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Magnetic control of Weyl nodes and wave packets in three-dimensional warped semimetals
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We investigate the topological phase transitions driven by band warping, λ, and a transverse magnetic field,
B, for three-dimensional Weyl semimetals. First, we use the Chern number as a mathematical tool to derive
the topological λ × B phase diagram. Next, we associate each of the topological sectors to a given angular
momentum state of a rotating wave packet. Then we show how the position of the Weyl nodes can be manipulated
by a transverse external magnetic field that ultimately quenches the wave packet rotation, first partially and then
completely, thus resulting in a sequence of field-induced topological phase transitions. Finally, we calculate the
current-induced magnetization and the anomalous Hall conductivity of a prototypical warped Weyl material.
Both observables reflect the topological transitions associated with the wave packet rotation and can help to
identify the elusive 3D quantum anomalous Hall effect in three-dimensional, warped Weyl materials.
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I. INTRODUCTION

Wave packets are one of the most fundamental objects
in quantum mechanics [1]. Schrödinger introduced them [2]
right after the publication of his famous wave equation, in-
spired by the wave-particle duality proposed by de Broglie [3].
One hundred years later, the de Broglie-Mackinnon wave
packet has been finally observed, using paraxial space-time-
coupled pulsed laser fields in the presence of anomalous
group-velocity dispersion [4]. Optical wave packets that are
localized in space and time have also found applications rang-
ing from microscopy and remote sensing, to nonlinear and
quantum optics [5]. Localized coherent phonon wave packets
are being launched by ultrafast Coulomb forces in a scanning
tunneling microscope using tip-enhanced terahertz electric
fields [6]. Ultrasonic acoustic wave packets have beaten the
diffraction limit in the far-field for ultrasound waves [7]. Fi-
nally, matter wave packets can be optically manipulated for
applications in ultrafast electron microscopy [8]. Having a
finite Compton wavelength, wave packets can rotate about its
own center of mass axis with a given orbital angular momen-
tum and thus carry an intrinsic vorticity.

Optical vortices are paraxial vortex light beams possessing
a Hilbert factor, ei�φ [9], a phase singularity with a nonzero
topological charge, �, which gives rise to a hollow intensity
distribution (dark spot) and a phase front that describes a helix
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about the axis of propagation, k [10]. The topological charge
� (also called the winding number) quantizes this winding
such that there is a phase change of 2π� during a full rota-
tion. This ei�φ factor is also a characteristic feature of orbital
angular momentum (similar to the azimuthal phase in the hy-
drogenic wave functions), and is not restricted to light beams.
Phonons may acquire a nonzero angular momentum due to
forces induced by the relative displacements of atoms out of
their equilibrium positions [11]. Ultrasonic vortex beams have
been shown experimentally to be obliquely reflected off a
flat water-air interface, confirming the theoretically predicted
reversals of phase rotation, topological charge, and orbital
angular momentum in a reflected vortex beam [12]. Freely
propagating electron beams have been also produced in labo-
ratory, whose wave front has a quantized topological structure
arising from a singularity in phase, also taking the Hilbert
form, ei�φ , with φ as the azimuthal angle about the beam axis
and � the topological charge [13]. Remarkably, the angular
momentum of an electron vortex beam can be manipulated by
an external magnetic field and exhibits well-known magnetic
manifestations such as Stern-Gerlach transport, Larmor pre-
cession, Aharonov-Bohm phases, Landau energy levels, and
Zeeman splitting [14].

Quite recently, the universal mapping of topological sin-
gularities in k space to measurable topological observables
in real space has been demonstrated [15]. The mapping is
based on the spin-orbit interaction, angular momentum con-
servation, and the nontrivial winding of the Berry phase, and
is fundamentally of topological origin. The spin-orbit interac-
tion leads to a Berry curvature having a monopole structure,
F (k) = k/|k|3 [16], which in turn, leads to the accumula-
tion of the Berry phase about the linear momentum, k, thus
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shifting the relative phase of the plane waves and modifying
the orbital angular momentum [13]. Although the mapping
was demonstrated for the photonic honeycomb and Lieb lat-
tices with vortex beams [15], the mechanism is universal and
also works for rotating wave packets in three-dimensional
(3D) Weyl systems [15].

In this work, we propose that the topological singulari-
ties of a nonmagnetic, 3D Weyl semimetal, with warping,
λ, can be manipulated by an external magnetic field, B, due
to its coupling to the wave packet orbital angular momen-
tum. Weyl semimetals are ideal for this kind of manipulation,
because while the robustness of Weyl nodes is ensured by
topology [17], their positions can be easily fine tuned by
external perturbations [18–20]. In fact, magnetic fields are
being used to control the positions of the Weyl nodes and the
emergence of the anomalous Hall or Nernst effects in mag-
netic semimetals [21–23]. Here we demonstrate that, while λ

brings Weyl nodes closer together, contributing to the Berry
curvature, F (k), and to the wave packet rotation, a transverse
magnetic field pushes the nodes away, quenching the rotation
of the wave packet. This leads to a rich λ × B topological
phase diagram and to fingerprints in transport that can help
to identify the 3D quantum anomalous Hall effect, when a
magnetization is induced.

II. WARPING AND TOPOLOGY

Weyl semimetals are characterized by a linear dispersion,
E (k) = ±|k|, a band crossing at a Weyl node, k = 0, and a
topological charge, Q = ±1. They are expected for systems
where accidental band crossings occur and have indeed been
observed for example in TaAs [24]. Multi-Weyl semimet-
als are characterized by a nonlinear dispersion, E (k) =
±

√
k2

z + k2�
⊥ , a band crossing at a multi-Weyl node, (k�

⊥ =
0, kz = 0), and a topological charge, Q = ±�. The existence
of such multi-Weyl systems is guaranteed by point group
symmetry [25] and they have been experimentally observed
and studied in photonic crystals [26,27]. Mixed, multi-Weyl
semimetals can be constructed with a low-energy Hamiltonian

H0 =
[

kz k− − λk2
+

k+ − λk2
− −kz

]
, (1)

therefore mixing up different topological sectors, Q = ±1
(λ < λc) and Q = ∓2 (λ > λc), depending on the relative size
of the warping parameter, λ, to the typical length scale asso-
ciated to Weyl particles, the Compton wavelength, λc. This
type of warping is a common feature in systems like mono-
layer graphene with Rashba spin-orbit coupling [28], twisted
bilayer graphene [29], anomalous Hall materials [30], mono-
layer MoS2 [31], elemental Te [32,33], and in Bi2Te3 [34].

Hamiltonian (1) can also be written as

H0 = d(k) · σ, (2)

where d(k) = (dx(k), dy(k), dz(k)) with

dx(k) = kx − λ
(
k2

x − k2
y

)
,

dy(k) = ky + 2λkxky, (3)

dz(k) = kz,

FIG. 1. Positive (red) and negative (blue) branches of the warped
band dispersions, E±(k), for the limiting cases, λ � λc (left) and
λ � λc (right), and the associated orbital magnetic textures at kz = 0.

whose eigenvalues, E±(k) = ±|d(k)|, are shown in Fig. 1.
The eigenstates of the Hamiltonian (1) are

|u±
k 〉 = 1√

2|d(k)|(|d(k)| ∓ dz(k))

[
d∓(k)

|d(k)| ± dz(k)

]
, (4)

where d±(k) = dx(k) ± idy(k), which allows us to calculate
the magnetic texture,

m±(k) = 〈u±
k |σ|u±

k 〉 = ± d(k)

|d(k)| , (5)

whose kz = 0 profile is also shown in Fig. 1.
We will now construct a coherent wave packet following

the general procedure described in [35]. Since the angular
momentum, 〈Lz〉, of a rotating wave packet of size λc in
real space is universally determined by the total topological
charge, �, within an envelope of size kc ∼ 1/λc in reciprocal
space [15], the Chern number becomes a very useful tool [36].
The strategy is to cage the Weyl nodes inside a closed surface
in reciprocal space, for example a sphere, S2, of radius kc ∼
1/λc, and then to calculate the flux of the Berry curvature,
F (k),

C(λ) = 1

4π

∮
S2

dS d̂(k) · (∇θ d̂(k) × ∇φ d̂(k)). (6)

The Chern number, C(λ), defined in Eq. (6) picks up a topo-
logical phase transition from C(λ) = +1, for weak warping,
λ < λc, to C(λ) = −2, for strong warping, λ > λc, as shown
in Fig. 2.

Although the momentum-to-real-space mapping in
Ref. [15] is universal, it becomes clearer in the chiral limit,
dz = 0, when σzH0σz = −H0 and H0 is off-diagonal [37].
By writing d±(k) = |d(k)|e±iφk , the original eigenstates (4)
simplify to

|u±
k 〉 = 1√

2

[
e∓iφk

1

]
, (7)

with φk = arg(d(k)) ≡ arctan (dy(k)/dx(k)). The k−space
vortex in (7) is such that for any closed adiabatic path encir-
cling the Weyl nodes, the winding of the Berry phase is [15]

−i
∮

dφk〈uk|∇φk |uk〉 = �π. (8)

Following Ref. [38], we now construct a wave packet with the
aid of an envelope, a(k), of width set by the radius kc of the
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FIG. 2. Chern number, C(λ), versus warping, λ/λc, from Eq. (6).
The yellow spheres represent the cage, S2, in reciprocal space with
radius set by the inverse Compton wavelength, kc ∼ 1/λc. The ar-
rows piercing the cage outwards or inwards represent the Berry
curvature, F (k), that is integrated out in Eq. (6). For λ/λc < 1, a
single Weyl node Q = +1 is inside the cage and C = +1. The (blue)
Bessel wave packet rotates counterclockwise, with 〈Lz〉 = +h̄. For
λ/λc > 1, all four nodes Q = +1, −1, −1, −1 are inside the cage
and C = −2. The (red) Bessel wave packet rotates clockwise, with
〈Lz〉 = −2h̄.

cage

|W 〉 =
∫

dd k
(2π )d

a(k) eik·(r−rc )|uk〉, (9)

where rc is the wave packet center of mass. For a paraxial
wave packet, the scalar wave function acquires the Bessel
form [38], ψ� ∼ ei�φJ�(k⊥ρ), with k⊥ =

√
k2

x + k2
y and ρ =√

x2 + y2, and a Hilbert factor, ei�φ , such that 〈Lz〉 = �h̄,
shown as insets in Fig. 2. For λ < λc, a single Weyl node
Q = +1 is adiabatically encircled in Eq. (8), the Chern num-
ber, C = +1, generates � = +1 and the (blue) Bessel wave
packet rotates counterclockwise with 〈Lz〉 = +h̄, see Fig. 2
(inset: bottom left). For λ > λc, however, all four Weyl nodes
Q = +1,−1,−1,−1 are adiabatically encircled in Eq. (8),
the Chern number, C = −2, generates � = −2 and the (red)
Bessel wave packet rotates clockwise with 〈Lz〉 = −2h̄, see
Fig. 2 (inset: bottom right).

III. MANIPULATION AND QUENCHING

The semiclassical dynamics describing the motion of a
rotating wave packet in the presence of electromagnetic fields
was developed in Refs. [39–41]. Uniform electric, E, and
magnetic, B, fields can be added to the Hamiltonian (1) as
usual through both a scalar, φ(r) and a vector, A(r), potentials

E = −∇φ(r) − ∂A(r)

∂t
,

B = ∇ × A(r). (10)

For nonzero Berry connection, R, and Berry curvature, F ,
the dynamics of the center of mass is described by

h̄k̇c = −eE − eṙc × B,
(11)

h̄ṙc = −iη†[i∇kc + R,H0]η − h̄k̇c × η†Fη,

where k̇c and ṙc are the acceleration and velocity of the center
of mass and η is the spinor component. The magnetization

dynamics relative to the center of mass is described by [41]

ih̄η̇ =
( e

2m
L · B − h̄k̇c · R

)
η, (12)

where for a relativistic particle of charge e and mass m, the
size of the Compton wavelength, λc, and with dilation factor
γ [39,40]

L(k) = h̄

γ 2

(
σ + λ2

c

k · σ

γ + 1
k
)

, (13)

is the angular momentum operator including the helicity. The
full Hamiltonian describing the motion of a rotating, relativis-
tic wave packet is, therefore, the sum of a Bloch energy, an
electrostatic energy, and a Zeeman energy [41]

H(rc, kc) = H0(kc + eA(rc)) − eφ(rc) + e

2m
L(kc) · B.

(14)
In this expression, H0(kc + eA(rc)) includes all magnetic
phenomena associated to the center of mass of the wave
packet, rc(B) and kc(B), generated by Peierls substitution,
kc → kc + eA(rc). The presence of a nonzero vector poten-
tial, A(rc) �= 0, produces very interesting and well studied
physical phenomena, such as Lorentz forces, cyclotron orbits,
and Landau levels, which have already been thoroughly stud-
ied and whose theory for the magnetic susceptibility due to
H0(kc + eA(rc)) is reviewed in Ref. [42]. In what follows,
however, we shall, instead, discuss the contribution from the
rotation of the wave packet, namely, phenomena relative to
the center of mass, which corresponds precisely to the Zeeman
Hamiltonian, HZ = (e/2m)L(kc) · B, in Eq. (14).

Let us now consider the case of a nonzero, transverse mag-
netic field, B ⊥ ẑ, and zero electric field, φ(rc) = constant ,
in the Coulomb gauge, ∇ · A(rc) = 0 and ∂A(rc)/∂t = 0. For
Bloch electrons at long wavelengths we have γ ≈ 1 and there-
fore L = −h̄σ [39]. Recalling the definition μB = eh̄/2m, we
conclude that

HZ = −μBσ · B, (15)

modifies the positions of all Weyl nodes [43], so that the
magnetic texture, m±(k) = 〈u±

k |σ|u±
k 〉, becomes aligned with

B. Inserting d(k, B) = d(k) − μBB into Eq. (2) we can use
once again the Chern number, C(λ, B), to produce the λ × B
topological phase diagram shown in Fig. 3, for a magnetic
field at an angle θ = π/3 with the x–axis. In what follows, we
will measure B in units of μB.

At B = 0 and λ > λc, we have C(λ, 0) = −2. All four
nodes are inside the cage, see Fig. 3, and the rotating wave
packet has angular momentum 〈Lz〉 = −2h̄. As the magnetic
field increases, we observe, initially, the annihilation between
the central node, Q = +1, and one of its satellites, Q = −1,
without changing the Chern number. This occurs when the
magnetic length, l−1

B = √
eB/h̄, becomes comparable to the

node separation [44] and the magnetic tunneling between
nodes of opposite chirality is promoted [45]. Further increase
in the magnetic field causes a partial quench, C = −2 → −1,
when one of the satellite nodes with Q = −1 leaves the cage,
see Fig. 3, and the angular momentum of the rotating wave
packet becomes 〈Lz〉 = −h̄. Finally, at even higher fields the
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FIG. 3. Topological phase diagram for the Hamiltonian (1) in a
transverse magnetic field, B ⊥ ẑ. The six square panels depict the
x, y components of the orbital magnetic texture (5) for strong (top)
and weak (bottom) warping, at θ = π/3, which is a high-symmetry
angle (halfway a C3 operation). The black dots on all six satellite
square panels represent the Weyl nodes with respect to the cage, rep-
resented by the thin red circle. Top: in the strong band warping case,
λW ≡ λ/λc = 3.0 (top horizontal red arrow in the main panel), one
observes a two-step topological transition depicted in (a) → (b) →
(c). First there is a partial quenching of the wave-packet rotation, C =
−2 → −1, and then its complete quenching, C = −1 → 0. Bottom:
in the weak band warping case, λW ≡ λ/λc = 0.8 (bottom horizontal
red arrow in the main panel), one observes also a two-step topolog-
ical transition depicted in (d) → (e) → (f). First there is a reversal
in the direction of rotation of the wave packet, C = +1 → −1, and
then its complete quenching, C = −1 → 0. The frame color of each
box follows the color assigned to each topological sector in the color
bar of the phase diagram.

wave packet rotation is completely quenched, C = −1 → 0,
after all satellite nodes have left the cage and 〈Lz〉 = 0, see
Fig. 3. Variations of the angle 0 � θxy � 2π produce the polar
phase diagrams shown in Fig. 4, which exhibits the C3 symme-
try of the Hamiltonian (1). Notice that for λ < λc there exists a
transition C = +1 → −1 → 0, which corresponds to a single
node with Q = +1 initially inside the cage at zero field which
is joined by two of its satellites with Q = −1 each, see Fig. 3.
One of the satellites annihilates with the central one, while
the other is expelled from the cage at high fields. The angular
momentum 〈Lz〉 = +h̄ is first reversed to 〈Lz〉 = −h̄ before it
is completely quenched, 〈Lz〉 = 0.

FIG. 4. Polar plots of the topological phase diagram in Fig. 3.
(Left): for strong band warping, λW ≡ λ/λc = 3.0, corresponding to
the top horizontal red arrow in Fig. 3 and (a) → (b) → (c). (Right):
weak band warping, λW = 0.8, corresponding to the bottom horizon-
tal red arrow in Fig. 3 and (d) → (e) → (f). The applied magnetic
field varies between B = 0 → 5(μB ), and for 0 � θxy � 2π .

IV. STEPS AND PLATEAUS IN THE 3D QAHE

Hamiltonian (1) has recently been successfully used to
describe several magnetotransport and Hall responses in trig-
onally warped tellurium [46]. The topological transitions
discussed above are bound to leave unique fingerprints in any
wave-packet-related properties, such as the intrinsic [47] or
the nonlinear [48] anomalous Hall conductivities, σxy(ε), or
the z magnetization

Mz =
∫

d3k
(2π )3

f (k)mz(k) + 1

e

∫
dε f (ε) σxy(ε), (16)

where f (ε) is the particle distribution function and ε is the
energy. The first term in Eq. (16) is a smooth bulk con-
tribution from m(k) while the second term is a quantized,
surface contribution from the anomalous Hall effect [41]. In
equilibrium both contributions to Eq. (16) are identically zero
by symmetry, but an electric field, E, can induce a net smooth
contribution to Mz [49–51], see Fig. 5(a). The center of mass
distribution is governed by

∂ f

∂t
+ ṙc · ∇rc f + k̇c · ∇kc f = − f − f (0)

τ
≡ −δ f

τ
, (17)

with ṙc and k̇c defined in Eq. (11), τ is a relaxation
time, and f (rc, kc, t ) ( f (0)(rc, kc, t )) is the nonequilibrium

FIG. 5. (a) the electric-field induced magnetization, Mz(E), via
Edelstein effect [52] and chiral surface sheet states; (b) adiabatically
connected slices, ki, perpendicular to kz [53], all with the same Chern
number [36].
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(equilibrium) distribution, such that

δ f (k, E) = −(ṙc(k)τ ) · (eE)(∂ε f (0)(k)), (18)

and f (0)(k) = 1/(eβ(ε(k)−μ) + 1) is Fermi-Dirac’s distribution
function for energy dispersion, ε(k), at the chemical potential,
μ, and inverse temperature, β = 1/kBT .

Because of the texture-momentum locking in Eq. (5),
m(k), the applied field, E ‖ ẑ, generates an imbalance
between positive and negative kz components of m(k), pro-
ducing a field-induced magnetization. This phenomenon is
known as the Edelstein effect [52] and has been observed
in several materials and model systems [49–51], in which a
net magnetization, Mz(E), is generated by an applied electric
field, E ‖ ẑ, according to

Mz(E) ≡
∫

dk mz(k) δ f (k, E) �= 0. (19)

The induced magnetization, Mz(E), in turn, breaks time-
reversal symmetry, gaps the spectrum, and transforms the
semimetal into a Chern (quantum anomalous Hall) insulator,
with chiral surface sheet states, see Fig. 5(a). The Chern num-
bers C1, . . . ,CN , associated with the slices orthogonal to the
kz direction from kz = 0 to kz = π , shown in Fig. 5(b), are all
equal [36]. This is because planes at momenta kz and kz + δk
can be adiabatically connected without closing the gap [53].
Hence, if any 2D cut with a given Chern number, C, is identi-
fied, this material must be a 3D quantum anamolus Hall effect
(QAHE) insulator [53]. For that reason we calculate the 2D
Hall conductance at kz = 0 for the wave packet (9) following
the procedure described in [47]:

σ 2D
xy (ε, B) = e2

2π h̄

∫
|k|<�

d2k F xy(k, B) g(k, ε, B), (20)

where

F xy(k, B) = d̂(k, B) · (∇kx d̂(k, B) × ∇ky d̂(k, B))

and

g(k, ε, B) =
∫

dk′ f (ε − |d(k′, B)|) |a(k − k′)|4, (21)

which has a compact support acting as a cage for the Berry
curvature, F xy(k, B), and whose shape and position in k space
are determined by the magnetic field, B, and energy, ε. The
ultraviolet (UV) cutoff, �, in Eq. (20) is a material specific
property that sets the scale for k above which the long-
wavelength, infrared (IR) description (1) of the (now) 2 × 2
chiral Dirac Fermions breaks down. For |k| > �, the disper-
sion relation bends towards the boundaries of the Brillouin
zone, becoming less dispersive thus producing electronic
states with a rather large effective mass at very short wave-
lengths, also known as spectator Fermions [54,55].

In Fig. 6(a) we show σ 2D
xy (ε, B = 0) for λ < λc (blue),

where C = +1, and λ > λc (red), where C = −2. The con-
ductivity is nearly half-quantized, σ 2D

xy (0, 0) ≈ Ce2/2h̄, and
the width of the plateaus is determined by Mz. For an initial
λ � λc and B ⊥ ẑ, the wave packet becomes quenched and
the plateau of the anomalous Hall conductivity, σ 2D

xy (0, B),
crosses over markedly between −2e2/2h̄ → −1e2/2h̄ → 0,
see Fig. 6(b). The stepwise quenching of the wave-packet

FIG. 6. (a) zero field, 2D Hall conductivity, σ 2D
xy (ε), for λ < λc

(blue), where C = +1 and the wave packet rotates clockwise with
orbital angular momentum 〈Lz〉 = +h̄, and λ > λc (red), where C =
−2 and the wave packet rotates clockwise with orbital angular mo-
mentum 〈Lz〉 = −2h̄; (b) 2D Hall plateaus, σ 2D

xy (0, B), as a function
of the applied magnetic field (example for θ = π/6) showing a
step-wise structure reflecting the the two-step magnetic quenching
of the wave packet orbital angular momentum, for λ > λc.

rotation is depicted in Fig. 7. The absence of sharp discon-
tinuities results from the nonsingular character of the Berry
curvature, F xy(k, B), when Mz �= 0, and from the uncertainty,
�k, brought in by the finite spread of the envelope a(k). The
transitions occur when the cages fail to enclose regions of
nonzero Berry curvature, for |k| < �. In Fig. 8, we plot the
Berry curvature, F xy(k, B), the cage, g(k, ε, B), and the UV
cutoff, �, used in the calculation of σ 2D

xy , for different values
of λ and B. The angular momentum lost by the IR Fermions
is, however, transferred to the UV spectator Fermions, so that
the total topological charge inside the entire Brillouin zone is
preserved, �CIR + �CUV = 0, as expected.

In order to test our predictions some estimates need to
be provided. Hamiltonian (1) can either occur on its own,
as a main contribution [28], or, as often, it occurs as a cor-
rection to some underlying, high-symmetry band dispersion,
(h̄2/2m∗

⊥)k2
⊥ + (h̄2/2m∗

‖ )k2
‖ [32]. According to Eq. (19), an

electric field, Ez ∼ 104V/m, applied to 1016 − 1018cm−3 free
carriers, generates a net magnetization between Mz ∼ 10 −
1000 Gauss, for τ ∼ 10−12s and an effective mass m∗

⊥,‖ ∼
0.1 − 0.4 me [50,51]. For systems with trigonal warping, the
satellite nodes typically occur at arround ktw ∼ 106cm−1 from
a high symmetry axis [28,30]. Recalling that for topological
insulators and semiconductors, Eg ∼ 0.1 − 0.5 eV, the typical
Compton wavelength of a semirelativistic wave packet is of
the order of λc ∼ 10 − 50 Å [56], we conclude that for a
field induced, time-reversal breaking topological gap of � ∼
1 − 3 meV and at T ∼ 10 K, the intensity of the transverse

FIG. 7. Step-wise quenching of the orbital rotation of the wave
packet for λ > λc and an applied, transverse magnetic field. The
rotation, initially with orbital angular momentum 〈Lz〉 = −2h̄ is first
partially quenched to an orbital angular momentum 〈Lz〉 = −h̄, and
then completely quenched to an orbital angular momentum 〈Lz〉 = 0.
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FIG. 8. Density plot of the Berry curvature, F xy(k, B), k−space
cages, g(k, ε, B) (solid white lines) with ε > |Mz|, and ultravio-
let cutoff |k| < � (dashed white lines), inside the surroundings
of a high symmetry point in the Brillouin zone. Top row:
B = 0 and increasing λ, showing C = +1 → −2; Bottom row:
fixed λ � λc and increasing B, showing C = −2 → −1 → 0,
for θ = π/6.

magnetic field necessary to induce such topological transi-
tions is of the order B = 1 − 5 T, is well within the accessible
range of typical laboratory equipments.

V. CONCLUSIONS

This work constitutes a fundamental building block to the
emergent field of Weyl magnetronics: the control of charge
through the magnetic manipulation of Weyl nodes and wave
packets, in order to fine-tune the 3D quantum anomalous Hall
effect. We also predict the existence of discretized anomalous
Hall plateaus due to the wave packet rotation, even in the
absence of Landau levels. Candidate Weyl magnetronic mate-
rials include monolayer and twisted bilayer graphene [28,29],
monolayer MoS2 [31], and Bi2Te3 [34]. In particular, the
possibility of manipulation of Weyl nodes in elemental tel-
lurium via strain (Weyl straintronics), numerically reported in
Ref. [57], encourages the pursuit for the Weyl magnetronics
in that very system, which might reveal the quantization of
the intrinsic [47] and nonlinear [48] anomalous Hall effects,
or any other observables sensitive to the Weyl node position
or the structure of van Hove singularities in the electronic
structure [58].
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