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Multiplexed quantum state transfer in waveguides
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In this article, we consider a realistic waveguide implementation of a quantum network that serves as a
testbed to show how to maximize the storage and manipulation of quantum information in QED setups. We
analyze two approaches using wavepacket engineering and quantum state transfer protocols. First, we propose
and design a family of orthogonal photons in the time domain. These photons allow for a selective interaction
with distinct targeted qubits. Yet, mode multiplexing employing resonant nodes is largely spoiled by cross-talk
effects. This motivates the second approach, namely, frequency multiplexing. Here we explore the limits of
frequency multiplexing through the waveguide, analyzing its capabilities to host and faithfully transmit photons
of different frequencies within a given bandwidth. We perform detailed one- and two-photon simulations and
provide theoretical bounds for the fidelity of coherent quantum state transfer protocols under realistic conditions.
Our results show that state-of-the-art experiments can employ dozens of multiplexed photons with global
fidelities fulfilling the requirements imposed by fault-tolerant quantum computing. This is with the caveat that
the conditions for single-photon fidelity are met.
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I. INTRODUCTION

Superconducting circuit and waveguide quantum electro-
dynamics (QED) [1,2] address two promising and synergistic
platforms in quantum science and engineering. While circuit
QED is primarily concerned with quantum information pro-
cessing in superconducting chips, and issues such as gate
fidelity and scalability, waveguide QED setups enable the
distribution of quantum resources among those processors, via
two-way transduction between stationary qubits and propa-
gating photons [3–6], entanglement sharing [7–11], and the
engineering of large quantum many-body states [12,13]. The
synergistic combination of both setups opens a realistic path
towards the implementation of distributed quantum comput-
ing [14–17] and the achievement of large-scale quantum
information processing architectures [18–20].

Within this context, in which we engineer and model quan-
tum links between quantum hubs as waveguide QED setups
[3,5,8,10,11,21–26], enlarging the information capacity of the
communication channel is a very relevant goal [27]. As rou-
tinely demonstrated in optical experiments, the utilization of
the photonic information space can be maximized in very by
playing with the time encoding [28], spatiotemporal modes
[29,30], carrier frequencies and wavelengths [31–33] and any
other photonic degree of freedom.
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In this paper we explore two information multiplexing
techniques that can be applied to microwave waveguide QED
quantum links with single-photon wavepacket shaping tech-
niques [3,34–36]. These techniques are explored and tested in
a distributed architecture with two distant nodes connected by
a waveguide QED quantum link, in line with recent setups
[3,5,8,10,11,26]. Our first result is to demonstrate a spa-
tiotemporal mode multiplexing protocol, designing an explicit
control to generate a large basis of orthogonal modes that is
compatible with existing single-photon shaping setups [3,36].
While this technique enlarges the accessible space for the con-
struction of large photonic states [12,13] and generic quantum
resources, we conclude that it is not possible to operate on
two orthogonal photons that share the same carrier frequency
caused by cross-talk effects.

To study and mitigate this cross talk, we propose a sce-
nario in which multiple emitters work at different wavelengths
while the dynamics is kept coherent. This coherent frequency
multiplexing approach allows us to isolate the unwanted
interaction between emitters and find suitable regimes of op-
eration. A detailed study with 2+2 qubits sharing a common
quantum link reveals that it is possible to simultaneously
transfer two photonic qubits with large fidelity. Only a rela-
tively small frequency separation, determined by the photon
bandwidth, is required to reach the excellent fidelities of
single-photon state transfer [24,25]. A pessimistic extrapo-
lation of this to multiple emitters estimates a waveguide’s
information capacity, understood as the bandwidth require-
ments to transmit a given number of qubits below a given
overall infidelity. These estimates hint that current setups
support transferring tens of multiplexed qubits with minimal
coherent errors at levels compatible with fault-tolerant com-
putation requirements.
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The structure of the article is as follows. In Sec. II we
present the setup and introduce the one and two excitations
Ansätze that will be used for the simulations. In Sec. III we
describe mode multiplexing, provide the theoretical details for
the generation of the desired family of orthogonal wavepack-
ets, and present numerical results of quantum state transfer
protocols. In Sec. IV frequency multiplexing is discussed,
including detailed numerical simulations of quantum state
transfers involving two photons to analyze its performance,
and estimate its scaling with a growing number of multiplexed
photons and emitters. Finally, in Sec. V we summarize the
main contributions of the present paper and provide an out-
look for potential future applications.

II. MODEL

This article aims to study and enhance the information
capacity of a waveguide-QED quantum link between two
quantum processors. Our theoretical model for the link con-
sists of two quantum nodes connected to the ends of an open
waveguide. Each node or station contains a quantum registers
with one or more qubits, which are separately coupled to the
waveguide by individual quantum filters. The following sub-
sections describe the quantum optical models for this setup, as
well as the exact wavefunctions that describe the single- and
two-photon dynamics.

A. Setup

Our general waveguide-QED link comprises multiple emit-
ters connected to a waveguide by transfer resonators that act as
frequency filters. While variations of this setup have been used
in state-of-the-art experiments with superconducting circuits
[3,5,8,10,11,21,22], we extend this framework to account for
several emitters in each of the two nodes (cf. Fig. 1). The
Hamiltonian for N emitters, N filters, and the waveguide reads
as follows:

H = HWG +
N∑

j=1

Hj + Hj−WG, (1)

HWG =
∑

k

ω(k)b†
kbk, (2)

Hj = δ jσ
+
j σ−

j + ωR ja
†
j a j + g j (t )(σ+

j a j + H.c.), (3)

Hj−WG =
∑

k

Gk, j (b
†
ka j + H.c.). (4)

The operators σ+
j , a†

j , b†
k respectively describe the creation

of excitations in the qubit, filter, and waveguide degrees of
freedom. The energy of the qubits is denoted by δ j and is
approximately resonant to the frequency of the resonator it
interacts with δ j � ωR j . Each qubit is coupled to a different
filter, which act as bridges of information in and out of the
waveguide. The qubit-cavity coupling amplitude g j (t ) ∈ C
can be controlled both in amplitude and phase, a feature that
can be achieved experimentally by using tuneable couplers
[36] or mediating the interaction via the superconducting cir-
cuit states outside the computational basis [3,22].

(a)

(b)

FIG. 1. Schematic representation of the multiplexation protocols
considered in this article, namely, mode (a) and frequency mul-
tiplexation (b) across a waveguide connecting two nodes. Mode
multiplexation is illustrated in (a), where one can apply either g0(t ) or
g1(t ) to produce a propagating photon ξ0(t ) or one that is orthogonal
to it ξ1(t ). At the second node one can selectively choose to interact
with one or the other also by choosing the adequate control. Panel
(b) refers to frequency multiplexing, illustrated for nodes containing
two qubit-resonator systems each, and chosen to be pairwise reso-
nant, δ1 = δ3 (green qubits), and δ2 = δ4 (red qubits). The photons
travel concurrently and do not disturb each other because they have
different central frequencies, exploiting the available bandwidth.
Note that the emitters are not restricted to interact only with their
corresponding resonant photons. A careful derivation of the controls
allows us to couple qubits with photons that are detuned from them
by properly tuning the time-dependent coupling g(t ) (see Secs. III
and IV for details).

The waveguide dispersion relation ω(k) and the filter-
waveguide coupling amplitudes Gk, j are motivated by recent
experiments. In particular, for the waveguide we assume
a superconducting WR90 microwave waveguide of length
lWG (as employed in Refs. [5,8]). This waveguide fea-
tures a nonlinear dispersion relation of the form ω(k) =
c
√

(π/l1)2 + k2 [37] operating in the X-band, and where c
and l1 refer to the speed of light and its cross-section di-
mension l1 = 2.286 cm. The wavenumber of these modes is
given by km = mπ/lWG with m = 0, 1, . . . denoting the mode
number. The amount of waveguide modes NWG is chosen
such that it ensures the convergence of numerical simula-
tions. The resonator-waveguide coupling follows an Ohmic
Gkm, j = cos(mπx j/lWG)

√
κ jvgω(km)/(2ωR j lWG), where vg =

dω(k)/dk is the group velocity and κ j is the decay rate of the
jth filter, i.e., the speed at which photons are released from the
resonator and thus the largest bandwidth of our engineered
photons. The prefactor outside the integral depends on the
electromagnetic modes inside the waveguide and it alternates
sign for resonators place at the second node (x j = lWG). The
term Gkm, j is an effective description that arises from the un-
derlying quantization procedure for superconducting circuits.
We will be working in the Ohmic regime and consider a
capacitive coupling between the cavity and the waveguide.
When doing so, one arrives at the provided expression for
Gkm, j , where the sign (−1)m( j−1) comes from the change in
parity of the stationary modes present in the interior of the
waveguide [37–39]; for a detailed derivation of how to go
from the microscopic model based on superconducting circuit
quantization, see Chapter 7 of Ref. [40], and also [1].
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In addition, we remark that because we are interested in
obtaining the theoretical limits to the fidelity for coherent
multiplexing state transfer strategies, the impact of decoher-
ence effects will be neglected in the following discussion.
Nevertheless, as we comment later, decoherence effects, such
as spontaneous emission and losses, will reduce the overall
fidelity by a constant factor.

B. Single- and two-excitation state

The Hamiltonian (1) commutes with the number of ex-
citations, n̂ = ∑

j (σ
+
j σ j + a†

j a j ) + ∑
k b†

kbk . Thus, n̂ is a
conserved quantity in the dynamics and the Hamiltonian H
is block diagonal, with one sparse matrix describing the evo-
lution in each sector of the Hilbert space with fixed n̂ ∈
{0, 1, 2, . . .}.

If the initial state only contains one excitation, the whole
evolution can be described by an exact wavefunction that is
a superposition of one excited qubit or one photon living in
either the filters or the waveguide

|�(t )〉 =
⎡
⎣∑

j

(q j (t )σ+
j + c j (t )a†

j ) +
∑

k

ψk (t )b†
k

⎤
⎦|0〉. (5)

The coefficients q j (t ), c j (t ), ψk (t ), are complex numbers
denoting the probability amplitudes of exciting a qubit, res-
onator, or waveguide mode, respectively, starting from the
vacuum state is denoted by |0〉. The evolution of state (5)
according to Hamiltonian (1) is dictated by a set of coupled
ordinary differential equations for the probability amplitudes

iq̇ j (t ) = δ jq j (t ) + g j (t )c j (t ), (6)

iċ j (t ) = ωR jc j (t ) + g∗
j (t )q j (t ) +

∑
k

Gk, jψk (t ), (7)

iψ̇k (t ) = ω(k)ψk (t ) +
∑

j

Gk, jc j (t ). (8)

The analysis of multiplexing strategies requires us to go be-
yond the single-excitation limit. We stop at the two excitation
limit, which is the next one that is still numerically tractable.
The Schwinger model for this wavefunction is

|�(t )〉 =
[∑

i �= j

qi, j (t )σ+
i σ+

j +
∑
i, j

ζi, jci, j (t )a†
i a†

j

+
∑
m,n

ζm,nψm,n(t )b†
mb†

n +
∑
i, j

qci, j (t )σ+
i a†

j

+
∑
i,m

qψi,m(t )σ+
i b†

m +
∑
i,m

cψi,m(t )a†
i b†

m

]
|0〉, (9)

where ζi,i = 1/
√

2, and otherwise 1. Following the single-
excitation notation, qi, j (t ), ci, j (t ), and ψm,n(t ) respectively
describe two excitations in the qubits, the resonators, or the
waveguide. The wavefunction also includes the possibility of
excitations coexisting in the qubit and a filter qci, j (t ), the qubit
and a waveguide mode qψi,m(t ), and a combination of filter
and waveguide modes cψi,m(t ). The necessary restriction that
no qubit alone houses more than one excitation is fixed by
the condition i �= j in the first sum. The evolution of state (9)

under Hamiltonian (1) produces a set of coupled differential
equations analogous to Eqs. (6)–(8).

The following study relies on numerically exact solutions
to the problems (6) and (9). Both problems are tractable and
can be simulated with moderate resources up to thousands of
modes. In all cases we analyze protocols that operate under
different controls g j (t ) to achieve multiplexed state transfer
from initial states with one or two excited qubits, to final states
in which the information has been transferred to a different
node. The derivation of the time-dependent couplings gj (t )
will vary according to the multiplexing strategy and will be
discussed in Sec. III A, as well as in Appendix A.

III. MODE MULTIPLEXING

Our first multiplexation strategy adds a new spatiotemporal
degree of freedom, which is the waveform of the propagating
photons in the waveguide. Thus, on top of a qubit degree of
freedom, having zero or one photon in a waveguide, a new
quantum degree of freedom is the label of the photon shape
within an orthonormal family of modes [cf. Fig. 1(a)]. This
strategy is only possible if we calibrate the controls g j (t ) to
selectively emit and absorb an orthonormal basis of functions,
ξ0(t ), ξ1(t ), etc. The new controls must be selective, so that if
the jth qubit is designed to absorb a given wavepacket shape,
it will perfectly reject photons in orthogonal mode. As we
will see below, having more than one possible mode requires
departing from conventional wavepacket shaping techniques
[5,24,39,41], which assume real-valued positive wavepackets,
to use more sophisticated designs.

A. Engineering orthogonal wavepackets

We are interested in producing a discrete family of photon
wavepackets, which we denote {ξn(t )} with a discrete label
denoting the mode index n = 0, 1, . . . These photonic modes
from an orthonormal basis

〈ξn(t ), ξm(t )〉 =
∫ ∞

−∞
dtξ ∗

n (t )ξm(t ) = δn,m. (10)

For this to happen it is mandatory that one or more modes
have nontrivial phase profiles—this may be associated to ξn(t )
having zeros and changing sign at specific times, or to a more
sophisticated phase front. This requirement poses a challenge
to the conventional wavepacket shaping techniques, which
assume real-valued functions for wavepackets and controls
along the calculations. Fortunately, this is not an intrinsic
limitation, and we can explore more generic complex controls
g(t ) ≡ |g(t )|e−iϕ(t ), as enabled, for instance, by state-of-the-
art qubit-cavity coupling schemes [3].

As in standard wavepacket shaping, the design of g(t )
is the solution of an inverse problem, in which the control
is obtained by inverting the dynamical equations (cf. for a
single excitation) for a single emitter creating a photon with a
predefined shape. To make the inversion tractable, we must
replace the full dynamical equations (6)–(8) with an alter-
native model that works in the Markov limit, and which
is analogous to standard input-output theory [42–44]. The
effective model is obtained by identifying the coupling of
the resonator to the waveguide

∑
Gk, jψk (t ) as a Markovian
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decay channel with rate κ . This is a valid approximation in
the scenarios considered here, as studied in Ref. [25]. Note
that non-Markovian corrections may become significant for
rapidly varying time-dependent couplings (cf. Appendix B in
Ref. [25]). The resulting model in the single excitation limit is

q̇(t ) = −iωRq − i|g(t )|e+iϕ(t )c(t ), (11)

ċ(t ) = −iωRc − i|g(t )|e−iϕ(t )q(t ) − κc(t )/2, (12)

together with the output relation ξ (t ) = i
√

κc(t ).
These expressions can be transformed into a relation

between the qubit excited probability to the probability dis-
tribution of photon wavepacket

|q(t )|2 = |q(t0)|2 − |ξ (t )|2
κ

−
∫ t

t0

dτ |ξ (τ )|2. (13)

Note that Eq. (13) limits the type of wavefronts that can
be generated, by bounding the logarithmic derivative of the
wavepacket ξ (t ). In other words, if the photon profile raises
(or falls) faster than an exponential, then the right-hand side
of (13) becomes negative and the model breaks down.

For convenience we move to the rotating frame of the
carrier frequency ωR, so that when the photon envelope is a
real-valued positive function ξ (t ) = |ξ (t )|, the control g(t ) is
also a non-negative function g(t ) = |g(t )| obtained explicitly
from (13) and (11), i.e., ϕ(t ) = 0. As shown in Ref. [25], more
general photon wavepackets, with sign changes and complex
phase profiles that correct deficiencies in the waveguide are
possible. However, it is even possible to find explicit, closed
expressions for the control g(t ) in terms of a generic photon
wavepacket ξ (t ). The derivation of these formulas requires us
to separate the photon waveform into amplitude and phase

ξ (t ) = f (t )e−iθ (t ), (14)

with f (t ), θ (t ) ∈ R, with the caveat that f (t ) may take
negative values [45]. Next, defining F (t ) = ∫ t

t0
dτ |ξ (τ )|2 =∫ t

t0
dτ f 2(τ ) allows rewriting Eq. (13) as |q(t )|2 = 1 −

f 2(t )/κ − F (t ). Taking the derivative of this last expression
and substituting into (11) produces a closed expression for the
modulus of the control only in terms of wavepacket variables,

|g(t )| =
√

( ḟ (t ) + κ/2 f (t ))2 + (θ̇ (t ) f (t ))2

κ (1 − F (t )) − f 2(t )
. (15)

Finally, one can relate the phase of the qubit amplitude
arg{q(t )} with that of the wavepacket θ (t ) (see Appendix A in
[25] for details) and obtain an expression in an integral form,

ϕ(t ) = π + θ (t ) + φ f (t ) + atan

(
θ̇ (t ) f 2(t )

−( ḟ (t ) f (t ) + κ/2 f 2(t ))

)

−
∫ t

t0

dτ
θ̇ (τ ) f 2(τ )

κ (1 − F (τ )) − f 2(τ )
, (16)

where φ f (t ) accounts for the sign change of f (t ), namely,
φ f (t ) = 0 or π when f (t ) � 0 or f (t ) < 0, respectively, i.e.,
ξ (t ) = | f (t )|e−iθ (t )−iφ f (t ).

Equations (15) and (16) provide us the control g(t ) that
engineers a photon in mode ξ (t ). As in usual state-transfer
protocols [46], the time-reversed control g(−t ) is the one that

enables perfectly absorbing the generated wavepacket ξ (t ) in
the receiver station.

This design includes a specific application, which is shift-
ing the wavepacket’s carrier frequency from the resonator ωR

to a slightly different value ωR + δω. In the rotating frame,
this means a wavepacket

ξδ (t ) = ξ (t )e−iδωt , (17)

obtained when θ (t ) = δωt and thus θ̇ (t ) = δω. In this case,
ϕ(t ) becomes a small chirp that compensates for the fre-
quency change. This chirping mechanism is a tool that has
been used experimentally to compensate for experimental de-
viations between the emitter and receiver qubits [5,11]. The
experimentally obtained chirp can now be rigorously derived
from ab initio principles. It can also be generalized to other
applications, such as addressing photons from one emitter to
various receiving nodes that differ in frequency.

Finally, let us mention that there are other setups where the
bosonic excitation is shaped by time-dependent decay rates
[26], and thus require a different pulse derivation. As we show
in the Appendix B, in this setting is also possible to shape the
excitation according to the general profile ξ (t ) = f (t )e−iθ (t )

letting f (t ) to change sign.

B. Orthogonal mode state transfer

Let us now benchmark numerically the design of a single-
photon state-transfer protocol that makes use of a family of
two orthogonal modes, ξ0(t ) and ξ1(t ), respectively created
by the controls g0(t ) and g1(t ). The study will confirm that
using the same control on both nodes allows transferring one
qubit of information between the two nodes that are connected
to the ends of the waveguide. It should also confirm that
using different controls allows the receiver to fully reject the
incoming photon with 100% probability.

We construct the orthonormal family of photon wavepack-
ets starting from a sech-pulse

ξ0(t ) =
√

κ

4
sech(κt/2) (18)

that is a commonly used photon in the literature [5,8,47,48].
As first orthogonal mode we use the antisymmetric waveform
with one zero

ξ1(t ) =
√

3κ3

4π2
sech(κt/2)t . (19)

A larger family of sech-orthogonal photons can be
constructed by Gram-Schmidt orthogonalization (see Ap-
pendix A), but for this study two modes suffice. In addition, in
Appendix B, we provide the controls that would be required
when shaping the excitation for orthogonal mode state transfer
via a time-dependent decay rate [26].

The controls that create these two wavepackets can be
obtained analytically by plugging f0(t ) = ξ0(t ) and f1(t ) =
ξ1(t ) into Eqs. (15) and (16), with θ0 = θ1 = 0. This re-
sults in two functions explicitly given in Appendix A. We
can compare the shape of the wavepackets f0(t ), f1(t ) [cf.
Fig. 2(a)] to the controls that create them g0(t ), g1(t ) [cf.
Fig. 2(b)]. Note how f1(t ) changes sign: such wavepacket can-
not be produced by a non-negative coupling g1(t ) = |g1(t )|,
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(a)

(b)

FIG. 2. Panel (a) shows the shape of the first two mutually or-
thogonal photons from the family ξn(t ) ∝ sech(t ) × t n, i.e., ξ0(t ) and
ξ1(t ). Panel (b) shows the corresponding controls to produce them,
g0(t ) and g1(t ), respectively. See Appendix A, Eqs. (A4) and (A5).

but our generalization still creates a smooth and real control,
where the resulting phase ϕ(t ) = 0, π just reflects a change
of sign in g(t ). Importantly, such change of sign stems from
f (t ) � 0 and f (t ) < 0, i.e., φ f (t ), as well as from the quantity
ḟ (t ) f (t ) + κ/2 f 2(t ) being positive or negative [cf. Eq. (16)].

Figure 3 shows a numerical simulation of the single-qubit
state-transfer protocol with two orthogonal modes, using an

(a) (b)

(c)

FIG. 3. Quantum state transfer employing orthogonal wavepack-
ets, showing the evolution of the populations of the qubits and
transfer resonators. Panels (a) and (b) show a standard emission
absorption protocol using the same controls at both ends, namely
g0(t ) in (a) and g1(t ) in (b), resulting in a transfer efficiency in both
cases well over 99%. Panel (c) shows the dynamics when a photon
f1(t ) is emitted using g1(t ), and apply an orthogonal control g0(t ) at
the receiver end. As the receiver is designed to absorb f0(t ), which
is orthogonal to the incoming photon f1(t ), the transfer efficiency
vanishes, i.e., ≈10−5. The simulation parameters are: δ1,2 = ω1,2 =
2π × 8.9 GHz, NWG = 300, lWG = 30 m, and κ1,2 = 2π × 20 MHz.

experimentally motivated parametrization of the model in
Sec. II A. The two top panels show how applying the same
control g(t ) at both ends leads to an almost perfect absorption
or transfer efficiency [49], measured by the probability of
transferring all the excited population of the emitter qubit
at one end of the link, |q1(0)|2 = 1, to the receiver qubit at
the end of the protocol, |q2(T )|2. The numerical simulations
from Fig. 3(c) confirms the selective nature of the controls,
by which a control designed to absorb a given photon mode
ξ0(t ) fully rejects an incoming photon in mode ξ1(t ). Note
that, although not shown, this situation is equivalent to reverse
scenario, i.e., emitting with g0(t ) and absorbing with g1(t )
and can be extended to arbitrary mode functions, ξn(t ), see
Appendix A.

It is important to remark that the rejected photon experi-
ences a strong distortion by the interaction with the second
qubit. While we do not explicitly show the wavefront in the
plot, both the initial wavepacket |ξ1(t )|2 ∝ κ1|c1(t )|2 and the
distorted one |ξ1(t )′|2 ∝ κ2|c2(t )|2 can be deduced, by input-
output theory, from the excitation profiles of the filters. The
asymmetric distortion of the right-hand node is remarkably
different from the original antisymmetric profile [cf. Fig. 3(c),
red-thick-dashed line]. As discussed in detail in Appendix C,
this distortion can be fully explained by the scattering of the
photon wavepacket by the resonant qubit-filter system. The
photon, while rejected, still interacts with the qubit during
the reflection process, experiencing a phase distortion that is
similar to the ones studied in Ref. [24]. This distortion can
be compensated in later interactions with the rejected photon,
using a dynamical protocol such as the one in Ref. [25]. This
makes us confident to state that mode multiplexing can be
used not only in state transfer, but also in generic protocols
for high-dimensional photonic state generation [13].

However, while single-photon mode multiplexing works,
we have found it impossible to simultaneously generate two
photons in two orthogonal modes. A setup that involves two
resonant emitters, coupled with different controls g0(t ) and
g1(t ), still gives rise to a strong cross talk and a deterioration
of the photons produced. The natural solution to this problem
is to place the emitters in different regions of the spectrum,
to suppress their interaction. However, this gives rise to a
different type of multiplexing strategy, frequency-type mul-
tiplexing, which is discussed in the following section.

IV. FREQUENCY MULTIPLEXING

Frequency or wavelength multiplexing refers to the trans-
mission of multiple qubits, each one encoded in a separate
photon with a unique carrier frequency. An illustration of the
idea can be found in Fig. 1(b), where the different colors de-
pict photons at different frequencies traveling simultaneously
through the waveguide. Frequency and mode multiplexing are
not incompatible and may be combined in a single setup.

In this section we explore the performance of frequency
multiplexing in microwave experiments with realistic mi-
crowave guide. The state-of-the-art experiments we reference
in our study (e.g., Refs. [5,8]) operate mainly in the X-band,
with a 4-GHz bandwidth (i.e., ∼8–12 GHz) that may poten-
tially host multiple photons, each with a width in the range of
a few megahertz.
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As a minimal model to study the simultaneous genera-
tion and transfer of two flying qubits, we consider the setup
in Fig. 1(b), with two nodes, each hosting two qubits, that
are paired in frequency. Following the Hamiltonian from
Sec. II A, where qubits 1 and 2 belong to the first node
and 3 and 4 belong to the second one, the frequencies are
matched for the qubits and resonators δ1 = ωR1 = δ3 = ωR3

and δ2 = ωR2 = δ3 = ωR3. The study focuses on the single
and two excitations subspaces, which fully captures the state
transfer of up to two qubits. The evolution in these subspaces
is exactly captured by wavefunctions (5) and (9).

The goal of the study is to analyze the errors made by trans-
mitting two qubits at different frequencies. Qualitatively, we
expect two sources of error in this process: there will be an er-
ror because of the imperfect distinguishability of the photons
associated to the individual qubits, and there will be another
type of errors associated to the cross talk between qubits and
resonators operating at different frequencies. We expect that
both errors will die off as the frequency separation exceeds the
bandwidth of each individual photon �12 ≡ |δ1 − δ2| � κ ,
a reason that motivates us to use the same controls g(t ) as
prescribed by individual state transfer processes. However,
this statement and the behavior of different errors must be
studied more carefully in general conditions.

A. Emitters cross talk

As soon as we connect multiple qubits and filters to the
same environment, the waveguide, there is a probability that
these quantum objects may influence each other, even if their
resonance frequencies are far apart. This mutual influence,
generally called cross talk, can manifest in an actual exchange
of energy between quantum objects—e.g., a qubit living in
site 1 may jump to sites 2 and viceversa—or in the change of
intrinsic properties of the emitters—e.g., renormalization of
frequencies, decay rates, etc.

To study the impact of cross-talk in the limit of large
frequency separation we developed an effective model that
describe the mutual interaction among the two quantum filters
in a single node. As shown in Appendix D, the effective
Hamiltonian reads

Heff =
∑

i

(ωRi + δωRi )a
†
i ai + G̃(a1a†

2 + a†
1a2). (20)

This Hamiltonian exemplifies the two effects mentioned be-
fore: the natural frequency of the resonators is changed, δωRi,
and the two filters acquire a coherent coupling G̃. The shift
in energy of the resonators will affect the carrier frequency
of the flying qubits, thereby influencing the probability that
flying qubits can be captured using our controls. Second, the
exchange term G enables the possibility that qubits 1 and 2
swap information, scrambling the transmitted information.

An analysis of the effective Hamiltonian (20) reveals that
exchange terms aia

†
j dominate the dynamics in the limit in

which mode separation is smaller than the filters’ bandwidth
|ωR2 − ωR1| � κ . Interestingly, the infidelity in this regime
can still be estimated by the frequency overlap between the
injected photons, as this quantity describes the indistinguisha-
bility in frequencies and is related to the probability that
photons from one wavepacket can tunnel into the opposite

resonator. A quantitative analysis, supported by numerical
simulations is shown in Sec. IV C.

A more interesting limit is one in which the frequency sep-
aration is larger than the spectral width of the resonators, i.e.,
|ωR1 − ωR2| � κ . We are interested in learning whether we
can recover the ideal state-transfer fidelities of single-photon
processes. This limit is captured by a Magnus expansion on
(20)

H̃eff =
∑

i

Cia
†
i ai; with Ci = (−1)i+1 G̃2

ωD
R2 − ωD

R1

, (21)

where we again refer to Appendix D for the details. The effec-
tive Hamiltonian (21) indicates that even when the detuning
between the resonators is large, there is a mutual influence
that modifies the natural frequency of the filters.

To verify this prediction and better understand the
cross talk during the state-transfer dynamics, we have run
spectroscopy-like experiments exploring the renormalization
of the filters’ properties. These experiments copy the setup
from Fig. 3(b), but only excite qubit 1. The qubit-resonator
coupling g1(t ) = κ/2 sech(κt/2) is designed to fully trans-
duce the qubit into a flying photon under ideal conditions.
By tuning the frequency of the qubit δ1 and varying the pa-
rameter κ , we can analyze the filter’s intrinsic resonance and
its renormalized decay rate. As discussed in Appendix D, we
find that both quantities are affected by the cross talk with
the neighboring resonators, and the change in frequency and
bandwidth accurately follow the theoretical predictions.

The results from this study are very promising. First, the
spectroscopy method allows us to determine the dressed prop-
erties of the filter in a way that is compatible with what can
be done experimentally—where we only have access to the
renormalized properties. Second, while the properties of the
filter are affected by cross talk, the simulations reveal that
these changes only influence the photon wavepacket—i.e.,
carrier frequency and bandwidth—and that perfect state trans-
fer is still possible, provided we redesign the controls gi(t ) to
account for the changes in the flying qubits. The important re-
maining question is whether these effective renormalizations
also describe the dynamics with multiple flying qubits.

B. Multiplexed state transfer tomography

The simplest setup we can use to explore frequency multi-
plexing, sketched in Fig. 1(b), consists of two pairs of qubits,
each pairwise resonant δ1 = δ3 and δ2 = δ4, with qubits 1
and 2 in node A, and qubits 3 and 4 in node B. In the ideal
situation, the state transfer process will map any state of each
qubit from node A to the corresponding qubit in node B,
satisfying

Uideal[(α|0〉1 + β|1〉1)(δ|0〉2 + γ |1〉2) ⊗ |0〉3|0〉4 ⊗ |0〉]
= |0〉1|0〉2 ⊗ (α|0〉3 + β|1〉3)(δ|0〉4 + γ |1〉4) ⊗ |0〉,

(22)

for any set of normalized complex weights |α|2 + |β|2 =
|γ |2 + |δ|2 = 1. Here, the first four indices correspond to the
qubits, and the fifth index (bold font) refers to the bosonic
degrees of freedom, which remain in the vacuum state at the
beginning and end of the transformation.
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A protocol that fulfills this equation completely maps the
information stored in the d = 4 states of the first node’s
computational basis |i, A〉 ∈ {|00 00 0〉, |01 00 0〉, |10 00 0〉,
|11 00 0〉}, to the four corresponding computational states
of the second node |i, B〉 ∈ {|00 00 0〉, |00 01 0〉, |00 10 0〉,
|00 11 0〉}. The following isometry captures this ideal trans-
formation

Uideal =
d∑

i=1

|i, B〉〈i, A|. (23)

To characterize the experimental setup, we only need to re-
construct the isometry that maps the four input states |i, A〉 to
other states of the quantum links and nodes

Ureal =
d∑

i, j=1

χi, j |i, B〉〈 j, A| + ϒ. (24)

The coefficients χi, j will not be the identity. There is leak-
age to other states in the Hilbert space–e.g., photons that
are not absorbed in the receiver qubits and wander through
the waveguide or return to the original station, as well as
imperfections in the emission process that leave the emitting
qubit with a residual population. We represent the aggregate
of all these effects by an additional term ϒ . In particular,
ϒ = ∑

i, j,x/∈B υi, j |i, x〉〈 j, A|, where |i, x /∈ B〉 spans all states
containing at least one excitation in an element outside the
qubits at node B, i.e., in any waveguide mode, resonator or in
any qubit at node A.

The errors in the state transfer operation may be quantified
using either the entanglement fidelity or the average fidelity,
which respectively are [50,51]

F (e)
ST =

∣∣∣∣ 1

d
Tr(U †

idealUreal )

∣∣∣∣
2

= 1

d2

∣∣∣∣∣
d∑

i=1

〈i, A|U †
idealUreal|i, A〉

∣∣∣∣∣
2

,

F̄ST = dF (e)
ST + 1

d + 1
, (25)

where d = 4 is the dimension of the computational input and
output spaces. We will use the entanglement fidelity F (e)

ST .
In actual simulations, these fidelities exhibit an oscillating

behavior as a function of the frequency separation between
qubits 1 and 2. This behavior can be explained by dynamical
phases acquired by the different states in the computational
basis because of the frequency difference among those states.
However, these are phases that can be compensated for by
applying local rotations on the individual qubits, either before
or after the state transfer. Hence, we introduce the corrected
two photon fidelities as those resulting from the maximization
over those corrections

F2 = max
φ0,φ1,φ2

F (e)
ST

[
eiφ0+iφ1σ

z
1 +iφ2σ

z
2 Ureal

]
. (26)

Fortunately, this optimization is trivially performed by infer-
ring the effective single- and two-qubit phases from χi, j .

Note that he following study will compare the accuracy of
multiplexed two-qubit state transfer and the fidelity associated
with single-qubit processes. It will also estimate the perfor-
mance of setups with more than two flying qubits. F1(ω)

indicates the fidelity of state transfer for one emitter on each
side.

C. Two-photon state transfer performance

Let us analyze the performance of two-photon state transfer
in the frequency multiplexed scenario. Our study will consider
a waveguide that is lWG = 15 meters long and which can be
accurately modeled using NWG = 500 frequency modes (see
Sec. II A for more details). Our analysis explores how the
fidelity improves with the frequency separation of the flying
qubits, starting from a resonant case ω1 = ω2 until their sepa-
ration significantly exceeds the bandwidth |ω1 − ω2| = 12κ .

The bare frequencies of the qubits and filters that create
these photons explore a moderate region of the waveguide
bandwidth, using δi, ωRi ∈ (2π × 8.84, 2π × 8.96) GHz for
the bare frequencies, and a bare decay rate for the resonators
of κi = 2π × 10 MHz. More precisely, in consonance with
the previous sections, the simulations fix the frequency of the
bare resonators ωRi and use spectroscopy methods to calibrate
the renormalized frequency and the effective decay rate κeff, i.
These values are used then to optimally place the emitter qubit
δi = ωD

i . Note that, while the corrections to the original values
are small—around 102 kHz as discussed in Appendix D—they
significantly influence the state transfer fidelity.

Figure 4 shows the quantum operation’s fidelity as the filter
frequencies’ frequency separation increases from 0 to 12κ .
We observe a region dominated by the exchange of population
between emitters, which happens when the separation is close
to or below the individual photons’ bandwidths. This region
is followed by a plateau in which the physics reduces to two
independent single-photon state transfer processes.

In the region where the detuning between the emitters is
small, the infidelity of the state transfer process can be almost
fully accounted for by the indistinguishability of the gener-
ated photons. Defining the overlap between two multiplexed
modes centered on distinct carrier frequencies ω1 and ω2, i.e.,
ξ (ω1) and ξ (ω2),

Ioverlap(ω1, ω2) = |〈ξ (ω1)|ξ (ω2)〉|2 (27)

we find 1 − FST(ωR1, ωR2) � Ioverlap(ωR1, ωR2), as evidenced
by the purple like in Fig. 4. In the case of sech-like photons,
this overlap admits an analytical expression that decays expo-
nentially with the ratio (ωR1 − ωR2)/κ , further confirming the
photon bandwidth as the natural scale to separate the emitters.

When the detuning between modes becomes much larger
than κ , the emission and absorption of the two flying qubits
become independent processes that behave as in the single
excitation limit. The state transfer of each mode occurs at
frequencies that deviate from the bare parameters ωR1,R2. Still,
the qubit-assisted spectroscopy and tuning of δi enables fi-
delities compatible with the single-qubit studies. Indeed, as
observed in Fig. 4, for a frequency separation above 6κ ,
the two-qubit state transfer fidelity approaches the product
of fidelities of individual state transfer processes happening
at frequencies ωR1 and ωR2. The oscillations found in this
curve are also explained by the behavior of single-photon state
transfer [cf. F (ωR1) and F (ωR2) in Fig. 4]. More precisely, in
the limit of a 15 meter waveguide, a photon with a bandwidth
of κ � 2π × 10 MHz can resolve the mode structure of the
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FIG. 4. Quantum state transfer protocol errors for two emitters
as a function of their frequency separation. We plot the actual infi-
delity from Eq. (26) (solid dot) for multiplexed transfer; the single
qubit infidelities for each emitter separately 1 − F (ωR1,R2) (dashed
and dot-dashed), and the lower bound for the multiplexed infidelity
1 − F (ωR1)F (ωR2) (long dash). As an illustration, we also plot the
optimized infidelity of multiplexed state transfer (big light-blue di-
amond) for a particular frequency separation. The solid line is a
visual guide given by the photon wavepacket overlap (27). Qubit
frequencies are symmetrically placed around (ωR1 + ωR2)/2 = 2π ×
8.9 GHz. The simulations were performed using NWG = 500 modes,
a lWG = 15 m long waveguide, a resonator bare decay rates of κ =
2π × 10 MHz, a hyperbolic secant control g(t ) = κeff/2sech(κefft/2)
and a protocol duration t ∈ (−35/κ, +35/κ ).

quantum link, and only when the filter ωR coincides with one
of the modes the transfer is optimal. To illustrate this, we
show a point in Fig. 4 where we have optimized the placement
of both resonators so that the two photons are perfectly in
resonance with a waveguide mode. Finally, let us mention
that, since spontaneous emission caused by T1 of the qubits is
the main decoherence source in this setup, the fully coherent

fidelity would be reduced by a factor e− ∫ T/2
−T/2

∑
i |qi (t )|2/T1 where

T is the protocol duration, thus setting an upper limit to the
fidelity.

D. Scaling with N emitters

Let us estimate the state transfer fidelity for multiple qubits
from the numerical experiment with two emitters. The devi-
ation from the ideal single-photon state transfer is captured
in a G(ωi, ω j ) = F2(ωi, ω j )/F1(ωi )F1(ω j ). In a pessimistic
upper bound, one may assume that this correction factor de-
scribes the cross talk between all pairs of quantum channels,
introducing N (N − 1)/2 corrections to the single-photon state
transfer of N qubits

Fest(ω1, . . . , ωN ) =
∏

i

F1(ωi ) ×
∏
i< j

G(ωi, ω j ). (28)

101 102 103 104

N emitters

10−5

10−4

10−3

10−2

10−1

100

Δ = 2κ

Δ = 3κ

Δ = 5κ

Δ = 6κ

Δ = 6κ. 1 − F̃est

1-
∏

i

F1(ωRi)

FIG. 5. Heuristic infidelity scaling vs number of transmitted
qubits. We plot the estimates from Eq. (28), for multiplexed state
transfer with frequency separations � = 2κ, 3κ, 5κ , and 6κ . In the
last case, we also plot the estimator (29) based on photon wavepacket
overlap (dashed line). Note how, for sufficient frequency separation,
the infidelity approaches the limit imposed by single-qubit state
transfer (dot-dashed line), which scales as F N

1 .

To achieve an asymptotic estimate of the cumulative effect
of these corrections, one may use the fact that the overlap
between single-photon modes almost fully explains G,

F̃est(ω1, . . . , ωN ) =
∏

i

F1(ωi ) ×
∏
i< j

(1 − |〈ξ (ωi )|ξ (ω j )〉|2).

(29)

Note that, despite the presence of O(N2) factors, the overlap
between two photons decreases exponentially with their sep-
aration in frequency space |ωRi − ωR j |/κ , a fact that allows
further simplifications.

Both the upper bound Fest and the asymptotic formula
F̃est can be estimated using the simulation parameters from
Sec. IV C. For simplicity, our study assumes an equal spac-
ing among the emitters in frequency space ωRi+1 − ωRi =
�, with all frequencies centered around the original reso-
nance. Exhaustive numerical simulations of the two-photon
state transfer are used to compute the prefactor G(ωi, ω j ) ∼
G(ωi − ω j ) = G(( j − i) × �) for all possible separations of
N qubits.

In Fig. 5 we compare the infidelity estimates for different
mode spacings, �/κ = 2, 3, 5, and 6. The estimates based on
exact simulations (28) exhibit some oscillations because of
the placement of filters in frequency space, but they all lay
close to the exponential estimates coming from the overlap
(29). In all cases, upper bounds and overlap estimates, the
fidelity deteriorates exponentially with the growing number of
emitters. However, the slope of the curve is proportional to N
and not N2, indicating that out of the N (N − 1)/2 correcting
factor, only the nearest-neighbor overlap plays a significant
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role F̃est ∼ F N
1 × (1 − Ioverlap(�))N−1. Furthermore, as the

spacing increases, the curves approach the limiting curve of
N independent state-transfer processes, identified by the dash-
dot line in Fig. 5. Indeed, for the spacing � = 6κ discussed
before, the infidelity is extremely close to the ideal case.

Out of these plots, we can extract the number of qubits that
can be transmitted with a given error ε. However, given the
simple behavior of F̃est described above, this number may be
estimated analytically from the mode overlap

Nmax = log(1 − ε)

log[F1(1 − Ioverlap(�))]
, (30)

with the corresponding bandwidth �Nmax. As an example,
in lWG = 15 m waveguide of Fig. 5, a separation � > 6 × κ

is very close to the single-photon limit. Under these condi-
tions, and without other limitations, we could ideally transmit
500 qubits with an error below 10−3, using a bandwidth of
2π × 5 GHz. In practice, these numbers are unrealistic, but
they highlight the potential of quantum links as common buses
for transmitting information.

E. Transfer optimization

The multiplexed state transfer efficiency is ultimately lim-
ited by the fidelity of transmission of individual qubits F1(ω).
Since this process has been extensively studied in Refs. [24]
and [25], it makes sense to revisit these studies, using those
studies to optimize the single-photon state transfer and under-
stand the actual information capacity of realistic waveguides.

Two distinct mechanisms dominate the single-qubit state
transfer infidelity: wavepacket distortion by propagation with
nonlinear dispersion relations and Stark shifts because of the
time-varying controls g(t ). The wavepacket distortion may be
corrected by imprinting phases in the emission and absorption
controls g(t ) [25]. Both effects can also be minimized by
reducing the photon bandwidth κ and enlarging the duration of
state transfer—within the limits set by the emitters’ intrinsic
decoherence and dephasing.

Another limiting factor in multiplexed state transfer is
the positioning of the emitters around the waveguide’s reso-
nances. This effect is particularly relevant for narrow photons
and short waveguides, where the qubits can resolve the free
spectral range. This effect accounts for the oscillations in the
infidelity of multiplexed state transfer, both in Fig. 4 with two
qubits and in the estimates for tens and hundreds of qubits in
Fig. 5. Optimally placing the emitters can substantially im-
prove the transfer quality—see Fig. 4, diamond dot. However,
the optimal positioning of qubits limits the number of qubits
transmitted in a waveguide within a given bandwidth.

Figure 6 illustrates the physical requirements for a setup
in which the three optimizations—predistortion, wavepacket
bandwidth, and emitter positioning—have been applied. The
plot shows the number of qubits transmitted in waveguides of
15 and 30 meters, with a maximum error ε = 10−4 estimated
from Fest—which, as seen above, captures the overall scaling
of resources very well. In both waveguides, the ultimate ca-
pacity is set by the single-qubit optimized infidelities I1

5m =
5 × 10−7 and I1

30m = 10−5, as computed in Ref. [24], with
predistortion and optimal qubit positioning. These quantities
already set a very stringent upper bond on the sequential
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FIG. 6. Bandwidth requirements to host a particular number of
emitters with a given global tolerance of 10−4 for the N-photons state
transfer operation. The graph shows data for two different waveg-
uides of lWG = 5 m and lWG = 30 m. The lines stop when increasing
the bandwidth would not improve the fidelity, that is, when the value
of the single independent processes is itself greater than the tolerance
imposed for the global gate, 1 − F (ω1)N > Tol. These data have
been obtained with the estimator F̃est defined by Eq. (29), Unlike
that of Fig. 5, which came from two-photon simulations.

and multiplexed transmission capacities. For instance, the
30 m waveguide only supports transmitting 10 qubits be-
fore the error exceeds the tolerance 10−4. Furthermore, while
shorter waveguides allow high-quality transmission of more
qubits—e.g., over 60 qubits for the 5-m waveguide—the
bandwidth requirement of over 4 GHz imposes challenging
design restrictions in the emitters and filter designs. Under
these conditions, it may be advantageous, from an engineering
perspective, to use multiple channels.

V. CONCLUSIONS

This paper has addressed the multiplexation of quantum
information in a microwave quantum link that connects N +
N qubits in two quantum nodes, following setups from recent
experiments [5,8,11], but with tools that generalize to other
waveguide-QED architectures.

The first important result is the demonstration that qubits
can be transferred in different orthogonal modes by a suit-
able control of the interaction between the storage qubits
and the quantum link. This required generalizing the methods
for wavepacket engineering envisioned by [46], and extended
and implemented in various studies [3,5,8,10,11,21–23,26],
arriving at close expressions for the controls to generate
almost arbitrary wavepackets—under natural limitations of
bandwidths set by the mediating cavities. As a particular case,
the study demonstrates the accuracy of mode multiplexing for
a family of sech-like pulses in a realistic setup.

The second important result is a study of frequency multi-
plexing for arbitrary numbers of qubits. An accurate analysis
of the simultaneous transfer of two qubits identified cross talk
as the limiting factor to the fully coherent process fidelity.
Accurate simulations with two qubits in generic waveguides
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enable extrapolating the fidelity of multiplexed state transfer
to higher numbers of qubits, showing that the single-qubit
state transfer fidelity and the overlap between neighboring
photon wavepackets ultimately limit this. Using heuristic
scaling in combination with the physical constraints of state-
of-the-art superconducting circuit experiments, we estimated
the practical capacity of microwave waveguides for a given
error tolerance. For instance, we found that as many as 60
photons could be sent through a 5-meter waveguide with a
global infidelity below the usual threshold for fault-tolerant
computation 10−4.

The tools developed in this paper can be used to ex-
tend the capacity of waveguide-QED quantum links, guiding
the design of superconducting connections between quantum
computers, enabling the distribution of higher-dimensional
quantum states [9–11], and extending the accessible Hilbert
space in applications such as the generation of photonic clus-
ter states [12,13]
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APPENDIX A: ORTHOGONAL WAVEPACKETS

As commented in the main text, we begin with one of
the most commonly used wavepacket shapes in the literature,
namely, the sech-like photon given by Eq. (18). The next mode
is the antisymmetric wavefunction (19) obtained by multiply-
ing the sech-profile by a first-degree monomial t1. In this case,
the orthogonality is guaranteed by the difference in symmetry
between both functions,

∫
ξ1(t )∗ξ0(t )dt = 0. For the second

orthogonal photon we could naively increase the order of the
monomial

ξ⊥2 (t ) =
√

15κ5

28π4
sech(κt/2)t2. (A1)

However, this function is not orthogonal to ξ0. To ensure that
the new proposed photon is orthogonal to all the others one
can use the Gram-Schmidt method,

ξ2(t ) ∝ ξ⊥2 − 〈ξ⊥2 , ξ0〉 ξ0 − 〈ξ⊥2 , ξ1〉 ξ1, (A2)

finally finding ξ2(t ) to be

ξ2(t ) =
√

5κ

24π2κ2
sech(κt/2)

(
t2 − π2

3κ2

)
. (A3)

Naturally, this technique can be extended to consider polyno-
mials corrections of arbitrary order.

Any of these photon shapes can be plugged into (15) and
(16), and obtain from there the analytical formulas of the
controls to produce them. In all cases the wavepacket is real
ξn ∈ R, and we can set fn = ξn, θn = 0. However, as we
remarked in the main text, the changes in sign in the envelope
immediately leads us to obtain complex controls gn(t ). The

expressions for the controls of the first two orthogonal modes
is given by

g0(t ) = κ

2
sech(κt/2), and (A4)

g1(t ) = κ (1 + eκt + κt )sech(κt/2)

D1
, with

D1 = (1 + eκt )(−8Li2(−e−κt )

+ κt (2κt + 8 log(1 + e−κt )+
− κtsech2(κt/2)(1 + sinh(κt ))))1/2, (A5)

with the special function Lin(x) = ∑∞
k=1 xk/kn.

APPENDIX B: WAVEPACKET SHAPING
BY A TIME-DEPENDENT DECAY RATE

Wavepacket shaping can also be achieved by a suitable
time-dependent control of the decay rate κc(t ) of qubit into
a waveguide [26]. This situation differs from the setup con-
sidered in the main text, but given its relevance, we provide
here the derivation of the control κc(t ) required to generate
orthogonal wavepackets. In this case, the equation of motion
for the qubit amplitude reads

q̇(t ) = −iδ(t )q(t ) − κc(t )q(t )/2, (B1)

where δ(t ) is the qubit frequency, in general time depen-
dent. Defining q̃(t ) = q(t )ei�(t ) where �(t ) = ∫ t

t0
dt ′δ(t ′),

we find ˙̃q(t ) = −κc(t )q̃(t )/2. Since κ (t ) � 0, one can con-
strain the amplitude to be real, q̃(t ) ∈ R. On the other
hand, given the input-output relation ξ (t ) ∝ √

κc(t )q(t ) with
ξ (t ) = f (t )e−iθ (t ), f (t ), θ (t ) ∈ R, we can identify q̃(t ) =
| f (t )|/√κc(t ) and �(t ) = θ (t ) + φ f (t ), where φ f (t ) accounts
for the sign change of f (t ), i.e., f (t ) = | f (t )|e−iφ f (t ). This
leads to

κc(t ) = f 2(t )

q̃2(t0) − ∫ t
t0

dt ′ f 2(t ′)
. (B2)

For a standard sech-like wavepacket, ξ0(t ) =√
κ/4sech(κt/2), it follows φ f (t ) = 0, and since

limt→−∞ q̃(t ) = 1 one obtains κc,0(t ) = κ (1 +
tanh(κt/2))/2, which generates the wavepacket at the carrier
frequency δ, as reported in [26]. For the first orthogonal
wavepacket [cf. Eq. (19)], one finds instead

κc,1(t ) = κ3sech2(κt/2)t2

D̃1
, (B3)

where D̃1 = 2κt (κt + 4 log(1 + e−κt ) − κt tanh(κt/2)) −
8Li2(−e−κt ). Note that limt→−∞ κc,1(t ) = 0, κc,1(0) = 0 and
limt→∞ κc,1(t ) = κ . Now, since κc(t ) � 0, Eq. (B3) alone
is not able to generate ξ1(t ). Assuming a rotating frame at
the carrier frequency δ, defining δ(t ) = δ + δ̃(t ), the change
of sign in ξ1(t ) requires a time modulation of the qubit
frequency, namely

∫ t
t0

dt ′δ̃(t ′) = φ f (t ) where φ f (t < 0) = π

and φ f (t � 0) = 0. Although this leads to an infinitely
short π pulse, δ̃(t ) = lims→0 e−t2/(2s2 )

√
π/2s2, for practical

purposes the π pulse needs to be faster than 1/κ . Indeed,
s � κ already suffices to produce ξ1(t ) with good fidelity. This
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(a)

(b)

FIG. 7. Panel (a) shows the result of comparing the ξ0 and ξ1

photons after scattering off a resonator with no active control. Panel
(b) shows the phases acquired by ξ0 after scattering off a qubit-
resonator system with dynamic coupling g1(t ) (blue dots). And that
acquired by ξ1 when at the other end g0(t ) is applied (orange dots).
Parameters of the simulation: l = 30 m, κ/2π = 60 MHz. NW G =
300 modes around a central frequency of ωc/2π = 8.9 GHz. Of
those 300 modes only the 40 modes closest to the emitter’s frequency
are displayed, which correspond to a bandwidth of ≈κ .

method can be applied to find κc(t ) to generate higher-order
orthogonal wavepackets.

APPENDIX C: SCATTERING OF ORTHOGONAL
WAVEPACKETS

The aim of this section is to examine what happens when a
photon ξ scatters off a qubit-resonator node, which is using
a control g(t ) designed to absorb a different photon mode.
The analysis is based on numerical experiments with the
two photon wavepackets ξ0,1(t ) from the mode multiplexing
section [Eqs. (18) and (19)]. The study compares the scatter-
ing phases acquired by the two modes in frequency space,
first in an experiment with a bare resonator, and next with a
resonator that interacts with a qubit using a time-dependent
control g(t ). The numerical experiment is designed with a
long enough waveguide, so that the photon fully fits in it and
we can analyze the scattering state at a finite time T after the
collision, with the scattering state prior to the interaction with
the second node. The comparison is performed in frequency
space, where the probability of the different waveguide modes
is undisturbed and only scattering phases are acquired.

Figure 7 illustrates the scattering phases after the inter-
action with a bare cavity [panel (a), top] and with a cavity
and a qubit [panel (b), bottom]. The phases acquired by the
interaction with a resonator are independent of the incoming
mode, ξ0(t ) or ξ1(t ), and are compatible with the expected
phases from an input-output theory calculation [24]

eiφscatt (ω) = i(ω − �R2) + κ2/2

i(ω − �R2) − κ2/2
. (C1)

Panel (b) shows a completely different story. It displays the
phase acquired by a photon in mode ξ0(t ) when the cavity-
filter interaction follows protocol g1(t ) (blue dots) and the
phase acquired by a photon in mode ξ1(t ) when g0(t ) is used
(orange dots). Now the scattering phases are affected by the
type of qubit-cavity interaction control, imprinting a distortion
that is markedly different from the photon-cavity collisional
phase. This said, the phase profiles are still computable and
can be computed and used to learn the shape of the reflected
photon, thus engineering other controls for later interactions.

APPENDIX D: MUTUAL INFLUENCE OF THE EMITTERS

We observed from the simulations that the inclusion of
the second node had consequences on the properties of the
first and vice versa. This influence could be summarize as a
recalibration of the frequency of the resonators, a modification
of the decay times and a coherent exchange of population
between them. Because all these effects occur only at the
resonator-waveguide level, we chose to study them with an
effective model ignoring the qubits. Also, for the sake of
simplicity, we will drop the subindex R of the frequencies
of the resonators throughout the Appendix, and denote the
waveguide frequencies as �m. The Hamiltonian of such ef-
fective model is

H =
∑
i=1,2

ωia
†
i ai +

∑
m

�mb†
mbm +

∑
m,i=1,2

Gm,i(a
†
i bm + H.c.).

(D1)

We will break the calculation in two parts, first, we will
depart from (D1) and get rid of the waveguide modes, ideally
obtaining an effective Hamiltonian for the resonators and a
closed expression for the Lamb shift. Once we have such
Hamiltonian, we would like to study how the a†

i a j with i �= j
affects perturbatively to the energy of the resonators.

The first thing we do is to move to an interaction picture
that rotates with the free energies of resonator and waveguide
modes, that way, (D1) becomes

HI =
∑
m,i

Gm,i(a
†
i bme+it (ωi−�m ) + aib

†
me−it (ωi−�m ) ). (D2)

In this picture the equations of motion for the operators are

ȧ j = i[H, a j] = −i
∑

m

Gm jbme+it (ω j−�m ),

ḃm = i[H, bm] = −i
∑

j

Gm ja je
−it (ω j−�m ) −→

−→ bm(t ) = bm(0) − i
∑

j

Gm j

∫ t

0
dτa j (τ )e−iτ (ω j−�m ),

where we have changed the dummy index i by j for the sake
of clarity. We can substitute this formal solution for b in the
Hamiltonian

HI = −i
∑
m,i, j

Gm,iGm ja
†
i

∫ t

0
dτa j (τ )e−iτω j e+itωi e−i�m (t−τ )

+ i
∑
m,i, j

Gm,iGm jai

∫ t

0
dτa†

j (τ )e+iτω j e−itωi e+i�m (t−τ ).

(D3)
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Focusing now only in the first term

HI = −i
∑
i, j

a†
i e+itωi

∫ t

0
dτK (t − τ )a j (τ )e−iτω j + H.c. ;

(D4)

where K (t − τ ) =
∑

m

Gm,iGm, je
−i�m (t−τ ). (D5)

Analogously to what is done in Appendix B of [40]
[Eq. (B.26)]. We can separate the time evolution of the
operator a as a slow contribution a j (t ) = a j,slow(t )e−iω′

j t =
a j,slowe−iω j t e−iω′

j t with an unknown frequency ω′
j ; doing this,

and introducing u = t − τ ,

HI = −i
∑
i, j

a†
i e+itωi a j,slowe−itω j

×
∫ +∞

0
duK (u)eiω′

j ue−iω′
j t + H.c. (D6)

Now, undoing the transformation to the interaction picture and
using that a j,slowe−iω′

j t = a j ,

HI =
∑

i

ωia
†
i ai − i

∑
i, j

a†
i a j

∫ +∞

0
duK (u)eiω′

j u + H.c.,

(D7)

which, by grouping terms appropriately leads to

Heff =
∑

i

(ωi + δωi )a
†
i ai + G̃(a1a†

2 + a†
1a2), (D8)

which is Eq. (20) of the main text once we recover the
subindices R that we dropped, i.e., (ωi + δωi ) −→ (ωRi +
δωRi ). The Lamb shift and effective coupling are defined
through

δωi = 1

2π

∫ ∞

0

∫
JQO

i (ω)ei(ω′
i−ω)udωdu, (D9)

G̃ = 1

2π

∫ ∞

0

∫ √
JQO

i (ω)
√

JQO
j (ω) ei(ω′

i−ω)udωdu, (D10)

with JQO
i (ω) = 2π

∑
m

|Gm,i|2δ(ω − �m). (D11)

The Hamiltonian (D8) captures the physics of the renormal-
ization of the frequencies because of the interaction of the
resonator with the bath and an effective coherent exchange
interaction between the resonators i and j, also mediated by
the waveguide. (D8) finishes the first part of the calculation
and qualitatively explains the physics of the system in the
region where the detuning is very small.

And now the second step begins, we are now interested
in seeing what happens when the detuning is large and we
would expect the exchange terms to become less relevant. We
move once again to an interaction picture, now rotating at the
dressed frequencies of the resonators ωD

i = ωi + δωi, doing

so, (D8) becomes

Heff =
∑

i

ωD
i a†

i ai + G̃(a1a†
2 + a†

1a2) −→

HI
eff = G̃

(
a1a†

2e+it (ωD
2 −ωD

1 ) + a†
1a2e−it (ωD

2 −ωD
1 )

)
. (D12)

Now, considering ωD
2 , ωD

1 are sufficiently far apart we can
perform a Magnus expansion up to second order to see how
the effective coupling of the resonators a1, a2 may lead to a
new renormalization of the frequencies, one on top of δωi.

We can identify the second-order term as

M2(t ) = 1

2

∫ t

0
dt1

∫ t1

0
dt2

[
HI

eff(t1), HI
eff(t2)

]
, (D13)

which means computing the following ladder operators com-
mutators[

a1a†
2e+it1(ωD

2 −ωD
1 ), a†

1a2e−it2(ωD
2 −ωD

1 )
] ∝ (−a†

1a1 + a†
2a2),

(D14)

[
a†

1a2e−it1(ωD
2 −ωD

1 ), a1a†
2e+it2(ωD

2 −ωD
1 )

] ∝ (+a†
1a1 − a†

2a2).

(D15)

The integral coming from the first term is

1

2
G̃(−a†

1a1 + a†
2a2)

∫ t

0
dt1

∫ t1

0
dt2e+it1(ωD

2 −ωD
1 )e−it2(ωD

2 −ωD
1 )

(D16)

= 1

2
G̃(−a†

1a1 + a†
2a2)

∫ t

0
dt1

i

ωD
2 − ωD

1

(
1 − e+it1(ωD

2 −ωD
1 )

)
(D17)

= −i
1

2

G̃2

ωD
2 − ωD

1

(a†
1a1 + (−a†

2a2))t + (terms �∝ t ).

(D18)

A minus sign from the exponential cancels out with the minus
sign in the second commutator, giving the same result. Given
this, the final Hamiltonian up to second order in the Magnus
expansion has simply the form

H̃eff =
∑

i

Cia
†
i ai, with Ci = (−1)i+1 G̃2

ωD
2 − ωD

1

, (D19)

which is Eq. (21) of the main text once ωD
2 − ωD

1 −→ ωD
R2 −

ωD
R1. What (D19) tells us is that there is a frequency shift

Ci affecting the ith resonator because of its interaction with
the other (or others), note that this shift is different from
the Lamb shift, which is already taken into account in the
definition of the dressed frequencies ωD

i . Furthermore, since
G̃ is a constant representing the effective interaction strength
between resonators, this mutually induced frequency shift is
Ci ∝ (ωD

2 − ωD
1 )−1. This behavior is observed in the simula-

tions with high level of accuracy as it is shown in Fig. 9 below.
Figure 8 shows how after an initial phase in which the

physics is dominated by the exchange terms and a spec-
troscopy by means of depletion does not make much sense,
when (ωD

2 − ωD
1 ) ≈ 2κ the mutually induced frequency shift

closely follows the prediction of (D12), represented by the
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10−2 10−1

log (ωD
2 ωD

1 )/2π

10−1

100

101

lo
g

[C
1/

2π
]

κ/2π = 40 MHz

κ/2π = 20 MHz

κ/2π = 10 MHz

FIG. 8. Frequency shift of the resonator 1 (arbitrary labeling)
induced by the presence of the physically identical resonator 2 for
three different values of the κ . We can estimate the value of G̃2

from the slope of the dashed lines. The parameters of the simulation
are l = 30 m to avoid discrimination of the mode structure of the
waveguide by any of the three resonator widths. We do spectroscopy
of the resonator with a depletion experiment using as our control
g(t ) = κeff/2sech(κefft/2), where κeff = κ .

straight dashed lines. This is remarkable, since the effec-
tive model had been calculated only taking the resonators
into account and the depletion experiment of Fig. 8 is done
with the complete Hamiltonian of the problem. This is

FIG. 9. Depletion of qubit 1 (arbitrary labeling) when there is
only a resonator connected at node 1 (pink line) versus when there
is another one (blue lines). In all cases with two resonators they are
connected at the same spacial points but with a large detuning of
(ω1 − ω2)/2π = 200 MHz, or around 20κ . We run a qubit depletion
experiment using as our control g(t ) = κeff/2sech(κefft/2). This is
all computed after the δω has already been optimized. l = 30 m,
Nmodes = 390.

proof that it is a good approximation and it brings valuable
insights.

Since both the values of δω and κ are ultimately related
with the spectral function JQO. It is expected that the later also
changes by the mutual influence between resonators. Figure 9
shows how this is indeed the case. Just as δi has to be carefully
calibrated to much ωi so κeff has to be. As we can see in Fig. 9,
a miscalibration of this parameter of just around 1% leads to
five orders of magnitude in depletion efficiency.
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