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Power-law-exponential interaction induced quantum spiral phases
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We theoretically predict a kind of power-law-exponential (PLE) dipole-dipole interaction between quantum
emitters in a 1D waveguide QED system. This unconventional long-range interaction is the combination of
power-law growth and exponential decay couplings. Applying the PLE interaction to a spin model, we uncover
the rich many-body phases. Most remarkably, we find that the PLE interaction can induce the ordered and
critical spiral phases. These spiral phases emerge from the strong frustration generated by the power-law factor
of the PLE interaction; hence they are absent for other types of long-range interaction, e.g., pure exponential and
power-law decay interactions. Our work is also applicable for the higher-dimensional systems. It fundamentally
broadens the realm of many-body physics and has significant applications in quantum simulation of strongly
correlated matter.
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I. INTRODUCTION

Studies on many-body behavior of quantum matter are
fundamentally important both in theoretical and experimental
respects. In the framework of Ginzburg-Landau theory, the
many-body interactions play a key role in inducing intrigu-
ing phenomena, i.e., quantum phases and phase transitions
[1–3]. Significant progress has been made in understanding
many-body phases in systems with short-range interactions,
while long-range interacting systems have continuously at-
tracted research attention as they can induce distinctive phases
without counterparts in short-range interacting systems [4–9].
For example, long-range interactions can give rise to Wigner
crystallization [10] and continuous symmetry broken in low-
dimensional systems [11–13].

Waveguide QED system where QEs couple to a structured
bosonic environment provide a platform to efficiently generate
long-range interactions [14–19]. In particular, mediated by
a 1D bipartite photonic lattice, the spatial profile of emer-
gent long-range dipole-dipole (d-d) interactions between QEs
exhibits the topological edge state features as the frequency
of QEs is resonant with the edge state energy of the lat-
tice [20–23]. Especially, the nonmonotonic d-d interaction
emerges in the extended SSH lattice [24]. This provides an
opportunity to explore exotic phases of matter induced by
these long-range interactions [25].

In this work, we investigate the system consisting of QEs
coupling to a 1D bipartite photonic lattice endowed with
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chiral symmetry. By integrating hopping terms beyond nearest
neighbor into the lattice and appropriately designing the hop-
ping strengths, we predict a kind of power-law-exponential
d-d interaction featuring nonmonotonicity. Differently from
the previous work [24] reporting the d-d interaction featuring
nonmonotonic spatial behavior, here the nonmonotonicity of
PLE interactions entirely comes from the power-law increas-
ing term xα . Mathematically, such power-law factor originates
from the existence of higher-order zeros in the characteristic
polynomial of the bath. Physically, it is the consequence of the
interference between multiple exponential decay components
of interaction with the same decay length.

More importantly, applying the long-range PLE interaction
to an effective spin model, we uncover the rich many-body
phases in this system. Especially, as the interaction length is
increasing, we find a quantum critical phase, i.e., the quasi-
long-range ordered phase [QLRO(T)] with T indicating the
wave number of the dominant spin correlations. Distinctive
from the other critical phase occurring for short interaction
length, the spin-spin correlation function in the QLRO(T)
phase is spiral with distance, and has the incommensurate
period T. In addition, an ordered spiral phase named the an-
tiferromagnetic phase with period T [AFM(T)] also appears
when the spin-exchange interaction is ignorable in compari-
son with the zz interaction. Similarly to the QLRO(T) phase,
the spin arranges antiferromagnetically in this AFM(T) phase
but with commensurate periods. We explain that these spi-
ral phases emerge from the strong frustration induced by
the power-law increasing factor of interaction, and thus have
no analog in other kinds of long-range interaction (e.g., ex-
ponential and power-law decay interactions) systems. Our
work open up a door for exploring unconventional long-range
interactions by employing the topological property of the
bath, which is fundamentally significant in realizing the novel
many-body phases.
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FIG. 1. (a) N two-level QEs coupled to 1D coupled-cavity ar-
ray, where two adjacent cells are separated by a0. (b) Real space
configuration of the lattice bath for h(k) = t0 + t−1 exp(−ik) +
t+1 exp(ik) with the hopping strengths {t0; t−1; t+1} and thus P = 1,
Q = 1. (c) Real space configuration of the lattice bath for H (k) =
t ′
1 sin(k)σy + [t ′

0 cos(k) + m0]σz, which respects the chiral symmetry
σx and is able to produce the d-d interaction without chirality.

The paper is structured as follows. In Sec. II, we theoreti-
cally predict the emergence of the PLE interaction in generic
photonic waveguides endowed with chiral symmetry, explain
the associated physical mechanism by a concrete model, and
discuss the robustness of the PLE interaction against disorder.
In Sec. III, we investigate the spin many-body phase diagram
for systems with the PLE interaction, and compare it with the
phase diagram for systems with exponential and power-law
decay interactions. In Sec. IV, we discuss the experimental
implementation of the PLE interaction based on recent exper-
imental and theoretical proposals. Finally, we summarize our
findings in Sec. V.

II. PLE d-d INTERACTION MEDIATED BY CHIRALLY
SYMMETRIC LATTICE

A. Unified form of d-d interaction in the vacancy-like dressed
state mechanism

As. shown in Fig. 1(a), we consider N two-level QEs
coupled to a 1D photonic two-sublattice bath. The total
Hamiltonian of the system reads (setting a0 = 1)

HN = ωq

N∑
j=1

σ
†
j σ j + Hb + λ

N∑
j=1

(a†
x j,α

σ j + H.c.), (1)

where ωq is the transition frequency of QEs, and λ is
the coupling strength. Moreover, σ j = |g〉 j〈e| is the Pauli
annihilation operator for the jth emitter, and axj,α is the an-
nihilation operator corresponding to the position x j,α of the
bath (i.e., sublattice α ∈ {A, B} at the x j th cell). Under pe-
riodic boundary conditions, the bath Hamiltonian is given
by Hb =∑k (a†

k,A, a†
k,B)Hb(k)(ak,A, ak,B)T with Hb(k) =

ω0I + dx(k)σx + dy(k)σy + dz(k)σz. We consider the bath re-
specting a chiral symmetry σz[Hb(k) − ω0I]σz = −[Hb(k) −
ω0I] [hence dz(k) = 0]. The full property of the lattice bath
is encoded in h(k) = dx(k) − idy(k), whose generic form can
be written as h(k) =∑P

m=0 t−me−imk +∑Q
n=0 t+neink with the

hopping strengths of lattice {t0; t−1, . . . , t−P; t+1, . . . , t+Q}.

The integer P (Q) denotes the at most P-site (Q-site) hopping
from sublattice A to B towards the left (right) direction [see
Fig. 1(b) for an example].

In the single-excitation regime, when a single QE with
frequency ωq = ω0 couples to the bath at x1,α , a vacancy-like
bound state with eigenenergy E = ω0 occurs [22]. When the
second QE located at x2,β is integrated into the bath, the
mechanism of the vacancy-like bound state guarantees that
the resulting d-d interaction has the same spatial profile as the
zero-energy state of Hb (we set ωq = ω0 = 0 for simplicity),
i.e., J (x1,α, x2,β ) ∝ λ〈x2,β |ϕE 〉, where |ϕE 〉 is the zero-energy
solution of the bath under the hard-core boundary condition
[26]. Without loss of generality, we assume that the first
QE couples to the bath at sublattice A of the 0th cell. We
ignore the case in which the second QE couples to the bath at
sublattice A, since the obtained d-d interaction is zero due to
the chiral symmetry σz, and we use the short notation J (x) =
J (x2,B − x1,A) ≡ J (x1,A, x2,B). In thermodynamic limit of the
bath, we obtain a unified form of d-d interaction by solving
the zero-energy state. The expression is given by Appendix A,

J (x)

λ
∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
μ=1

nμ−1∑
α=0

rμα (x − xc)αe−(x−xc )/ξμ , x � xc,

∑
ν=1

nν−1∑
β=0

lνβ (x − xc)βe−(x−xc )/ξν , x < xc,

(2)

where xc = 1 − P, rμα and lνβ are constants, and the sum-
mation indexes μ, ν cover all distinctive zeros zμ,ν of the
characteristic polynomial h(z) obtained from h(k → −i ln z)
in the complex plane. Here nμ,ν is the order of zμ,ν , and
ξμ,ν = − ln−1(zμ,ν ) is the decay length of the interaction. All
physical quantities mentioned here are exactly solvable and
are determined by the bulk property of the bath.

Because of the power-law factor (x − xc)α,β in Eq. (2), the
strength of the PLE interaction is weakened at short range
and enhanced at long range compared with the pure expo-
nential decay interaction. Its maximal strength locates at x =
αξμ − xc. The occurrence of the power-law factor originates
mathematically from the higher-order zero of h(z). Since the
maximal order of zero should be less than or equal to the
number of zeros, we obtain the upper bounds on the power-
law exponents,

max
	ξμ>0

{nμ} � P + W, max
	ξν<0

{nν} � Q − W, (3)

where W = (2π i)−1
∫ 2π

0 ∂k ln[h(k)]dk is the winding num-
ber characterizing the topology of the bath. Physically, the
value of P + W (Q − W ) counts the number of zeros of h(z)
lying within (outside) the unit circle, and then it is equal
to the number of exponential decay components involved in
the superposition of the d-d interaction. When the lattice is
further engineered such that nμ (nν) out of P + W (Q − W )
exponential decay components of interaction possess the same
decay length, the interference between nμ (nν) exponen-
tial decay components leads to the PLE interaction toward
the x > xc (x < xc) direction with maximal exponent nμ − 1
(nν − 1). The detailed calculation and discussion are shown in
Appendix A.
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B. Minimal model exhibiting PLE interaction

We present an example to demonstrate the physical
mechanism of realizing the PLE interaction more clearly.
To this end, consider an extended SSH bath with h(k) =
t0 + t−1 exp(−ik) + t+1 exp(ik). In addition to the nearest-
neighbor hopping t0 and t−1, we introduce the next-next (NN)
nearest hopping t+1 into the bath. For hopping strengths
t2
0 
= 4t+1t−1, the d-d interaction mediated by this bath yields

(Appendix A)

J (x)

λ
∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r(ξ1)e−x/ξ1 − r(ξ2)e−x/ξ2

e−1/ξ1 − e−1/ξ2
, x � 0,

l (ξ1)e−x/ξ1 − l (ξ2)e−x/ξ2

e−1/ξ1 − e−1/ξ2
, x < 0,

(4)

where r(z) = �(1 − | exp(1/z)|)sgn(1 − | exp(1/z)|), l (z) =
�( − 1 + | exp(1/z)|)sgn(1 − | exp(1/z)|), and ξ1,2 = −1/ ln
(z1,2). Here z1 = [−t0 + (t2

0 − 4t+1t−1)1/2]/2t+1, z2 = [−t0 −
(t2

0 − 4t+1t−1)1/2]/2t+1 are the zeros of h(z), and �(x) is the
Heaviside function. It is shown from Eq. (4) that a zero lying
within (outside) the unit circle contributes an exponential de-
cay component. Thus the d-d interaction is the superposition
of two exponential decay components, when two zeros lie si-
multaneously within or outside the unit circle. As the hopping
strengths are engineered such that the condition for the PLE
interaction 4t+1t−1 = t2

0 is satisfied, two zeros coincide and
Eq. (4) becomes intermediate. Then, one needs to take the
limit to obtain the interaction [suppose Re(ξ1,2) > 0], i.e.,

J (x � 0)

λ
∝ lim

ξ1,2→ξ

e−x/ξ1 − e−x/ξ2

e−1/ξ1 − e−1/ξ2
∝ xe−x/ξ . (5)

This formula indicates the underlying interference mechanism
for the PLE interaction with power-law exponent 1, namely
the out-of-phase superposition of two exponential decay com-
ponents with the same decay length ξ .

The phase diagram in Fig. 2(a) illustrates the parameter
regimes for the PLE interaction. Owing to the additional
NN nearest hopping, the lattice bath has three phases dis-
tinguished by winding number 0 (topologically trivial) and
±1 (topologically nontrivial). As indicated by Eqs. (2) and
(3), the upper bound larger than 1 is the necessary condition
for the implementation of the PLE interaction. Therefore, the
parameter regimes for the PLE interaction only appear in
the topological phases in which one of the upper bounds is
larger than 1. Within these regimes, the hopping strengths
should be properly engineered and satisfy the red lines to
obtain the PLE interaction. Figure 2(b) shows the spatial
profile of PLE interactions with power-law factors 1 and 3.
As an indicator of nonmonotonicity, the decay length ξ is
controlled by the band gap of the lattice according to the func-
tional relation ξ = −1/ ln[1 − (
g/2)1/ν], where ν = nμ + 1
for the lattice producing power-law factor nμ [27]. Note that
the PLE interaction without chirality can also be obtained
by coupling QEs to the lattice bath with chiral symmetry
σx [see Fig. 2(c)] (Appendix A). In addition, our results in
Appendix C show the realization of a similar PLE interaction
in a higher-dimensional lattice.

Based on this explicit model, the necessity of long-range
hopping beyond nearest neighbor for the realization of the

(a) (b)

(c)

FIG. 2. (a) Phase diagram of the lattice bath. Red line 4t+1t−1 =
t2
0 is the parameter regime for the PLE interaction. The cross marks

label two tri-phase points, where the PLE interaction is absent. The
integer pairs are the upper bounds (P + W, Q − W ). (b) Spatial pro-
file of the PLE interaction x exp(−x/ξ ) (blue line) with right-hand
chirality that corresponds to the parameters denoted by black stars in
(a). The orange line displays the PLE interaction x3 exp(−x/ξ ); the
lattice configuration is given in Appendix B. Inset displays the decay
length ξ versus the band gap of lattice bath 
g/t0 for power-law
factor 1 (dashed blue line) and 3 (dashed orange line). (c) PLE in-
teraction without chirality |x| exp(−|x|/ξ ) with lattice configuration
given in Fig. 1(c). In (b) and (c), the dots mark the positions of
maximum interaction strength.

PLE interaction becomes clear. Integrating longer-range hop-
ping (increasing P and Q) into the lattice will increase the
values of upper bounds when keeping W invariant, and thus
increase the number of components involving superposition.
In other words, one needs to integrate longer-range hopping
into the lattice to produce potential a PLE interaction with
higher power-law exponents (Appendix B), while for an SSH
lattice (i.e., t+1 = 0), the upper bounds are at most equal to
1, which eventually leads to a pure exponential decay d-d
interaction [20].

C. Robustness against disorder

In this section, we explore whether the PLE interaction
inherits the topological protection feature from the edge
state. To do that, we study the robustness of the topologi-
cal dressed bound state against disorder since this dressed
bound state possesses the same spatial profile with the PLE
interaction. We consider two types of disorder depending
on whether they preserve the chiral symmetry or not and
present the results in Fig. 3. As expected, the topological
bound states exhibit robustness against symmetry-preserving
disorder. Besides, the shape of dressed bound states is
more sensitive to symmetry-breaking disorder in comparison
with symmetry-preserving disorder. Nonetheless, the dressed
bound states retain qualitatively the nonmonotonic behavior
for both symmetry-preserving and symmetry-breaking disor-
der.

Specifically, for the bath Hamiltonian given in Fig. 1(b),
the chiral symmetry is σz, and the obtained dressed bound
states exhibit unidirectional spatial profile and have support in
one of the sublattices in the clean limit. The disorder is imple-
mented as Hb → Hb +∑ j ε1, ja

†
j,Ba j+1,A +∑ j ε2, ja

†
j,Aa j,B +

033290-3
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FIG. 3. (a), (b) PLE dressed bound states for bath Hamiltonian respecting chiral symmetry σz (a) and chiral symmetry σx , respectively. The
red (blue) dots denote components on sublattice B (A) under 103 disorder realizations, while shadow areas span their corresponding standard
deviation. Dashed lines are PLE state in the clean limit, and we only plot clean PLE state on sublattice B in (a) because of the zero components
on sublattice A. In all plots, parameters are chosen to be λ/
g = 2.3 and 
g = 0.13.

∑
j ε3, ja

†
j,Aa j+1,B + H.c. for symmetry-preserving disor-

der and Hb → Hb + (
∑

j ε1, ja
†
j,Aa j,A +∑ j ε2, ja

†
j,Ba j,B)/2 +∑

j ε3, ja
†
j,Aa j+1,A +∑ j ε4, ja

†
j,Ba j+1,B + H.c. for symmetry-

breaking disorder. The coefficients ε1−4, j are i.i.d. random
variables, drawing from Gaussian distribution N (0, d ). For
symmetry-preserving disorder, the topological properties of
the dressed bound state, i.e., the unidirectionality and the
zero component on sublattice A [see the top of Fig. 3(a)],
are retained as expected from the mechanism of the vacancy-
like dressed bound state. For symmetry-breaking disorder, the
resulting dressed bound state lost its unidirectionality and has
a nonzero component on each sublattice [see the bottom of
Fig. 3(a)]. Moreover, the shape of the bound state retains
its nonmonotonic behavior both for symmetry-preserving and
symmetry-breaking disorder. The shape is more sensitive
to symmetry-breaking disorder compared with symmetry-
preserving disorder; i.e., it has larger deviation from its clean
counterpart for symmetry-breaking disorder.

For the bath Hamiltonian given in Fig. 1(b), the chiral
symmetry is σx. As a consequence of chiral symmetry σx,
the obtained dressed bound state has equal weight on each
sublattice of the lattice. The disorder is implemented as
Hb → Hb +∑ j ε1, ja

†
j,Aa j,A −∑ j ε1, ja

†
j,Ba j,B for symmetry-

preserving disorder and Hb → Hb + (
∑

j ε1, ja
†
j,Aa j,A +∑

j ε2, ja
†
j,Ba j,B)/2 +∑ j ε3, ja

†
j,Aa j,B + H.c. for symmetry-

breaking disorder. The coefficients ε1−3, j are i.i.d. random
variables, drawing from Gaussian distribution N (0, d ). For
symmetry-preserving disorder, the dressed bound states have
equal components on sublattices A and B at each unit cell [see
the top of Fig. 3(b)]. When the introduced disorder breaks the
chiral symmetry of the bath Hamiltonian, the dressed bound
states lost the property [see the bottom of Fig. 3(b)]. Similarly
to the former case, the shape of the bound state retains its

nonmonotonic behavior both for symmetry-preserving and
symmetry-breaking disorder.

III. SPIN MANY-BODY PHASES INDUCED
BY PLE INTERACTION

The unique feature of the PLE interaction in compari-
son with other types of long-range interaction, namely the
power-law growth factor, inspires us to explore the emer-
gent many-body phases. We consider a 1D long-range XXZ
model described by the Hamiltonian HXXZ =∑N

m>n(m −
n) exp[−(m − n)/ξ ](S+

m S−
n /2 + S+

n S−
m /2 + JzSz

mSz
n). The re-

quired zz interaction can be realized by the fast single-qubit
rotations [28,29]. In order to explore the many-body phases,
we numerically calculate the entanglement entropy and spin-
spin correlation of the ground state by using the DMRG
method [30]. The von Neumann entanglement entropy is
defined as S(ρA) = −Tr(ρA ln ρA) where ρA is the reduced
density matrix of the left NA cell of the chain. For a 1 + 1-
dimensional critical system, the entanglement entropy has a
functional form (under open boundary conditions)

S(ρA) = c

6
ln

[
2N

π
sin

(
πNA

N

)]
+ g + F. (6)

Here c is the central charge, g is a constant, and F is a nonuni-
versal oscillating term [31]. We extract the phase boundaries
by numerically calculating the central charge of the ground
state. After that, we identify each phase by the spatial pro-
file of spin-spin correlation 〈Si · S j〉 (see Fig. 4). The phase
diagram is displayed in Fig. 5(a). As a comparison, we also
present the phase diagram of the XXZ models with exponen-
tial decay and power-law decay interactions [see Figs. 5(b)
and 5(c)].
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AFM
FM

VBS
AFM(6)

(a)

(b)

XY

QLRO(T)

FIG. 4. (a) Spin correlation deep in gapped phases. Here we
present the AFM(T) phase with a specific period T = 6. (b) Spin
correlation deep in gapless phases.

From the phase diagrams shown in Fig. 5, it is found
that four phases that are respectively antiferromagnetic
(AFM), ferromagnetic (FM), XY, and valence-bond-solid
(VBS) phases occur for the PLE interaction when ξ is
not too large. We can understand qualitatively the physical
origin of these phases by perturbatively truncating the long-
range interaction to short-range interaction. Specifically, when
ξ � 1, only the nearest-neighbor interaction dominates due
to the fast decay of the exponential term, i.e., J (m − n) =
J (1)δm,n+1. Therefore, the system is in the AFM (FM) phase
for 
 > 1 (
 < −1) and in the XY phase for −1 < 
 < 1
[32,33]. As increasing ξ , the next-nearest-neighbor interac-
tion becomes relevant, leading to J (m − n) = J (1)δm,n+1 +
J (2)δm,n+2. This system is known as the J1-J2 model [34,35],
and it is geometrically frustrated due to the competition
between the nearest-neighbor interaction J (1) and the next-
nearest-neighbor interaction J (2). For Jz = 1, this model
supports a transition from the XY phase to the gapped VBS
phase at the point J (2)/J (1) ≈ 0.2411. For Jz 
 0 (Jz �
0), one obtains an ordered antiferromagnetic (ferromagnetic)
phase since the zz interaction dominates. We stress that all
the above phases also exist in the exponential and power-law
decay interacting systems. The different forms of long-range
interactions, however, modify the boundaries between these
phases.

We are more interested in the regime ξ 
 1 where the
power-law factor of the PLE interaction becomes relevant.
Within this regime, two phases denoted respectively by
AFM(T) and QLRO(T) appear only for the PLE interac-
tion. Let us first focus on the AFM(T) phase. An AFM(T)
phase denotes an ordered, antiferromagnetic ground state
with period T. For example, the AFM(6) phase is given by
| ↑↑↑↓↓↓↑↑↑↓↓↓ · · · 〉. From Fig. 5, such AFM(T) phase
exists in the strong zz interaction limit, i.e., Jz � 1. In

XY

FM

AFM

VBS AFM(T)

QLRO(T)

XY
FM

AFM

VBS

VBS

XY

AFM

FM

(b)

(a)

(c)

FIG. 5. (a)–(c) Many-body phases of XXZ model HX X Z =∑
m>n J (m − n)(S+

m S−
n /2 + S−

m S+
n /2 + JzSz

mSz
n) for PLE interaction

J (x) = x exp(−x/ξ ) (a), exponential decay interaction J (x) =
exp(−x/ξ ) (b), and power-law decay interaction J (x) = x−ξ

(c) based on the calculation of the effective central charge c. The
phase boundary from FM phase to other phases is obtained via a
spin-wave analysis (Appendix D). The XY-to-AFM and XY-to-VBS
phase boundaries are numerically obtained by finding the place
where c starts to decrease 0.04 below c = 1. The VBS-to-AFM(T)
and VBS-to-QLRO(T) phase boundaries are numerically obtained by
finding the place where c starts to increase from c = 1.

this situation, the XXZ model is approximately given by
HXXZ ≈∑m>n J (m − n)Sz

mSz
n. The quantum fluctuation of

this model vanishes; therefore its ground state should co-
incide with the ground state of the classical Ising model
HIsing =∑m>n J (m − n)smsn where sm = ±1 represents the
mth classical spin. We then present the period T of the an-
tiferromagnetic ground state in Fig. 6. It is found that the
period increases with increasing interaction length ξ . In order
to understand the relation between T and ξ , one can con-
sider again the short-range Ising model in which J (m − n) =
J (1)δm,n+1 + J (2)δm,n+2. When ξ � 1, the nearest-neighbor
interaction J (1) dominates and hence the spin pairs of the
nearest neighbors tend to be antiparallel, leading to the AFM
phase. When the next-nearest-neighbor interaction J (2) dom-
inates, the spin pairs of the next-nearest neighbors tend to be
antiparallel, leading to the AFM(4) phase. In other words, the
period T increases with increasing geometry frustration, i.e.,
the ratio J (2)/J (1). Keeping increasing ξ integrates stronger
and longer-range geometry frustration into the system hence
the larger period T.
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FIG. 6. The period T versus the interaction length ξ . The re-
sult is obtained by a Monte Carlo simulation of the Ising model
HIsing =∑m>n J (m − n)smsn. The chain size is N = 1500. Insets are
respectively the schematic configurations of the short-range Ising
model in AFM(4) (top) and AFM (bottom) phase.

Turning to the QLRO(T) phase, for intermediate values of
Jz, the system undergoes a phase transition from the VBS
phase to a critical phase. This critical phase exhibits quite
distinctive behavior from the XY phase appearing in the
short-range interacting limit. The spin correlation function
〈S+

i S−
j 〉 ∼ |i − j|−η decays with a rather slow power law

(e.g., η ≈ 0.16 at ξ = 4.5 and Jz = 0). Meanwhile, spin cor-
relation is spiral with the incommensurate period T (T is
not an integer) [see Fig. 7(a)]. Algebraic decay plus spiral
behavior implies this critical phase is the T-period quasi-
long-range ordered phase [QLRO(T)]. Besides, we find that
the oscillation period T changes with interaction length.
To characterize the relation between T and ξ , we further
calculate the static structure factor in x-y plane Sxy(q) =
〈S+(q)S−(q)〉, where S−(q) =∑N

m=1 exp(−iqxm)S−
m /

√
N de-

notes a spin density wave operator with momentum q ∈
{0, 2π/N, 4π/N, . . . , (N − 1)2π/N}. By numerically fitting
the peaks of Sxy(q), the approximate relation reads as T (ξ ) =
3/[1 − exp(−1/ξ )] for Jz = 0 [see Fig. 7(b)].

Finally, we argue that the appearance of AFM(T) and
QLRO(T) phases emerges from the strong geometry frustra-
tion brought by the power-law factor of the PLE interaction,

(a) (b)

FIG. 7. (a) Spin correlation for ξ = 0.5 (blue solid line) and ξ =
4.5 (red solid line). The system size is N = 100. Dashed lines are fits
( j − 1)η with values of η being labeled beside each curve. (b) Static
structure factor Sxy(q) versus the momentum q and the interaction
length ξ for N = 300. White dashed line is the fit T (ξ ) = 3/[1 −
exp(−1/ξ )]. The VBS-QLRO(T) phase transition point ξc ≈ 2.9. In
all plots, the zz interaction strength is Jz = 0.

(a) (b)

Fi
de
lit
y

VBS

QLRO(T)

0
1
2

3

4

FIG. 8. (a) Central charge for Hamiltonian HX X =∑m>n J ′(m −
n)(S+

m S−
n + S+

n S−
m ) with ξ0 = 4.5. Inset shows the fidelity of two

normalized bound states for different values of μ. (b) The period T
of the ground state for the Ising model HIsing =∑m>n J ′(m − n)smsn.
The chain size is N = 1500. Inset shows the spatial profile of J ′(x)
with ξ0 = 3 for different values of μ. The values of μ are labeled
beside each curve.

which explains their absence in exponential and power-law
decay interacting systems. For the AFM(T) phase, our discus-
sion based on the short-range Ising model explains the ab-
sence of AFM(T) in systems with exponential and power-law
decay interactions: the next-nearest-neighbor interaction J (2)
is not able to dominate in comparison with J (1), due to the
intrinsic nature of decay. Going beyond the short-range inter-
action approximation, we present the phase diagram of a sys-
tem under the long-range interaction J ′(x) = [exp(−x/ξ0) −
exp(−x/ξ1)]/[exp(−1/ξ0) − exp(−x/ξ1)] with ξ0 being cho-
sen within AFM(T) phase and ξ1 = ξ0 − μ. The parameter
μ can be considered as the inverse strength of geometry
frustration. For μ → 0, J ′(x) reduces to the PLE interaction
with interaction length ξ0. As the increase of μ, the power-
law growth of the PLE interaction weakens [see the inset
of Fig. 8(a)]. For μ → ξ0, J ′(x) reduces to exponential in-
teraction with interaction length ξ0. The result in Fig. 8(a)
demonstrates that the period T decreases with increasing μ,
which means T decreases with decreasing geometry frustra-
tion. This is also consistent with the statement in Fig. 6.
For the QLRO(T) phase, we present the phase diagram for
a system HXX =∑m>n J ′(m − n)(S+

m S−
n + S+

n S−
m ) with ξ0 be-

ing chosen within QLRO(T) phase in Fig. 8(b). As expected,
the system undergoes a QLRO(T)-VBS phase transition when
μ > μc ≈ 2, which supports our above argument. At the tran-
sition point, the distinguishability between J ′(x) and the PLE
interaction with interaction length ξ0 is approximately 0.97.
Here we define the distinguishability of two kinds of interac-
tions J1,2(x) as the fidelity of two normalized dressed bound
states |〈ϕ1|ϕ2〉| based on J1(x) ∝ 〈x|ϕ1〉 and J2(x) ∝ 〈x|ϕ2〉.
This implies that the spiral phase only occurs when the inter-
actions are highly overlapped with the PLE interaction.

IV. DISCUSSION OF EXPERIMENTAL IMPLEMENTATION
OF PLE INTERACTION

Regarding the experimental implementation of our pro-
posal, the candidates include the system of color centers or
cold atoms integrated into a 1D photonics crystal waveguide
[15,36–38], and the circuit QED system where the supercon-
ducting transmon qubits are coupled to a superconducting
metamaterial waveguide [21,39–41]. The photonic analog of
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capacitance coupling

A2

B2

B3

A3

FIG. 9. (a) Full circuit model used in the simulations of bath
endowed with arbitrary configuration. The dashed area denotes the
coupling between different sites depending on the requirement of
bath configuration. For example, if sites A of unit cell j + m and B of
unit cell j are required by coupling, then they will be connected by a
capacitance denoted by Cj+m. (b) Full circuit model used in the simu-
lations of Eq. (1) with bath configuration shown in Fig. 1(b) of main
text; we assume that each site couples an emitter; the parameters are
further discussed in the text. (c), (d) Possible circuit QED architec-
tures to implement the bath Hamiltonian in Fig. 1(b) and Fig. 1(c),
respectively, of the main text. A set of LC resonators with frequency
ω j,α is coupled in groups to auxiliary resonators (denoted by Roman
numerals I, II, ...) with frequency ωaux and time-dependent coupling
g(t ). The bare energies of the lattice resonator have a distribution of
energy difference denoted by δ, δ1, δ2.

the SSH model has been experimentally realized in both
the photonic crystal waveguide [42–44] and superconduct-
ing metamaterials [45,46]. As an example, let us choose the
coupled circuit QED array to discuss the realization of the
unconventional PLE interaction based on our proposal. Since
the most important element to implement the PLE interaction
is the longer-range hopping terms beyond the nearest neighbor
of the bath, we mainly focus on the potential implementation
of long-range interactions of the bath.

We first derive a generic bath Hamiltonian Hb based on
the experimental proposal in [21]. The resulting hopping con-
figuration of Hb can be arbitrary and Hb restores the chiral
symmetry σz. To this end, we consider the array of coupled
LC resonators [see Fig. 9(a)]. Sites A of unit cell j + m and

B of unit cell j are coupled by the capacitance Cj+m and the
mutual inductance Mj+m. The flux variable of each node is
�

A/B
j = ∫ t

−∞ V A/B
j (t ′)dt ′ and the current going through each

inductor is IA/B
j . Then the Lagrangian is

L =
N∑
j

Cf

2

[(
�̇A

j

)2 + (�̇B
j

)2]− L f

2

[(
IA

j

)2 + (IB
j

)2]

+ C0

2

(
�̇A

j − �̇B
j

)2 − M0IA
j IB

j − M−1IA
j+1IB

j

+
P∑

m=1

C−m
(
�̇A

j+m − �̇B
j

)2 +
Q∑

n=1

C+n
(
�̇A

j−n − �̇B
j

)2
.

(7)
The node flux variables are given by

�A
j = L f IA

j + M0IB
j + M−1IB

j−1,

�B
j = L f IB

j + M0IA
j + M−1IA

j+1.
(8)

The Lagrangian can be rewritten with the Fourier
transformation �

A/B
j =∑k exp(i jk)�A/B

k /
√

N and IA/B
j =∑

j exp(i jk)IA/B
k /

√
N , which leads to

L =
∑

k

Ct

2

(
�̇A

−k�̇
A
k + �̇B

−k�̇
B
k

)− Cλ(k)�̇A
−k�̇

B
k

− L f
(
�A

−k�
A
k + �B

−k�
B
k

)− Mλ(k)�A
−k�

B
k

2L2
λ(k)

,

(9)

where Ct = Cf + C0 +∑P
m=1 C−m +∑Q

n=1 C+n, Cλ(k) =
C0 +∑P

m=1 C−me−imk +∑Q
n=1 C+neink , and Mλ(k) = M0

+ M−1e−ik . Then the Hamiltonian is given by Hb =∑
k,α∈{A,B} Qα

k �̇α
k − L = ∑

k (QA
−k QB

−k )MQ(k)
(QA

k QB
k )T /2 + (�A

−k �B
−k )M�(k)(�A

k �B
k )T /2 with

MQ(k) = 1

C2
tot (k)

(
Ct Cλ(−k)

Cλ(k) Ct

)
(10)

and

M�(k) = 1

L2
tot (k)

(
L f −Mλ(k)

−Mλ(−k) L f

)
. (11)

Here QA/B
k = ∂L/∂�̇

A/B
k , C2

tot (k) = C2
t − Cλ(k)Cλ(−k), and

L2
tot (k) = L2

0 − Mλ(k)Mλ(−k). We then can impose the trans-
formation

âk,α = 1√
2h̄

(
�̂α

k√
Z (k)

+ i
√

Z (k)Q̂α
k

)
(12)

after the canonical quantization [�̂α
k , Q̂α

k′ ] = ih̄δα,βδk,k′ . Here
âk,α is the annihilation operator that obeys the commutation
relations [âk,α, â†

k′,β] = δα,βδk,k′ and [âk,α, âk′,β] =
[â†

k,α
, â†

k′, β] = 0, and Z (k) =
√

Ct L2
tot (k) /L f C2

tot (k). Under
these notations, Hb is given by Hb = Hb0 + V where Hb0 =∑

k ω0(k)(â†
k,Aâk,A + â−k,Aâ†

−k,A + â†
k,Bâk,B + â−k,Bâ†

−k,B)/2
and

V =
∑

k

(a†
k,A a†

k,B)

(
0 h̃(k)

h̃∗(k) 0

)(
ak,A

ak,B

)

+ counterrotating terms,

(13)
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with ω0(k) = [C2
tot (k)L2

tot (k)/Ct L f ]−1/2 and h̃(k) = Cλ(k)
ω0(k)/2Ct − Mλ(k)ω0(k)/2L0 (we set h̄ = 1). Under
the weak-coupling approximations C0 +∑P

m=1 C−m +∑Q
n=1 C+n � Cf and |M0| + |M−1| � L f , both the

k dependence of ω0(k) and the counterrotating
terms of V can be neglected, which results in Hb =∑

k (â†
k,A â†

k,B)Hb(k)(âk,A âk,B) with

Hb(k) =
(

ω0 h(k)
h∗(k) ω0

)
. (14)

Here ω0 = 1/
√

L f Ct and

h(k) = ω0

2

(
Cλ(k)

Ct
− Mλ(k)

L f

)
. (15)

Together with the bath configuration used in Eq. (1), we have

tm = ω0

2

(
Cm

Ct
+ Mm

L f

)
, m = 0,−1,

tn = ω0

2

Cm

Ct
, n 
= 0,−1.

(16)

Based on the above results, the minimal model exhibit-
ing the PLE interaction, where h(k) = t0 + t−1e−ik + t+1eik ,
can be realized. To show this, consider the parameters
Cf ,C0,C−1,C+1, M0, M−1, L f = 253 fF, 46 fF, 41 fF, 13 fF,
−1 pH, −1 pH, 1.9 nH. Given the values of these circuit
elements, the corresponding parameters of the topological
waveguide QED system displayed in Fig. 9(b) can be obtained
as ω0 ≈ 6.14 GHz, t0 ≈ 399 MHz, t+1 ≈ 113 MHz, and t−1 ≈
355 MHz. Since the d-d interaction can be recovered by the
single QE dressed bound state according to J (x) ∝ λ〈x|ϕE 〉,
we assume that only one QE is resonantly coupled to the
bath in sublattice A at the middle of chain, with chain size
L = 20 and coupling strength λ/2π = 90 MHz. The spectrum
of the system contains 41 eigenvalues in the single-excitation
regime. Except for the bulk state energies, two in-gap energies
≈ −1.37, 0 MHz corresponding to the edge states of the bath
appear [see the red circles in Fig. 10(a)]. Moreover, due to the
finite-size bath, the dressed bound state energy ≈ 1.37 MHz
[see the red square in Fig. 10(a)] is slightly deviated from the
analytical prediction E = 0. In spite of the small-size bath,
the obtained PLE interaction [see Fig. 10(b)] by numerical
calculation is consistent with the analytical prediction up to
a constant correction. This correction mainly originates from
the nonzero occupation of the dressed bound state in sublattice
A, due to the open boundary condition in the small bath size.
Therefore, our results show that the PLE interaction can be
implemented in the current experimental platform in small
bath size.

Besides the above circuit proposal, another way to imple-
ment the long-range hopping terms of the bath is reported
in [24]. The basic idea is that the LC resonators represent-
ing lattice sites are coupled in groups to auxiliary resonators
according to

Htot =
N∑
j,α

ω j,αa†
j,αa j,α +

∑
μ

ωauxb†
μbμ + V (t ) (17)

Eigenvalue

En
er
gy
(M
H
z)

(M
H
z)

(a)

(b)

FIG. 10. (a) Schematic of QEs-waveguide model. Eigenspec-
trum of system in single-excitation regime, where we set ωq = ω0 =
0 for simplicity. The bath Hamiltonian under periodic condition is
Hb(k) = dx (k)σx + dy(k)σy with h(k)/t0 = (eik + √

6/19)2/eik . The
encircled stars represent edge state energies, and the dressed bound
state energy is marked by the rectangle. (b) Spatial profile of d-d in-
teraction. The histogram and dashed line correspond to the numerical
solution and analytical prediction. Here η ≈ 1.26, and the correction
factor due to the open boundary condition is numerically fixed by
c ≈ 0.8.

with

V (t ) =
∑

μ=1,2,...

∑
〈 j,α〉μ

g(t )a†
j,αbμ + H.c. (18)

Here a j,α is the annihilation operator of the bath mode cor-
responding to the α sublattice in the jth cell, and bμ denotes
the annihilation of the μth auxiliary cavity mode, endowed
with the bare frequency ωaux. The bare frequency of lattice
mode ω j,α is correlated to its nearest neighbor according to the
relation ω j,B = ω j,A + d j,intra and ω j,A = ω j−1,B + d j−1,inter ,
where d j,intra and d j,inter are the detunings. In the following
derivation, we assume the detunings {d1, d2, . . .} are given by
[see Figs. 9(c) and 9(d)] either

d j,intra = δ, d j,inter =
{

δ1, mod ( j, 2) = 1,

δ2, mod ( j, 2) = 0,
(19)

or

d j,inter = δ, d j,intra =
{

δ1, mod ( j, 2) = 1,

δ2, mod ( j, 2) = 0,
(20)

depending on the bath configuration. Further, the time-
dependent coupling is g(t ) ∝∑m Am cos(�mt ). The notation
〈 j, α〉 denotes the summation over the sites connected by the
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μth auxiliary cavity. In the rotating frame with respect to∑N
j,α ω j,αa†

j,αa j,α +∑μ ωauxb†
μbμ, we have

Ṽ (t ) =
∑

μ=I,II,...

∑
〈 j,α〉μ

g(t )a†
j,αbμei(ω j,α−ωaux ) + H.c. (21)

Then, under the weak-coupling approximation |ω j,α −
ωaux| 
 |ω j,α − ωi,β | 
 |g(t )|, the long-range hopping terms
of the lattice bath can be obtained by adiabatically eliminating
the auxiliary cavity as

Heff ≈ 1

2

∑
m,n

AmAn

4
(ei(�m+�n )t + ei(�m−�n )t + c.c.)

×
∑

μ,〈 j,α〉μ〈i,β〉μ
ω

i, j
α,βa†

j,αai,βe−i(ω j,α−ωi,β )t + H.c., (22)

where ω
i, j
α,β = (ωaux − ω j,α )−1 + (ωaux − ωi,β )−1. Then, one

can obtain the desired long-range hopping by taking the
frequencies satisfying the resonant conditions �m ± �n =
(±)(ω j,α − ωi,β ), while the undesired hopping terms with the
off-resonant frequencies will be greatly suppressed due to the
weak-coupling approximation.

For the bath configuration in Fig. 1(b), we couple six lattice
sites in groups to the auxiliary resonators, and with the energy
distribution shown in Fig. 9(b). One can chose the frequencies
according to (consider the first auxiliary cavity and coupled
sites for simply)

�+
1,2 = 
1,A

2,B, �+
2,3 = 
2,A

3,B, �+
4,5 = 
1,A

1,B,

�+
4,6 = 
1,B

2,A, �+
5,6 = 
2,B

3,A, �+
1,3 
= 
1,B

3,A,
(23)

where �+
i, j = �i + � j and 


j,α
i,β = ωi,β − ω j,α . Under these

conditions, only the hopping terms a†
m,Aam,B + H.c. for m =

1, 2, 3 with the hopping strength t0, the hopping terms
a†

m,Bam+1,A + H.c. for m = 1, 2, 3 with the hopping strength

t−1, and the hopping terms a†
m,Aam+1,B + H.c., m = 1, 2, with

the hopping strength t+1 are resonant, while others are off-
resonant. Finally, the desired hopping terms with certain
strengths {t0; t−1; t+1} can be implemented by taking A1A3 =
t+1, A4 = A5 = √

t0, A6 = t−1/t0.
For the PLE interaction without chirality, i.e., the bath

configuration in Fig. 1(c), the setup is different from the
former case. Here we couple four lattice sites in groups to the
auxiliary resonators, and with the energy distribution shown
in Fig. 9(c). A possible resonant condition reads as

�+
1,2 = 
1,A

2,A, �+
2,3 = 
1,B

2,B, �4 = 
1,B
2,A,�+

1,3 
= 
1,A
1,B, (24)

associated with the amplitude conditions A1A2 = t ′
0 = A2A3

and A4 = t ′
1 to obtain the desired hopping structure shown

above.

V. CONCLUSION

In summary, we have shown how the PLE interaction
emerges in a 1D waveguide QED system by appropriately
designing the structure of the lattice endowed with chiral
symmetry. Applying the PLE interaction to a spin many-body
model, we uncovered the exotic many-body phases in this
system. Especially, we demonstrated the emergence of two
spiral phases as a consequence of the power-law factor for the

PLE interaction, which has no counterpart for other types of
long-range interaction.

Besides those studied here, first, we expect our work
could stimulate further studies for the unconventional long-
range interactions by engineering the topological properties
of photonic lattices. Second, our work demonstrates that the
topological waveguide QED system provides a platform of
quantum simulation to discover novel complex phases of mat-
ter, which may further be explored beyond the XXZ model.
Third, it would be an interesting outlook to investigate how
this kind of interaction affects the propagation of quantum
information, namely the Lieb-Robinson bounds [47–49]. And
lastly, it is worth studying the topological properties of the
PLE interacting system since long-range interaction could
alter the topological intrinsic nature of matter [50–53].
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APPENDIX A: EXACT SOLUTION OF THE EDGE STATE

To support the analytical PLE d-d interactions given in
Eq. (2) of the main text, we provide a detailed derivation
for the chiral edge state of the bath in Appendix A 1. We
also show how to implement the nonchiral edge state in Ap-
pendix A 2 to support the interaction used in the simulation of
the many-body phase.

1. Edge state with chirality

Our goal is to solve the eigenequation in real space

[Hb + ε|x1,A〉〈x1,A|]|ϕE 〉 = 0|ϕE 〉, (A1)

where ε = λ2/(Eq − ωq) → ∞ for Eq = ωq = ω0 = 0 is
the effective potential induced by the QE. Inserting Hb =
dx(k)σx + dy(k)σy into this equation, we have

∑
q

[
P∑
m

t−m〈(q − m)B|ϕE 〉 +
Q∑
n

t+n〈(q + n)B|ϕE 〉

+εδq,x1〈qA|ϕE 〉
]

= 0, (A2a)

∑
q

⎡
⎣ P∑

m

t∗
−m〈(q + m)A|ϕE 〉 +

Q∑
n

t∗
+n〈(q − n)A|ϕE 〉

⎤
⎦ = 0,

(A2b)

where q ∈ Z is the cell index. To solve this difference
equation, we perform a Z-transform, and obtain

h(z)�B(z) + ε〈x1,A|ϕE 〉z−x1,A = 0, (A3a)

h∗(z−1)�A(z) = 0, (A3b)
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where h(z) := h(k → −i ln z). One immediate result is
�A(z) = 0, which implies that the edge state component
on sublattice A vanishes. The expression of h(z) can be
rewritten as a compact form h(z) = f (z)/g(z) with f (z) =∑P

m t−mzP−m +∑Q
n t+nzP+n and g(z) = zP. Then, the com-

ponent on sublattice B can be carried out by the inverse
Z-transform, which reads as

〈x2,B|ϕE 〉 = 1

2π i

∮
|z|=1

zx2,B−x1,A−1�B(z)dz

= −ε〈x1,A|ϕE 〉
2π i

∮
|z|=1

zx+P−1

f (z)
dz,

(A4)

where we define x = x2,B − x1,A as the relative distance. Ac-
cording to the fundamental theorem of algebra, f (z) can be
factored as f (z) =∏P+W

μ=1 (z − zμ)
∏P+Q

ν=P+W +1(z − zν ). Here
we first assume that all P + Q zeros of f (z) are distinctive,
i.e., zi 
= z j for i 
= j. The index μ (ν) labels the zeros of f (z)
inside (outside) the unit circle in complex plane. The number
of zeros inside (outside) the complex plane is given by P + W
(Q − W ). This can be identified by recalling the definition of
winding number W = nzeros − npoles, where nzeros (npoles) is the
number of zeros (poles) of h(z) inside the unit circle. In our
case, nzeros equals the number of zeros of f (z) inside the unit
circle and npoles = P; thus the number of zeros of f (z) inside
the unit circle nzeros = W + npoles = W + P and the number
of zeros of f (z) outside the unit circle equals P + Q − nzeros

that gives Q − W . Then one can use the residue theorem to
integrate out Eq. (A4). Let xc = 1 − P; the normalized edge
state can be expressed as

〈x|ϕE 〉 = 1

N

⎛
⎝P+W∑

μ=1

Res

[
zx−xc
μ

f (zμ)

]
+ Res

[
0x−xc

f (0)

]⎞⎠, (A5)

where N is the normalized constant. This formula can be
further evaluated as 〈x|ϕE 〉 =

1

N

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P+W∑
μ=1

e−(x−xc )/ξμ∏
α 
=μ(zμ − zα )

,

P+Q∑
ν=P+W +1

−Res

[
zx−xc
ν

f (zν )

]
=

P+Q∑
ν=P+W +1

−e−(x−xc )/ξν∏
β 
=ν (zν − zβ )

.

(A6)
The upper (bottom) line holds for x � xc (x < xc). From
this formula, it is clear that the obtained interaction is the
superposition of exponential decay components with the dif-
ferent decay length ξμ,ν = −1/ ln(zμ,ν ), and the number of
components involving superposition is P + W (Q − W ) for
x � xc (x < xc). Now we are in the position to derive the
PLE interaction from Eq. (A6). To this end, consider that n
out of P + W zeros inside the unit circle coincide with zp,
namely a higher-order zero zp with order n in f (z). Then,
the superposition of these n components with the same decay
length ξp = −1/ ln(zp) reduces to

lim
zi1 ,...,zin →zp

n∑
μ=1

e−(x−xc )/ξiμ∏
iα 
=iμ

(
ziμ − ziα

)∏
α′ 
={i1,...,in}

(
ziμ − zα′

) .
(A7)

To carry out this limitation, let zi1 = zp + h, zi2 = zp +
2h, . . . , zin = zp + nh and we have

lim
h→0

n∑
μ=1

1∏
α′ 
={i1,...,in}

(
ziμ − zα′

) (−1)n−μ(zp + μh)x−xc

(μ − 1)!(n − μ)!hn−1

∝ lim
h→0

1

hn−1

n−1∑
s=0

n∑
μ=1

(−1)n−μzx−xc
p

(
x − xc

s

)
hs

(μ − 1)!(n − μ)!zs
p

+ O(h).

(A8)
The summation over μ gives

n∑
μ=1

(−1)n−μzx−xc
p

(
x − xc

s

)
hs

(μ − 1)!(n − μ)!zs
p

= hszx−xc−s
p

(
x − xc

s

)
S2(s + 1, n),

(A9)

where S2(·, ·) is the Stirling number of the second kind. The
right-hand side of this equation gives 0 for s 
= n − 1 and
hszx−xc−s

p (x − xc

s ) for s = n − 1. Therefore, the limitation in the
right-hand side of Eq. (A8) is given by

lim
h→0

hn−1

hn−1
zx−xc−n+1

p

(
x − xc

n − 1

)
+ O(h)

= e−(x−xc−n+1)/ξp

(n − 1)!

n−1∏
μ=1

(x − xc − μ + 1).

(A10)

The PLE interaction manifests itself in the power-law fac-
tor
∏n−1

μ=1(x − xc − μ + 1), which originates mathematically
from the existence of n-order zero of h(z), and physically
from the superposition of n exponential decay components
with the same decay length ξp. Note that a similar fashion can
also apply to the interaction for x < xc; e.g., one just needs to
consider the higher-order zeros of h(z) outside the unit circle,
which leads to the PLE interaction with left chirality.

Now generalize the results to a generic lattice, whose
distribution of zeros of the characteristic polynomial h(z) is
arbitrary. The d-d interaction mediated by such lattice can be
rewritten as 〈x|ϕE 〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈x � xc|ϕE 〉 = 1

N
∑
μ=1

nμ−1∑
α=0

rμα (x − xc)αe−(x−xc )/ξμ ,

〈x < xc|ϕE 〉 = 1

N
∑
ν=1

nν−1∑
β=0

lνβ (x − xc)βe−(x−xc )/ξν .

(A11)
Here the indices μ and ν cover respectively all the distinctive
zeros of h(z) inside and outside the unit circle, associated
with the orders nμ and nμ. Thus

∑
μ nμ = P + W ,

∑
ν nν =

Q − W , and ξμ,ν = −1/ ln(zμ,ν ) denote the decay length. The
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constants rμα and lνβ can be straightforwardly evaluated as

rμα = �(Reξμ)

(nμ − 1)!

nμ−1∑
i=α−1

(
nμ − 1

i

)
S1(i, α − 1)

×e−i/ξμ f (nμ−i−1)
μ (zμ), (A12a)

lνβ = −�(−Reξν )

(nν − 1)!

nν−1∑
j=β−1

(
nν − 1

j

)
S1( j, β − 1)

×e j/ξν f (nν− j−1)
ν (zν ), (A12b)

where fμ(z) =∏ν 
=μ(z − zν )−nν , S1(·, ·) is the Stirling num-
ber of the first kind, and �(x) is the Heaviside function.
With the solution of the edge state, we can evaluate the d-d
interaction according to J (x1,A, x2,B) ∝ 〈x|ϕE 〉.

According to Eq. (A10), the existence of the n-order zero of
h(z), namely the superposition of n exponential components
with the same decay length, will lead to the PLE interaction
with maximum power-law exponent n − 1. This gives the up-
per bound for the power-law exponents of the PLE interaction
in Eq. (A11)

max
Reξμ>0

{nμ} � P + W, max
Reξν<0

{nν} � Q − W, (A13)

which recovers Eq. (3) in main text.

2. Edge state without chirality

The bath Hamiltonian in the previous subsection possesses
chiral symmetry with respect to σz, which results in the asym-
metric distribution of the zero-energy edge state around the
QE. Now, let us consider the other case of bath Hamiltonian
Hb(k) = dy(k)σy + dz(k)σz possessing chiral symmetry with
respect to σx, i.e., σ−1

x Hb(k)σx = −Hb(k). Since the chiral
symmetry around E = 0, the QE still acts equivalently as a
hard-core potential V = ε|x1,A〉〈x1,A|x1,A with ε = λ2/(Eq −
ω0) = ∞, which guarantees the zero-energy solution [Hb +
V ]|ϕE 〉 = 0|ϕE 〉. As a consequence of symmetry σx, the zero
energy has equal components on each sublattice. This can be
quickly proven as [|ϕE 〉 =∑n(an bn)T ⊗ |n〉]

H
∑

n

(
an

bn

)
|n〉 = 0 = −H

∑
n

(
bn

an

)
|n〉, (A14)

which results in |an| = |bn|.
To solve the eigenequation, we first perform a spin-

rotation transformation Rey (−π/2) = ⊕L/2
x=−L/2Rey (−π/2)

with Rn(θ ) = exp(iθσ · n/2) that only acts on the internal
degrees of bath; then we have[

H rot
b + V rot]∣∣ϕrot

E

〉 = 0
∣∣ϕrot

E

〉
, (A15)

where the rotated potential

V rot = ε

2

(|x1,A〉 |x1,B〉)(1 1
1 1

)(〈x1,A|
〈x1,B|

)
, (A16)

and eigenstate ∣∣ϕrot
E

〉 = R†
ey

(
−π

2

)
|ϕE 〉. (A17)

One can easily verify that the bulk Hamiltonian H rot
b (k) =

Rey (−π/2)Hb(k)R†
ey

(−π/2) has the form

H rot
b (k) = −dz(k)σx + dy(k)σy :=

(
0 hrot (k)

h∗
rot (k) 0

)
,

(A18)

which restores the chiral symmetry σzH rot
b (k)σ−1

z =
−H rot

b (k). Two important results about the edge state |ϕrot
E 〉

can already be extracted. (i) Our analysis for the spatial
profile in the last subsection also holds for |ϕrot

E 〉, since the
rotated Hamiltonian H rot

b has chiral symmetry with respect to
σz. (ii) |ϕrot

E 〉 (namely |ϕE 〉) has symmetric distribution around
the atom since the parity symmetry of the system is restored.
To be more quantitative, Eq. (A3) is now rewritten as

hrot (z)�rot
B (z) + ε

2

(〈
x1,A

∣∣ϕrot
E

〉
z−x1,A

+〈x1,B

∣∣ϕrot
E

〉
z−x1,B

) = 0, (A19a)

h∗
rot (z

−1)�rot
A (z) + ε

2

(〈
x1,A

∣∣ϕrot
E

〉
z−x1,A

+ 〈x1,B

∣∣ϕrot
E

〉
z−x1,B

) = 0. (A19b)

Thus, the rotated edge state |ϕrot
E 〉 on sublattice B has the same

form as the expression we derived in the previous subsection.
Moreover, h∗

rot (z
−1) possesses inverse plus conjugate zeros

and poles compared to hrot (z); i.e., a pole at zi of hrot (z)
corresponds to a pole at 1/z∗

i of h∗
rot (z

−1) and vice versa. The
distribution for zeros and poles between hrot (z) and h∗

rot (z
−1)

eventually leads to the inverse plus conjugate spatial profile
between 〈x2,A|ϕrot

E 〉 and 〈x2,B|ϕrot
E 〉, i.e.,〈

xA

∣∣ϕrot
E

〉 = 〈ϕrot
E

∣∣xB
〉
, xA = −xB, (A20)

where the relative distance xA = x2,A − x1,A and xB = x2,B −
x1,B. The final step to obtain the edge state is an inverse
rotation to 〈xA/B|ϕrot

E 〉,

|ϕE 〉 = ⊕xRy

(
−π

2

)(〈xA

∣∣ϕrot
E

〉|xA〉〈
xB

∣∣ϕrot
E

〉|xB〉

)
, (A21)

which gives the edge state without chirality

|〈xA|ϕE 〉| = 1√
2

∣∣〈ϕrot
E

∣∣−xA
〉− 〈xA

∣∣ϕrot
E

〉∣∣ = |〈−xA|ϕE 〉|,

(A22a)

|〈xB|ϕE 〉| = 1√
2

∣∣〈ϕrot
E

∣∣−xB
〉+ 〈xB

∣∣ϕrot
E

〉∣∣ = |〈−xB|ϕE 〉|.

(A22b)

The obtained edge states are just the linear combination
of the edge states we obtained in the previous subsection;
thus the corresponding power-law exponent can only be
either invariant or decreasing. The upper bound for the right-
side component 〈xA/B � 0|ϕE 〉 is determined by max{Prot +
W, Qrot − W } where Prot and Qrot are the hopping parameters
associated with H rot

b , and W is the winding number corre-
sponding to H rot

b . The same conclusion holds for the left-side
component due to the parity symmetry of edge states. The
same conclusion holds for the left-side component due to the
parity symmetry of edge states.
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0A 1A-1A

0B 1B-1B 2B

2A

FIG. 11. Bottom panel shows the chiral PLE edge state corre-
sponding to bath Hamiltonian with h(k) = (eik − 3/5)4/e3ik , which
corresponds to the chiral PLE d-d interaction with ξ = −1/ ln(0.6).
The histogram and dashed line are drawn from the numeri-
cal and analytical solution, respectively. Upper plot shows the
configuration with t−3/t0 = −27/500, t−2/t0 = −9/25, t−1/t0 =
−9/10, t+1/t0 = −5/12.

APPENDIX B: PLE INTERACTION WITH THE HIGHER
POWER-LAW EXPONENT

Our analytical derivation in the main text claims that the
largest power-law exponent of interaction is upper bounded
by P + W − 1 (here we consider the completely chiral case
which implies Q − W = 0 for simplicity). Therefore, one first
needs to increase P + W to obtain a PLE interaction with a
higher power-law exponent. For example, one can add the
long (but finite) range hopping to increase P. After that, the
bath needs to be fine-tuned to generate the high-order zeros
of h(z) in order to obtain a higher power-law exponent for a
given bound.

Here we illustrate the PLE interaction with maximal
power-law exponent of 3. This requires the next-next-nearest
neighbor hopping between cells of the bath (see Fig. 11). As
observed in Fig. 11, the PLE decay edge state is obtained by
tuning the bath parameters to h(k) = (eik − 3/5)4/e3ik .

APPENDIX C: POWER-LAW ENHANCED INTERACTION
IN HIGHER-DIMENSIONAL LATTICE

In this Appendix, we demonstrate the implementation of
the power-law enhanced interaction in a 2D square lattice.
Our conclusion can also be applied to higher-dimensional
lattice baths. We do not refer to the “PLE” interaction for
reasons that will be given later. For theoretical simplification,
the 2D square lattice under consideration is with respect to
chiral symmetry σz, i.e., σzH (kx, ky)σz = −H (kx, ky), such
that the vacancy-like dressed state mechanism is valid and
the equations for state components on different sublattices are
decoupled. The full properties of the lattice are encoded in
h(kx, ky). We assume the QE couples to the lattice in sublattice

A of position (0,0). It is known that a gapless lattice in a higher
dimension can also produce a coherent d-d interaction, due
to the vanishing density of states [54,55]. However, we here
consider the gapped lattice, which means that h(z1, z2) 
= 0
for any point z1, z2 on the 2D circle surface. In similar fashion
to Sec. II, we have

J (rB) ∝ 〈rB|ϕE 〉

∝ 1

(2π i)2

∮
|z1|=1

∮
|z2|=1

�B(z1, z2)zx−1
1 zy−1

2 dz1dz2

(C1)
and �A(z1, z2) = 0, where rA/B = (x, y) denotes the posi-
tion vector in sublattice A/B. The integral contours can be
chosen to be the individual unit circle since we consider a
gapped lattice. One can easily show that the generic form of
�B(z1, z2) is

�B(z1, z2) = 1

h(z1, z2)
= 1∑

i j ti, j zi
1z j

2

, (C2)

where h(z1, z2) ≡ h(kx → −i ln z1, ky → −i ln z2). The ex-
pression for h(z1, z2) can be obtained as (i) a px site (qx site)
hopping from sublattice A to B toward the left (right) direction
contributes a z−px

1 (zqx
1 ); (ii) a py site (qy site) hopping from

sublattice A to B toward the up (down) direction contributes
a z

−py

2 (zqy

2 ). Thereby, the coefficient ti j denotes the hopping
strength of the lattice.

Unlike the 1D lattice we consider in main text, in which the
form of the dressed bound state can be explicitly solved for
arbitrary configuration of the lattice owing to the fundamental
theorem of algebra, as long as the hopping range is finite, in
2D geometry, this theorem fails for a two-variable character-
istic polynomial h(z1, z2), and thus Eq. (C1) can barely be
evaluated even for a simple lattice configuration. Nonetheless,
the analog of the PLE interaction in a 1D lattice, namely the
power-law enhanced interaction, can be obtained as

J ′(rB) = xαyβJ (rB) ∝ 1

(2π i)2

∮
|z1|=1

∮
|z2|=1

zx−1
1 zy−1

2

× Dα (z1)Dβ (z2)�B(z1, z2)dz1dz2,

(C3)

where we introduce the operator D(z) = z∂/∂z. In
other words, the d-d interaction mediated by the new
lattice with the characteristic function h′(z1, z2) =
[Dα (z1)Dα (z2)h−1(z1, z2)]−1 has power-law enhancement
xαyβ compared with the d-d interaction in the original
lattice with h(z1, z2). Clearly, one can regard the PLE
interaction in 1D as a special case of a power-law enhanced
interaction, where the original exponential decay interaction
J (x) is enhanced by the power-law factor, thus leading to
J ′(x) ∝ xα exp(−x/ξ ). Despite the power-law enhanced
behavior similar to the PLE interaction in 1D, there are no
corresponding upper bounds for power-law exponents α, β in
a 2D lattice. This is again due to the failure of the fundamental
theorem of algebra in 2D geometry.

We present a solvable model to demonstrate the power-law
enhanced interaction in 2D. To this end, we consider an
original lattice with h(kx, ky) = t0,0 + t−1,0 exp(−ikx ) +
t0,−1 exp(−iky). When hopping strengths satisfy
|t−1,0| + |t0,−1| < |t0,0|, the resulting d-d interaction can be
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(a) (b)

FIG. 12. Interactions obtained from Eqs. (C4) and (C5) are
shown in (a) and (b), respectively. The interaction strengths were
rescaled to their maximum values. The factorial function has been
replaced by the gamma function to obtain the continuous spatial
profile.

obtained as

J (rB) ∝ e−x/ξx e−y/ξy F (x, y), x, y � 0, (C4)

where the interaction length ξx = − ln(t−1,0/t0,0) and ξy =
− ln(t0,−1/t0,0), and F (x, y) = (x + y)!/x!y!. The power-law
enhanced interaction with the power-law exponent 1 in both x
and y directions,

J ′(rB) ∝ xye−x/ξx e−y/ξy F (x, y), x, y � 0, (C5)

can be mediated by the lattice with bulk Hamiltonian
h′(kx, ky) = [t0,0 + t−1,0 exp(−ikx ) + t0,−1 exp(−iky)]3 exp
(ikx + iky). As shown in Fig. 12, the spatial profiles of J ′(rB)
exhibit nonmonotonic behavior in this case, just as the PLE
interaction in the 1D lattice.

APPENDIX D: FM PHASE AND ITS BOUNDARY

We analytically calculate the FM phase boundary via
a spin-wave analysis. For Jz � 0, one should expect all
spins are polarized along the +z direction. Thus, we treat
| ↑↑ · · · ↑〉 as the vacuum state with no excitations and ap-
ply the Holstein-Primakoff transformation Sz

j = 1/2 − a†
j a j ,

S+
j = a j , S− = a†

j , where [ai, a†
j ] = δi j .

In the weak-excitation limit, 〈a†
j a j〉 � 1, the XXZ Hamil-

tonian under the PLE interaction becomes

HXXZ ≈ 1

2

∑
m>n

(m − n)e−(m−n)/ξ [a†
man + a†

nam

− Jz(a†
mam + a†

nan)]. (D1)

In the thermodynamic limit N → ∞, one can diagonalize
this Hamiltonian to HPLE = ∫ dkωkc†

kck for k ∈ (−π, π ] with
the following dispersion relation:

ωk = −Jze−1/ξ

(−1 + e−1/ξ )2
+ e−1/ξ [(1 + e−2/ξ ) cos(k) − 2e−1/ξ ]

[1 + e−2/ξ − 2e−1/ξ cos(k)]2
.

(D2)

The ωmin ≡ min ω(k) = 0 condition sets the phase boundary.
For dispersion Eq. (D2), ωmin = ω(k = π ) for ξ � −1/

ln(2 − √
3) and ωmin = ω(k = ±k0) for ξ > −1/

ln(2 − √
3), where

k0 = arctan

(√
−(e−4/ξ − 14e−2/ξ + 1)(e−2/ξ − 1)2

−e−4/ξ + 6e−2/ξ − 1

)
.

(D3)

Then, the boundary can be obtained by solving ωmin = 0,
which gives

Jz = (e−1/ξ − 1)2{(1 + e−2/ξ ) cos[Re(k0)] − 2e−1/ξ }
{1 + e−2/ξ − 2e−1/ξ cos[Re(k0)]}2

. (D4)

For exponential decay and power-law decay interacting
systems, a similar fashion is applied and we can obtain the
corresponding dispersion relations as

ωk = −Jze−1/ξ

−1 + e−1/ξ
− e−1/ξ (1 + e2ik − 2eik−1/ξ )

2(eik − e−1/ξ )(−1 + eik−1/ξ )
(D5)

and

ωk = −Jz

∞∑
r=1

1

rξ
+

∞∑
r=1

cos(kr)

rξ
, (D6)

respectively. The minima of ωk for both exponential decay and
power-law decay interactions appear at k = π . Therefore, the
boundary can be solved as

Jz = e−1/ξ − 1

e−1/ξ + 1
(D7)

and

Jz = Liξ (−1)/ζ (ξ ), ξ > 1, (D8)

respectively. Here Lis(z) is the polylogarithm function and
ζ (z) the Riemann zeta function. Note that the obtained bound-
ary for power-law decay interaction is Jz = 0 for ξ � 1, since
the FM state’s energy is superextensive [56].
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