabilities P j

e

of preparing the excited states |e〉 j on each qubit. Explicitly,
we have

P j
e ≈ sin2

(
π

2

�
j
cm

�cm

)
= 1 − π2

4

(
δg j

g

)2

+ O4, (32)

and therefore a low coupling disorder δgj � g is required for
a high performance of the synchronized multiphoton emitter.

To precisely quantify the deviation from the ideal photon
independence condition, we define the average dependence or
demultiplexing error 〈〈DN 〉〉y over disorder y as

〈〈DN 〉〉y = 〈〈PN 〉〉y

(〈〈P1〉〉y)N
− 1. (33)

Here, the average single-photon efficiency reads

〈〈P1〉〉y = 1

MN

N∑
j=1

M∑
m=1

P j
1 [m]y, (34)

with P j
1 [m]y calculated from m = 1, . . . , M realizations of the

disorder y and for each of the j = 1, . . . , N SPSs in the setup.
In Figs. 9(a) and 9(b) we compute 〈〈PN 〉〉g and 〈〈DN 〉〉g up to
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FIG. 9. Impact of inhomogeneities in qubit-cavity couplings δgj

and qubit frequencies δω j on the performance of the synchronized
multiphoton emitter. (a) Average N-photon generation probabilities
〈〈PN 〉〉g up to N = 4 for coupling disorder strengths �g/g = 0 (blue),
�g/g = 1% (red), and �g/g = 2.5% (green). (b) Average demulti-
plexing error 〈〈DN 〉〉g up to N = 3, for the same disorder values as in
(a). [(c),(d)] Analogous calculations as in (a) and (b), but considering
〈〈PN 〉〉ωq and 〈〈DN 〉〉ωq with disorder in the qubit frequencies δω j

q. We
consider disorder strengths �ωq/�cm = 0 (blue), �ωq/�cm = 1%
(red), and �ωq/�cm = 2.5% (green). All calculations are performed
using the parameter set A of Table I and up to M = 1.7×105 realiza-
tions of each type of disorder.

N = 4 for parameter set A, and disorder strengths �g/g =
0% (blue), �g/g = 1% (red), and �g/g = 2.5% (green). To
achieve reasonable statistical errors �DN � 10−5, these cal-
culations require M ∼ 1.7×105 realizations. We observe that
the N-photon efficiency and dependence, 〈〈PN 〉〉g and 〈〈DN 〉〉g,
are minimally modified for δgj/g � 2.5%. For the average
coupling of g/2π = 4 MHz, considered in parameter sets A
and B, suppressing these disorder effects thus requires cou-
pling inhomogeneities in the range δgj/2π ∼ 0.1 MHz. This
level of inhomogeneity has already been reported in supercon-
ducting circuits [112] and may be further reduced by using
symmetric ring cavity configurations [100,101]. For parame-
ter sets C and D, however, reaching the same level of precision
requires a coupling inhomogeneity down to δgj/2π ∼ 5 kHz,
which has not been achieved with current superconducting
technology, but may be possible in the future by reducing
residual stray capacitances in the circuit and also considering
symmetric cavity configurations.

Finally, we analyze the impact of inhomogeneous qubit
frequencies ω

j
q = ωq + δω

j
q, which lead to slightly different

qubit detunings with respect to the cavity driving frequency
ωd , i.e., δ j = δ − δω

j
q, where δ = ωd − ωq is the average de-

tuning. We can set ωd to compensate for the cavity-induced
Lamb shift δ = δcm, but the remaining inhomogeneities will
lead to slightly different probabilities of preparing the |e〉 j

states on each qubit, i.e.,

P j
e ≈ 1 − 1

4

(
δω

j
q

�cm

)2

+ O
(

δω
j
q

�cm

)4

. (35)

Therefore, frequency inhomogeneities should also be con-
trolled δω

j
q � �cm, to have a high-quality synchronization

and demultiplexing. We discussed in Sec. III A that the qubit
frequencies can be fine-tuned by sending specific DC cur-
rents on each antenna channel. With this we can make all
qubits nearly resonant up to a tuning imprecision in the range
�ωq/2π � 1 MHz [60,97,98,122]. This means that a fre-
quency disorder of order �ωq/�cm � 2.5% is achievable with
state-of-the-art technology. In Figs. 9(c) and 9(d), we calculate
〈〈PN 〉〉ωq and 〈〈DN 〉〉ωq up to N = 4 and for frequency disorder
strengths �ωq/�cm = 0% (blue), �ωq/�cm = 1% (red), and
�ωq/�cm = 2.5% (green). These results confirm that under
these realistic disorder conditions the N-photon generation
efficiency 〈〈PN 〉〉ωq is minimally altered with respect to the
homogeneous prediction [cf. blue data in Fig. 9(c)]. Moreover,
we observe that the demultiplexing error 〈〈DN 〉〉ωq reduces with
higher frequency disorder �ωq/�cm, resulting from the larger
independence of the photon emission processes. This occurs
at the expense of reducing the generation efficiency 〈〈PN 〉〉ωq

so it is not a good limit for our purpose.
We conclude that the synchronized multiphoton generation

scheme is resilient to moderate disorder in all system parame-
ters and that the required level of homogeneity is achievable in
state-of-the-art circuit-QED implementations with parameter
sets A and B.

VI. MULTIMODE NATURE OF THE CAVITY

So far we have assumed a monomode model for the cavity
that synchronizes all emitters. Nevertheless, when increas-
ing the length of the cavity to accommodate more qubits,
the free spectral range of the cavity reduces and thus more
normal cavity modes can participate in the dynamics [116].
In this section, we consider these multimode effects and
show that they can be described with the same effective
model in Eqs. (13)–(18), but with a redefinition of the cavity-
mediated parameters �cm, δcm, Jcm, and γcm (cf. Sec. VI A).
We analyze multimode effects for various cavity lengths and
configurations (cf. Secs. VI B and VI D) and show how to
fine-tune the parameters to recover the same synchroniza-
tion dynamics discussed previously with a monomode model.
Moreover, we find that the participation of more cavity modes
can even be beneficial for the multiphoton generation scheme
as it substantially reduces the required driving strength on the
cavity.

A. Effective model including the multimode contributions

To account for the multimode nature of the cavity, we gen-
eralize the Hamiltonian and master equation in Eqs. (5)–(7),
by considering that the qubits interact with many cavity modes
m, each of them described by a frequency ωm

c , a decay κ j ,
and a qubit-cavity coupling g j,m (see Appendix A 1 for more
details). These quantities scale with mode number m ∈ N
as [116]

ωm
c = mω1

c , (36)

κm = mκ1, (37)

g j,m = √
mgj,1, (38)

with ω1
c , κ1, and g j,1 the frequency, decay, and coupling cor-

responding to the fundamental mode m = 1. Note that these
fundamental parameters in turn depend on the geometry and
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Transmon Resonator
(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. Multimode effects in the cavity-mediated synchronization of multiple single-photon sources. We consider three different configu-
rations that lead to the same effective dynamics discussed in this paper: (a) an open transmission line resonator of moderate length L = 9.17 mm
(solid) and L = 8.46 mm (dashed), (b) a long open transmission line resonator with length L = 662 mm, and (c) a ring cavity with length
L = 74.6 mm. For each of these configurations (a)–(c), panels (d)–(f) show the mode frequency ωm

c , the coupling/decay ratio gm/κm, and the
mean steady-state occupation |αss

m |2 as a function of the mode index m. The pink horizontal line in the frequency plots indicates the transition
frequency ωq/2π of the single-photon emitters on each case to see which cavity modes are closer to resonance.

length L of the cavity, such as ω1
c = πc/L for an open trans-

mission line resonator, and thus the free spectral range scales
as ∼1/L.

It is possible to find parameters for which all cavity modes
are in the bad-cavity limit, i.e., they are off-resonant and
weakly coupled to the qubits, gj,m � κm, |�m|, so that their
dynamics can be adiabatically eliminated. Here, �m = ωd −
ωm

c is the detuning between cavity modes and the external
drive ωd , which is taken to be nearly resonant to the emitters
ωd ≈ ω

q
j . As shown in Appendixes A 2 and A 3, the effective

dynamics of the qubits under the above conditions is indeed
described by the same effective master equation and Hamilto-
nian in Eqs. (13) and (14), but with modified cavity-mediated
quantities given by

� j
cm =

∑
ωm

c ∼ωd

�0g j,m√
(κm/2)2 + �2

m

, (39)

γ jl
cm =

∑
ωm

c ∼ωd

g j,mgl,mκm

(κm/2)2 + �2
m

, (40)

J jl
cm =

∑
ωm

c ∼ωd

g j,mgl,m�m

(κm/2)2 + �2
m

, (41)

and δ
j
cm = J j j

cm.
These expressions are the multimode generalization of

Eqs. (15)–(18). They take into account the contribution
of all cavity modes, with the largest effect coming from
the modes closer to the qubit resonance ωd ∼ ω

q
j . Therefore,

the effect of the multimode nature of the cavity is to mod-
ify the effective parameters of the dynamics. However, it is
always possible to fine-tune the parameters to obtain the same
effective physics discussed previously in the manuscript. In
the following, we show this on three different multimode cav-

ity configurations, namely an open transmission line resonator
of moderate length [cf. Fig. 10(a)], a very long transmission
line resonator [cf. Fig. 10(b)], and a ring cavity [cf. Fig. 10(c)].
For simplicity, we perform the analysis for homogeneous
emitters in the remainder of the section.

B. Transmission line resonator of moderate size

In this subsection, we show that multimode effects
are weak in the synchronization setup for cavities of
moderate size and when the qubits couple close but still
off-resonant to the fundamental resonator mode m = 1.
For this, we consider a transmission line resonator
of length L = 9.17 mm [cf. Fig. 10(a)], so that the
fundamental frequency reads ω1

c/2π = 7.2 GHz. All
other parameters correspond to set A of Table I, namely
�1/2π = 1400 MHz, g1/2π = 4 MHz, κ1/2π = 50 MHz,
and �0/2π = 14 GHz. Figure 10(d) displays the mode
frequencies ωm

c , the coupling/decay ratio gm/κm, and
the average occupation |αss

m |2 as a function of mode
label m. The pink horizontal line indicates the resonance
frequency of the emitters, ωq/2π = 8.6 GHz, to compare
it with the mode frequencies. We see that all modes
satisfy the bad-cavity limit with gm/κm < 10−1 and that
the occupation is indeed concentrated in the fundamental
mode |αss

1 |2 ∼ 100 as it is closest to resonance. All
other modes have occupations more than two orders of
magnitude lower and they only slightly modify the effective
quantities. Furthermore, if we consider a slightly shorter
cavity of length L = 8.46 mm and fine-tune the system
parameters as �0/2π = 10.4 GHz, κ1/2π = 50 MHz,
and �1/2π = 2000 MHz, we recover the same effective
quantities obtained from the mono-mode model in Sec. III A
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within a 0.1% error, except for Jcm, which is even reduced by
28%. The modifications of the mode structure and couplings
are indicated by the dashed lines in Fig. 10(d), where one
can see that steady-state occupations are less concentrated
in mode m = 1. The participation of more modes with
similar weights allows the system to reduce cavity-mediated
couplings as well as the required cavity drive.

C. Long transmission line resonator

In this subsection, we show that the multimode struc-
ture of the cavity can be exploited to substantially reduce
the driving strength required for parameters C and D from
�0/2π ∼ 40 GHz down to �0/2π ∼ 2.64 GHz, while still
inducing the same effective synchronization dynamics on
the emitters. The idea is to consider a long resonator so
that the free spectral range reduces and more modes can
contribute to the effective parameters. In particular, we con-
sider a long open transmission line resonator of length L =
662 mm [cf. Fig. 10(b)], which can fabricated by bending
the transmission line inside the chip [116,117]. The length
of this resonator is roughly 70 times larger than in the previ-
ous subsection so the mode m = 50 of frequency ω50

c /2π =
5 GHz becomes the closest to resonance [cf. left panel of
Fig. 10(e)]. Here, we consider qubits of frequency ωq/2π ≈
4.98 GHz, and all other parameters are chosen to induce
the same effective dynamics as in the mono-mode model
with parameters C, namely g50/2π = 0.1 MHz, κ50/2π =
10.9 MHz, �50/2π = 17.1 MHz, and �0/2π = 2.64 GHz.
Note that the driving strength �0 is more than an order
of magnitude lower than required in the monomode con-
figuration [cf. Fig. 10(a)] This is because of the nearly
10 off-resonant modes that play a non-negligible role in
contributing to the effective parameters [cf. right panel of
Fig. 10(e)], and in particular to the cavity-mediated driving
�cm = ∑

m gm|αm
ss|2 ∼ 2π×39 MHz. Although we have dis-

cussed that having a strong resonator drive on order �0/2π ∼
40 GHz, as required for parameter set C, is not harmful to the
superconducting system (as most of this energy is reflected
by the cavity), it is instructive to show that the multimode
structure of the cavity does not introduce detrimental effects
and that it may be even beneficial for reducing drive power if
needed.

D. Ring resonator

In Sec. V, we discussed that the multiphoton synchronizing
scheme is resilient to disorder in the couplings gj as long
as this is controlled with a relative precision on the order or
below ∼2.5%. In this subsection, we consider a ring cav-
ity configuration [cf. Fig. 10(c)], which is a very appealing
alternative to improve the fabrication of homogeneous cou-
plings g j,m ≈ gm, because of its intrinsic circular symmetry.
Prototypes of ring cavities [100,101] already demonstrate the
generation of a very uniform electromagnetic field amplitude,
leading to a coupling inhomogeneity below 1%. Note that
for the same length L of an open cavity, the ring cavity
has a fundamental frequency twice as large ω1

c = 2πc/L,
because of its periodic boundary conditions. In particular, we
consider a ring cavity of length L = 74.6 mm, so that mode
m = 3 with ω3

c/2π = 5.31 GHz is the closest to the qubit

resonance of ωq/2π = 6 GHz [cf. left panel of Fig. 10(f)].
Other parameters are taken to induce an effective dynam-
ics identical to parameters A in the mono-mode model,
namely κ3/2π = 15.6 MHz, g3/2π = 2.32 MHz, �3/2π =
690 MHz, and �0/2π = 3.7 GHz. For these parameters, we
see that the two modes m = 3, 4 are appreciably populated [cf.
right panel of Fig. 10(f)]. As for the open cavity, increasing
the length L of the ring cavity also allows accommodating
more qubits and reducing the driving strength �0 on the
cavity, but the most important added feature of this symmetric
configuration is the potential to reduce inhomogeneities in the
fabrication of the multiphoton synchronizing device.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we propose a scalable design for generating
efficiently a large number of synchronized, independent, and
indistinguishable photons propagating over independent chan-
nels. The synchronization is provided by a strongly driven
resonator in the bad cavity and weak-coupling limits. The
resonator allows for a simultaneous and robust control of all
emitters, which deposit photons into individual waveguides, at
a high rate and with a high collection efficiency. Although our
scheme can be implemented in cavity QED and nanophotonic
platforms [71,90,102–106], we have discussed an efficient
circuit QED implementation, [60,66,98,112,114], where the
cavity synchronization mechanism is especially useful to re-
duce overhead with the number of independent controls [99].

The only intrinsic limitations for the scalability of the
synchronized multiphoton device are the cavity-mediated
interactions and collective decay, which can create correla-
tions between SPSs and the emitted photons. Nevertheless,
we show that these correlations are strongly suppressed
on the timescale of photon emission and that they only
induce a nearly negligible quadratic demultiplexing error
DN ≈ εN (N − 1) with ε ∼ 10−4 − 10−5 for state-of-the-art
circuit-QED parameters. Remarkably, this allows for the syn-
chronization of up to hundreds of nearly independent single
photons, even in the presence of decoherence, disorder, and
multimode cavity effects.

Given that, as we show, each SPS can achieve single-
photon efficiency, purity, and indistinguishability above 99%,
and the parallel operation in our device enables the efficient
creation of large N-photon states. For instance, we predict a
30-photon probability of P30 ∼ 0.72 at a rate C30 ∼ 300 kHz
and a 100-photon probability of P100 ∼ 0.16 at a rate C100 ∼
200 kHz. This is seven orders of magnitude more efficient than
the most sophisticated multiplexed SPSs up to N = 14 sin-
gle photons [19–21,74,75,90]. All these promising figures of
merit can be further improved when implementing a more
refined model for the SPSs such as three-level emitters [23],
but this is independent of the efficient synchronization scheme
we propose.

Scalable and deterministic sources of multiphoton states
will be a key resource for realizing large-scale quantum infor-
mation processing such as quantum optical neural networks
[22] or fault-tolerant photonic quantum computation [8]. In
the short-term, the implementation of our scheme can already
enable quantum advantage experiments with hundreds of mi-
crowave photons such as boson sampling [18] or quantum
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metrology [16,17]. Moreover, the setup and ideas introduced
in this paper can be further extended to scale up the genera-
tion of correlated multiphoton states [64,123] with engineered
entanglement patterns [124]. Many-body methods such as
matrix-product states [125,126] could be exploited to study
the multiphoton correlations of the propagating fields, and
recent multiphoton probing methods [127–131] could be used
to characterize them in the laboratory.
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APPENDIX A: DERIVATION OF EFFECTIVE MODEL
FOR CAVITY SYNCHRONIZATION

In this Appendix, we outline the derivation of the ef-
fective master equation (13) starting from general dynamics
describing N emitters coupled to a multimode cavity (cf.
Appendix A 1). In particular, we perform a displacement
transformation on all the cavity modes (cf. Appendix A 2),
and then an adiabatic elimination of the cavity fluctuations
(cf. Appendix A 3) as shown in the following.

1. Open quantum dynamics of emitters coupled
to a multimode cavity

The master equation and Hamiltonian describing N two-
level emitters coupled to a driven multimode cavity read

ρ̇(t ) = − i[H (t ), ρ] +
∑

m

κmD[am]ρ +
N∑

j=1

γ jD[σ−
j ]ρ

+
N∑

j=1

γ
j

lossD[σ−
j ]ρ +

N∑
j=1

2γ
j

φD, [σ+
j σ−

j ]ρ, (A1)

H (t ) =
∑
m=1

ωm
c a†

mam + 2�(t )
∑
m=1

(am + a†
m) cos(ωdt )

+ 1

2

N∑
j=1

ω
q
j σ

z
j +

N∑
j=1

∑
m=1

g j,m(am + a†
m)(σ−

j + σ+
j ).

(A2)

Here, the system parameters are the same as in the monomode
case given in Eqs. (5)–(7), except that the cavity is generalized
to have many modes m, each one described by ladder opera-

tors (am, a†
m), a frequency ωm

c , a decay κ j , and a coupling to
the qubits g j,m.

2. Coherent displacement of driven cavity modes

The quantum Langevin equations [120] associated to the
master equation (A1) read

ȧm = −[
κm/2 + iωm

c

]
am − i

N∑
j=1

g j,m(σ−
j + σ+

j )

−2i�m(t ) cos(ωdt ) − √
κmam

in, (A3)

σ̇−
j = −[(

γ j + γ
j

loss

)
/2 + iωq

j

]
σ−

j

+i
∑

m

gj,m(am + a†
m)σ z

j + √
γ jσ

z
j bj

in (A4)

+
√

γ
j

lossσ
z
j c j

in − i
√

2γ
j

φ χ (t )σ−
j , (A5)

σ̇ z
j = −(

γ j + γ
j

loss

)(
1 + σ z

j

)
−2i

∑
m

gj,m(a†
m + am)(σ+

j − σ−
j )

−2
√

γ j
[
σ+

j b j
in + h.c.

] − 2
√

γ
j

loss

[
σ+

j c j
in + H.c.

]
.

(A6)

Here, χ (t ) is a stochastic white noise dephasing fluctuation
satisfying 〈〈χ (t )χ (t ′)〉〉 = δ(t − t ′) [132], am

in(t ) corresponds
to the input noise field of the cavity mode m, bj

in(t ) the input
field of photons in antenna j, and c j

in(t ) the photonic input
field of unwanted channels coupled to qubit j. A coherent
driving on the cavity induces a coherent state component on
this mode, and thus it is convenient to displace it using the
transformation am → αm + δam as in Eq. (8). Here, δam cor-
responds to the quantum fluctuation of the cavity mode around
its classical value αm. By separating the classical and quantum
cavity components, the displaced Langevin equation for the
fluctuation of cavity mode m reads

δȧm = − [
κm/2 + iωm

c

]
δam − i

N∑
j=1

g j,m(σ−
j + σ+

j )

− √
κmam

in(t ), (A7)

and for the qubits,
σ̇−

j = − [(
γ j + γ

j
loss

)
/2 + iωq

j

]
σ−

j + 2i
∑

m

gj,mRe{αm}σ z
j

+ i
∑

m

gj,m(δam + δa†
m)σ z

j + √
γ jσ

z
j bj

in

+
√

γ
j

lossσ
z
j c j

in − i
√

2γ
j

φ �(t )σ−
j , (A8)

σ̇ z
j = − (

γ j + γ
j

loss

)(
1 + σ z

j

) − 4i
∑

m

gj,mRe{αm}(σ+
j − σ−

j )

− 2i
∑

m

gj,m(δa†
m + δam)(σ+

j − σ−
j )

− 2
√

γ j
[
σ+

j b j
in(t ) + H.c.

]
− 2

√
γ

j
loss

[
σ+

j c j
in(t ) + H.c.

]
. (A9)
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Here, αm(t ) is determined via the classical differential
equation,

α̇m(t ) =−[
κm/2+iωm

c

]
αm(t )−2i�0 f (t ) cos(ωdt ), (A10)

which is a multimode generalization of Eq. (10). The master
equation associated to the above Langevin equations (A7)–
(A9) with the displaced cavity reads

ρ̇ ′(t ) = − i[H ′(t ), ρ ′] +
∑

m

κmD[δam]ρ ′ +
N∑

j=1

γ jD[σ−
j ]ρ ′

+
N∑

j=1

γ
j

lossD[σ−
j ]ρ ′ +

N∑
j=1

2γ
j

φD[σ+
j σ−

j ]ρ ′, (A11)

where the system Hamiltonian after the displacement trans-
formation H ′(t ) is given by

H ′(t ) =
∑

m

ωm
c δa†

mδam +
N∑

j=1

ω
q
j

2
σ z

j

+
N∑

j=1

∑
m

gj,m(δam + δa†
m)(σ−

j + σ+
j )

+
N∑

j=1

∑
m

2g j,mRe{αm(t )}(σ+
j + σ−

j ). (A12)

Notice that the displaced master equation (A11) has the same
shape as Eq. (7) except for the inclusion of multimode nature
and is expressed in terms of the fluctuations δam. The driv-
ing term in displaced Hamiltonian (A12) acts on the qubits
rather than on the cavity modes and this is the effective
cavity-mediated driving on the qubits that allows for the syn-
chronization of many SPSs in our scheme.

Equation (A11) is very efficient to perform numerical sim-
ulations of the dynamics in the case of strong cavity driving
|�0| � κm, |ωm

c − ωd | because most of the cavity photons can
be taken into account by the classical field αm(t ), and the
fluctuations are only weakly populated, 〈δa†

mδam〉 � 1. The
steady-state solution of Eq. (A10) with f (t ) = 1 is given by
αss,m = −i�0/(κm/2 − i�m), with �m = ωd − ωm

c the detun-
ing of the mth mode with respect to the cavity drive. This
implies that only a few cavity modes with ωm

c ∼ ωd have
a significant displacement αm during evolution. In addition,
we consider that all cavity modes are weakly coupled to the
emitters, which are nearly resonant to the cavity drive, i.e.,
g j,m � ω

j
q ≈ ωd , so the dynamics of the system can be fur-

ther simplified by applying the rotating wave approximation
(RWA) to the Hamiltonian in Eq. (A12). On the one hand, we
can approximate the qubit-fluctuation coupling as∑

m

gj,m(δam + δa†
m)(σ−

j + σ+
j ) ≈

∑
ωm

c ∼ωd

g j,m(δa†
mσ−

j + H.c.).

(A13)

On the other hand, the cavity-mediated driving on the qubits
can also be simplified by applying RWA as∑

m

gj,m2Re{αm(t )}(σ+
j + σ−

j )

≈
∑

ωm
c ∼ωd

g j,m|αss,m| f (t )(σ+
j e−i(ωd t−φm ) + H.c.), (A14)

where |αss,m| = �0/
√

(κm/2)2 + �2
m and φm =

Arctan(2�m/κm) − π/2 are the steady-state amplitude
and phase of the cavity displacement, respectively, and f (t ) is
a step function profile. To demonstrate this last approximation
(A14), we first assume the square pulse is switched on
f (t ) = 1 and the cavity is initially empty αm(0) = 0. Then,
the solution of the classical equation (9) for αm(t ) reads

αm(t ) = |αss,m|e−i(ωd t−φm )(1 − e−(κm/2−i�m )t )

− �0

2ωd
eiωd t (1 − e−(κm/2+2iωd )t ), (A15)

where we have also used the inequalities |�m|, κm � ωd valid
for our parameter conditions. The first term in (A15) reaches
the steady state value ∼|αss,m|e−i(ωd t−φm ) in a timescale ∼1/κm

and the second term causes the fast but low-amplitude os-
cillation observed in Fig. 2(a). Even for a large driving
strength �0 � ωd , the second term can be neglected with
respect to the first when |αss,m| � 1 as it is the case for
our parameters. Since in bad cavity limit (12) the timescale
for the qubit dynamics is much longer than ∼1/κm, we can
use the steady-state value αm(t ) ≈ |αss|e−i(ωd t−φm ) to approx-
imate the cavity displacement when the drive is switched
on f (t ) = 1 as it would be instantaneous for the qubits.
Similarly, after the cavity reaches the steady state and it is
switched off [ f (t ) = 0], the dynamics in Eq. (9) predicts
an exponential decay of αm(t ) with rate ∼κm. In the bad-
cavity limit we can also approximate this emptying of the
cavity as instantaneous for the qubit and thus αm(t ) ≈ 0 for
f (t ) = 0. In summary, under the above approximations we
have αm(t ) ≈ |αss,m|e−i(ωd t−φm ) f (t ) so that when replacing it
in the last term of Eq. (A12), and applying RWA provided
g j,m|αss,m| � ωm

c , ω
j
q ≈ ωd , we obtain Eq. (A14). Replacing

Eqs. (A13) and (A14) in (A12), and going to a rotating frame
with respect to the cavity drive frequency ωd , the dynamics
of the system in the displaced picture is finally given by the
master equation (A11) with the RWA Hamiltonian,

H ′(t ) ≈ −
∑

ωm
c ∼ωd

�mδa†
mδam − 1

2

N∑
j=1

δ jσ
z
j

+
N∑

j=1

∑
ωm

c ∼ωd

g j,m(δa†
mσ−

j + σ+
j δam)

+
N∑

j=1

� j
cm(σ+

j + σ−
j ). (A16)

Here, �
j
cm = ∑

ωm
c ∼ωd

g j,m|αss,m| is the multimode general-
ization of the cavity-mediated driving in Eq. (15) and we
have also absorbed the constant phase φm in the definition of
the qubit and fluctuation operators. The qubit detunings read
δ j = ωd − ω

j
q as in the main text.

3. Adiabatic elimination of cavity fluctuations

As discussed in the previous subsection, in the bad cavity
limit g j,m, |δ j | � κm, the cavity modes reach very quickly a
coherent steady state, with its quantum fluctuations δam close
to the vacuum state |0〉. In this situation, it is convenient to
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adiabatically eliminate the cavity fluctuation and obtain effec-
tive dynamics for the degrees of freedom of the qubits only.
To do so, we formally integrate Eq. (A7) and apply Markov
approximation provided the qubits’ dynamics evolve slowly
on the time-scale ∼1/κm. As a result, we get

δam(t ) ≈ − i
∑

j

g j,m

(κm/2 − i�m)
σ−

j (t ) −
√

κmam
in(t )

(κm/2 − i�m)

− i
∑

j

g j,m

κm/2 + i(2ωd − �m)
σ+

j (t ). (A17)

Replacing the above expressions in the original quantum
Langevin equations (A4)–(A6), applying RWA, and go-
ing to a rotating frame with frequency ωd , we obtain the
effective dynamics of the qubits, given by the Langevin
equations,

σ̇−
j = − [(

γ j + γ
j

loss + γ j
cm

)
/2 − i

(
δ j − δ j

cm

)]
σ−

j

+ i� j
cm f (t )σ z

j +
∑
l = j

∑
ωm

c ∼ωd

g j,mgl,m

(κm/2 − i�m)
σ z

j σ
−
l

+ √
γ jσ

z
j bj

in +
√

γ
j

lossσ
z
j c j

in − i
√

2γ
j

φ �(t )σ−
j

+
∑

ωm
c ∼ωd

√
(g j,m)2κm

(κm/2)2 + �2
m

σ z
j am

in, (A18)

σ̇ z
j = − (

γ j + γ
j

loss + γ j
cm

)(
1 + σ z

j

) − 2i� j
cm f (t )(σ+

j − σ−
j )

− 2
∑
l = j

∑
ωm

c ∼ωd

[
g j,mgl,m

(κm/2 − i�m)
σ+

j σ−
l + H.c.

]

− 2
∑

ωm
c ∼ωd

√
(g j,m)2κm

(κm/2)2 + �2
m

[
σ+

j am
in + H.c.

]

− 2
√

γ j
[
σ+

j b j
in + h.c.

] − 2
√

γ
j

loss

[
σ+

j c j
in + H.c.

]
.

(A19)

Finally, we can find a master equation whose effective
dynamics for the qubits are equivalent to the above quantum
Langevin equations (A18) and (A19). This is the case for
the effective master equation (13) with effective Hamilto-
nian (14), provided the cavity-mediated decay γ

jl
cm, detuning,

hopping J jl
cm, driving �

j
cm, and detuning δ

j
cm are given as in

Eqs. (39)–(41), with ω
j
q ≈ ωd . These expressions reduce to

Eqs. (15)–(18) in the case of a monomode cavity.

APPENDIX B: PHOTON COUNTING AND CALCULATION
OF PHOTON GENERATION PROBABILITIES

Photon detection and counting lies at the heart of quantum
optics and thus plenty of methods have been developed over
time [120,133]. In this Appendix, we describe two methods
for quantifying the efficiencies and photon statistics from
the output of many SPSs. In Appendix B 1 we introduce an
original photon counting method that we developed based
on extending the master equation formalism. Then, in Ap-
pendix B 2, we discuss a more standard photon counting
method using the quantum trajectory (QT) approach. This is
useful when the Hilbert space of the system becomes very
large but at the expense of losing precision in the computation
of the averages.

1. Photon counting in master equation formalism

In the master equation dynamics, the information about
the emission of photons into the bath is omitted, and there-
fore one typically resorts to the input-output formalism (cf.
Appendix C and Ref. [120]) to relate measurable photonic
quantities to multitime system correlations. Nevertheless, ob-
taining the photon statistics from these system correlations
involves the computation of multidimensional integrals over
time, which can be very computationally costly and ineffi-
cient when scaling up the number of emitters or photons to
probe.

To tackle the above problem, we developed a noncon-
ventional photon counting method that extends the master
equation formalism by reincorporating the information of the
emitted photons. To do so, we simulate photon counters at
each output channel j = 1, . . . , N of the system as quantum
“boxes” that dynamically count the number of quantum jumps
performed by each emitter and thereby the emitted photons.
An adequate modeling of the photon counters is crucial to
ensure that their presence does not alter the physical dynamics
of the system and this is what we detail in the following. First,
our method requires extending the Hilbert space of the system
Hsys as

Hext = Hsys ⊗ Hc
1 ⊗ · · · ⊗ Hc

N , (B1)

where Hc
j = span{|0〉 j , |1〉 j , . . . , |Nc〉 j} correspond to the

extra Hilbert spaces of each photon counter j = 1, . . . , N
spanned by Fock states |n〉 j that count the detected photons
from n = 0 to a maximum value n = Nc. The dimension of
the extended Hilbert space grows exponentially as

dim{Hext} = dim{Hsys}(1 + Nc)N , (B2)

but as long as the total dimension fits in dim{Hext} �
210 our method provides a fast and efficient way to
numerically calculate the few-photon statistics of multi-
ple emitters within a purely master equation approach. For
any Markovian master equation for a system state ρ̃(t ),
one can find an extended master equation that incorpo-
rates the few-photon counting statistics in the dynamics.
The general recipe is very simple and thus we explain it
directly on the synchronized multiphoton device described
by Eq. (13). In this case, the extended master equation
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reads

ρ̇ext = − i[H̃ (t ), ρext] +
N∑

j=1

γ jD[σ−
j S†

j ]ρext +
N∑

j=1

γ
j

lossD[σ−
j ]ρext +

N∑
j=1

2γ
j

φD[σ+
j σ−

j ]ρext + D

⎡
⎣ N∑

j=1

√
γ

j
cmσ−

j

⎤
⎦ρext, (B3)

where ρext is the density operator of the extended system
including counters. Importantly, the extended master equa-
tion looks identical to the original in Eq. (13), except for the
inclusion of the counting operators S†

j in the Lindblad terms

∼γ jD[σ−
j S†

j ] associated to the photon emissions we want to
characterize. The counting operator is a cyclic and unitary
operator defined as

S†
j =

Nc−1∑
n=0

|n + 1〉 j〈n| + |0〉 j〈Nc|, (B4)

and therefore every time the emitter j performs a quantum
jump and decays into its antenna with rate γ j, S†

j adds a new
photon to the counter box j as

S†
j |n〉 j = |n + 1〉 j, n = Nc. (B5)

When a counter reaches its maximum state |Nc〉 j , additional
quantum jumps would reset the counter as

S†
j |Nc〉 j = |0〉 j, (B6)

and therefore it is very important to choose Nc large enough
to avoid reaching this limit and properly account for the
physically emitted photons. Using the cyclic definition of
S†

j in Eq. (B4), as well as their unitarity properties S†
j S j =

S jS
†
j = 1, we can take partial trace on the extended master

equation (B3) and show that we exactly recover the system
dynamics as

ρ̃(t ) = Trc{ρext (t )}, (B7)

where ρ̃(t ) is the state of the system governed by the original
master equation without photon counting (13).

In practical calculations, we therefore solve for the ex-
tended state ρext (t ) in Eq. (B3), and we then obtain the
few-photon statistics of the emitted photons by taking simple
expectation values on ρext (t ). In particular, the probability P j

n

to count n photons in channel j is calculated as

P j
n (t ) = Tr

{
� j

nρext (t )
}
, (B8)

where the projection operators �
j
n on the counter Fock states

|n〉 j are defined as

� j
n = |n〉 j〈n|. (B9)

More generally, the probability to detect n1, . . . , nN photons
in output channels j = 1, . . . , N , respectively, is obtained by
products of the projectors as

�1...N
n1...nN

= Tr
{
�1

n1
. . . �N

nN
ρext

}
. (B10)

Using Eq. (B10) we can calculate the full few-photon statis-
tics of the system as long as the evolution of the extended
master equation (B3) is numerically tractable. This method
is particularly suited for characterizing the efficiency of SPSs
since in that case we expect the photon statistics to be strongly

peaked at n j ≈ 1 and therefore taking Nc = 1 or Nc = 2 on
each counter may be enough. In most calculations shown in
the main text, we take Nc = 1 and quantify the probability of
emitting one photon on each of the N channels simultaneously
by computing

PN = �1...N
1...1 = Tr

{
�1

1 . . . �N
1 ρext

}
. (B11)

In the general case, however, it is important to ensure that the
occupation of the last state of the counters is negligible so that
the photon statistics are not affected by the finite size of the
counters.

2. Photon counting in quantum trajectories formalism

The most natural way to implement an ideal photon count-
ing is within the formalism of quantum trajectories (QT) and
continuous measurements [133–137]. Here, the physics of
quantum jumps is explicitly simulated during the open system
evolution and therefore it is very natural to count them and
thereby infer the photon statistics.

The QT interpretation requires re-expressing the master
equation (13) of our SPS synchronization and demultiplexing
system as [133,134]

˙̃ρ(t ) = −i(Hnhρ̃ − ρ̃H†
nh ) +

Q∑
q=1

cqρ̃c†
q. (B12)

Here, Hnh is the non-Hermitian Hamiltonian of the system
given by

Hnh = H̃ − i

2

Q∑
q=1

c†
qcq, (B13)

with H̃ the standard system Hamiltonian in Eq. (14) and cq

denoting the Q = 3N + 1 jump operators appearing in the
master equation (13). Using the index j = 1, . . . , N , which
describes each of the N SPSs, the jump operators cq, with
q = 1, . . . , Q = 3N + 1 can be decomposed as

c j = √
γ jσ

−
j , (B14)

cN+ j =
√

γ
j

lossσ
−
j , (B15)

c2N+ j =
√

2γ
j

φ σ+
j σ−

j , (B16)

c3N+1 =
N∑

j=1

√
γ

j
cmσ−

j . (B17)

The dynamics of the system in the QT formalism are
obtained by calculating the stochastic evolution of m =
1, . . . , M realizations of a pure system state |�m(t )〉, starting
from the initial state |�m(0)〉 = |g〉⊗N . The evolution of each
state realization |�m(t )〉 combines deterministic dynamics via
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the non-Hermitian Schrödinger equation

d

dt
|�m(t )〉 = −iHnh |�m(t )〉 , (B18)

and stochastic quantum jumps that project the quantum state
at random times as

|�m(t )〉 → cq|�m(t )〉
〈�m(t )|c†

qcq|�m(t )〉 , (B19)

where the specific jump operator cq is also randomly chosen
from the q = 1, . . . , Q possibilities on each jump process.
When solving for M � 1 realizations, one can obtain the
density matrix ρ̃(t ) of the system from the ensemble av-
erage ρ̃(t ) = (1/M )

∑M
m=1 |�m(t )〉〈�m(t )| or calculate the

expectation value of any system operator X as 〈X (t )〉 =
(1/M )

∑M
m=1〈�m(t )|X (t )|�m(t )〉.

Importantly, if we record the information of how many
jumps of each type cq occurred on each of the M realizations
|�m(t )〉, we can directly access the photon statistics of the
system from this data. For instance, the probability P j

n to
generate n photons on antenna j = 1, . . . , N is calculated in
the QT approach as

P j
n = N (c j |n)

M
, (B20)

where N (c j |n) denotes the number of trajectories that regis-
tered n jumps with a given operator c j of Eq. (B14). Similarly,
the N-photon probability PN of generating one photon on each
of the N independent antennas can be statistically obtained as

PN = N (c1, c2, . . . , cN |1, 1, . . . , 1)

M
, (B21)

where N (c1, c2, . . . , cN |1, 1, . . . , 1) denotes the number of
trajectories that registered exactly one jump of each c j op-
erator in Eq. (B14), for j = 1, . . . , N .

When calculating many trajectories M � 1 of the sys-
tem dynamics, we can gather enough quantum jump data
and determine the photon emission probabilities (B20) and
(B21) with low statistical error. Since this error decreases as
∼M−1/2, we typically require on the order of M ∼ 103 − 104

trajectories to obtain meaningful results with an error on order
∼10−2 − 10−3. In practice, this makes the calculation of P j

n

and PN less precise than the extended master equation method
in Appendix B 1. Nevertheless, the advantage of QT formal-
ism is that we evolve pure states instead of density matrices
and that it avoids extending the Hilbert space dimension to
include counters as in the extended master equation method.
These two key aspects allow us to dramatically reduce the
Hilbert space for the simulations and thus to treat much larger
systems composed of many more SPSs (cf. the scalability
calculations in Fig. 6).

APPENDIX C: PHOTON CORRELATIONS
AND INPUT-OUTPUT FORMALISM

In Secs. III D and III E, we discuss how to quantify mul-
tiphoton contamination and photon indistinguishability in the
emission of SPSs via second-order photon correlation func-
tions. These photon correlations are measured via coincidence
counts either in the Hanbury Brown and Twiss (HBT) or

the Hong-Ou-Mandel (HOM) configurations and can be ex-
pressed as

G(2), j
HBT (τ ) =

∫ ∞

0
dt

〈
bj†

out (t )bj†
out (t + τ )bj

out (t + τ )bj
out (t )

〉
,

(C1)

G(2), jl
HOM (τ )=

∫ ∞

0
dt

〈
b1( jl )†

BS (t )b2( jl )†
BS (t +τ )b2( jl )

BS (t +τ )b1( jl )
BS (t )

〉
.

(C2)

In the HBT correlations (C1), the operators bj
out (t ) annihilates

an output photon on the antenna channel j at time t , and
in HOM correlations (C2), b1( jl )

BS (t ) = [bj
out (t ) + bl

out (t )]/
√

2,
and b2( jl )

BS (t ) = [bj
out (t ) − bl

out (t )]/
√

2 correspond to the pho-
tonic output operators after passing through a beamsplitter
that connects antennas two antennas j and k.

As explained in Secs. III D and III E, it is convenient to
define normalized second-order correlation functions at zero
time delay, which in the case of pulsed emission read,

g(2), j
HBT[0] =

∫ 1
2R

0 dτG(2), j
HBT (τ )( ∫ 1

2R
0 dt

〈
bj†

out (t )bj
out (t )

〉)2
, (C3)

g(2), jl
HOM[0] =

∫ 1
2R

0 dτG(2), jl
HOM (τ )∏2

k=1

( ∫ 1
2R

0 dt
〈
bk( jl )†

BS (t )bk( jl )
BS (t )

〉) . (C4)

To express the photon correlations in Eqs. (C1) and (C4) in
terms of two-time system correlations, we can use the input-
output relation, which read

bj
out (t ) = bj

in(t ) + √
γ jσ

−
j (t ), (C5)

where σ−
j (t ) is the Pauli operator of qubit j = 1, . . . , N . In

addition, the input field bj
in(t ) is the same operator that appears

in the quantum Langevin equations (A9) or (A19), and it
can be expressed as a Fourier transform over the annihilation
operators bj (ω) of photons of frequency ω propagating in
antenna j, namely

bj
in(t ) = 1√

2π

∫ ∞

−∞
dωe−iωt b j (ω). (C6)

If we use the input-output relation (C5) into the correla-
tions functions in Eqs. (C3) and (C4), and consider that all
antennas are initially in vacuum state |0〉, we obtain

g(2), j
HBT[0] =

∫ 1
2R

0 dτ
∫ ∞

0 dt〈σ+
j (t )σ+

j (t + τ )σ−
j (t + τ )σ−

j (t )〉( ∫ 1
2R

0 dt〈σ+
j (t )σ−

j (t )〉)2
,

(C7)

and

g(2), jl
HOM[0]=

∫ 1
2R

0 dτ
∫ ∞

0 dt〈ξ ( jl )†
1 (t )ξ ( jl )†

2 (t +τ )ξ ( jl )
2 (t +τ )ξ ( jl )

1 (t )〉∏2
k=1

( ∫ 1
2R

0 dt
〈
ξ

( jl )†
k (t )ξ ( jl )

k (t )
〉) .

(C8)

Here, the superposition system operators between qubits j and
l read

ξ
( jl )
1 (t ) = (

√
γ jσ

−
j (t ) + √

γlσ
−
l (t ))/

√
2, (C9)

ξ
( jl )
2 (t ) = (

√
γ jσ

−
j (t ) − √

γlσ
−
l (t ))/

√
2. (C10)
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Finally, we can use the Eq. (13) together with the
quantum fluctuation regression theorem [120] to cal-
culate the system expectation values 〈σ+

j (t )σ−
j (t )〉 and

〈ξ ( jl )†
k (t )ξ ( jl )

k (t )〉, as well as the two-time system cor-
relation functions 〈σ+

j (t )σ+
j (t + τ )σ−

j (t + τ )σ−
j (t )〉 and

〈ξ ( jl )†
1 (t )ξ ( jl )†

2 (t +τ )ξ ( jl )
2 (t +τ )ξ ( jl )

1 (t )〉. After calculating these
quantities, we replace them into Eqs. (C7) and (C8), and
perform the corresponding integrals over time t and time delay
τ to obtain the results for the HBT and HOM second-order
correlations functions shown in Secs. III D and III E.
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M. Karpiński, B. J. Smith, A. Eckstein, W. S. Kolthammer, and
I. A. Walmsley, Pure single photons from scalable frequency
multiplexing, Phys. Rev. Appl. 14, 014052 (2020).

[89] A. Christ and C. Silberhorn, Limits on the deterministic
creation of pure single-photon states using parametric down-
conversion, Phys. Rev. A 85, 023829 (2012).

[90] C. Antón, J. C. Loredo, G. Coppola, H. Ollivier, N.
Viggianiello, A. Harouri, N. Somaschi, A. Crespi, I. Sagnes,
A. Lemaître et al., Interfacing scalable photonic platforms:
Solid-state based multi-photon interference in a reconfigurable
glass chip, Optica 6, 1471 (2019).

[91] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen,
S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling,
C.-Y. Lu, and J.-W. Pan, On-demand single photons with high
extraction efficiency and near-unity indistinguishability from
a resonantly driven quantum dot in a micropillar, Phys. Rev.
Lett. 116, 020401 (2016).

033295-22

https://doi.org/10.1038/ncomms12588
https://doi.org/10.1103/PhysRevApplied.8.054015
https://doi.org/10.1103/PhysRevLett.119.140504
https://doi.org/10.1038/nphys4143
https://doi.org/10.1088/1361-6668/aad8f4
https://doi.org/10.1103/PhysRevApplied.13.034007
https://doi.org/10.1038/s41566-019-0544-x
https://doi.org/10.1038/nphoton.2010.161
https://doi.org/10.1103/PhysRevLett.104.137401
https://doi.org/10.1021/acsphotonics.9b00481
https://doi.org/10.1063/1.5028339
https://doi.org/10.1088/1367-2630/aaea99
https://doi.org/10.1126/sciadv.aaw8586
https://doi.org/10.1063/1.5096979
https://doi.org/10.1002/lpor.201600297
https://doi.org/10.1103/PhysRevA.66.042303
https://doi.org/10.1364/OPTICA.2.001010
https://doi.org/10.1038/ncomms10853
https://doi.org/10.1364/OPTICA.3.000127
https://doi.org/10.1103/PhysRevA.66.053805
https://doi.org/10.1103/PhysRevA.83.043814
https://doi.org/10.1364/OL.32.002698
https://doi.org/10.1038/ncomms3582
https://doi.org/10.1364/OPTICA.3.001270
https://doi.org/10.1364/OPTICA.4.000090
https://doi.org/10.1103/PhysRevLett.119.083601
https://doi.org/10.1038/s41467-018-03254-4
https://doi.org/10.1103/PhysRevApplied.14.014052
https://doi.org/10.1103/PhysRevA.85.023829
https://doi.org/10.1364/OPTICA.6.001471
https://doi.org/10.1103/PhysRevLett.116.020401


SCALABLE MULTIPHOTON GENERATION FROM … PHYSICAL REVIEW RESEARCH 6, 033295 (2024)

[92] N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P.
Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón,
J. Demory et al., Near-optimal single-photon sources in the
solid state, Nat. Photon. 10, 340 (2016).

[93] J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M.
Champion, M. R. Sprague, P. S. Michelberger, X.-M. Jin,
D. G. England, and I. A. Walmsley, Enhancing multiphoton
rates with quantum memories, Phys. Rev. Lett. 110, 133601
(2013).

[94] D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G.
Thompson, Effect of loss on multiplexed single-photon
sources, New J. Phys. 17, 043057 (2015).

[95] M. Gimeno-Segovia, H. Cable, G. J. Mendoza, P. Shadbolt,
J. W. Silverstone, J. Carolan, M. G. Thompson, J. L. O’Brien,
and T. G. Rudolph, Relative multiplexing for minimizing
switching in linear-optical quantum computing, New J. Phys.
19, 063013 (2017).

[96] Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin,
Resource costs for fault-tolerant linear optical quantum com-
puting, Phys. Rev. X 5, 041007 (2015).

[97] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R.
Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, Demonstration of two-qubit al-
gorithms with a superconducting quantum processor, Nature
(London) 460, 240 (2009).

[98] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen,
Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan,
J. Wenner, T. C. White, A. N. Cleland, and J. M. Martinis,
Coherent Josephson qubit suitable for scalable quantum inte-
grated circuits, Phys. Rev. Lett. 111, 080502 (2013).

[99] S. Tamate, Y. Tabuchi, and Y. Nakamura, Toward realization
of scalable packaging and wiring for large-scale superconduct-
ing quantum computers, IEICE Trans. Electron. E105.C, 290
(2022).

[100] W. Huang, Y. Zhou, Z. Tao, L. Zhang, S. Liu, Y. Chen, T.
Yan, and D. Yu, A superconducting coplanar waveguide ring
resonator as quantum bus for circuit quantum electrodynamics,
Appl. Phys. Lett. 118, 184001 (2021).

[101] S. Hazra, A. Bhattacharjee, M. Chand, K. V. Salunkhe, S.
Gopalakrishnan, M. P. Patankar, and R. Vijay, Ring-resonator-
based coupling architecture for enhanced connectivity in a
superconducting multiqubit network, Phys. Rev. Appl. 16,
024018 (2021).

[102] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe,
Photon-mediated quantum gate between two neutral atoms in
an optical cavity, Phys. Rev. X 8, 011018 (2018).

[103] B. Casabone, K. Friebe, B. Brandstätter, K. Schüppert, R.
Blatt, and T. E. Northup, Enhanced quantum interface with
collective ion-cavity coupling, Phys. Rev. Lett. 114, 023602
(2015).

[104] G. Araneda, D. B. Higginbottom, L. Slodička, Y. Colombe,
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