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Universality classes in out-of-equilibrium systems: An encompassing theorem
for a one-dimensional fusing particles model
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This paper supports the idea that some out-of-equilibrium systems can be described by universality classes. A
specific out-of-equilibrium fusing particles model is studied in detail, resulting in a method for determining the
number and mass of the final particles based solely on the initial conditions, eliminating the need to evolve the
particle system. This method reveals the basis for a universality class encompassing theorem, which is developed
to define other models within the same universality class. This result establishes an infinite number of models
with the same behavior and scaling, two of which are described in detail.
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I. INTRODUCTION

The significance of nonequilibrium phenomena in physics
is profound, as they capture the intrinsic dynamic nature of
complex systems beyond their states of thermodynamic equi-
librium. While it can be argued that nearly every observable
macroscopic event occurs under nonequilibrium conditions, a
comprehensive framework for understanding such systems re-
mains elusive. This challenge arises from the diverse array of
nonequilibrium phenomena observed in nature. Examples in-
clude biological processes [1], chemical systems [2], turbulent
flows [3], quantum transport in novel materials [4], vehicular
movement on road networks [5,6], competitive dynamics for
resources among populations [7], and plasma instabilities [8],
among others. Most notably, these phenomena manifest across
scales, ranging from the microscopic [9] to the cosmological
[10]. In seeking a unifying framework, it was proposed that
universality classes for out-of-equilibrium systems might exist
[11]. Furthermore, experimental evidence has been presented
[12,13] to support this idea.

The concept of universality classes was initially proposed
for equilibrium critical phenomena. In equilibrium systems,
second-order phase transitions exhibit universality. Diverse
setups and models exhibit the same critical exponents and
asymptotic behavior near phase transitions, indicating they
belong to the same class. This implies that, although systems
may be very different in terms of their microscopic interac-
tions, geometry, dimensions, etc., they will exhibit universal
properties and behavior near critical points or phase transi-
tions. For thermodynamic systems of an infinite number of
particles, the theory of renormalization groups has proven to
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be a valuable tool for characterizing different mathematical
models that produce phase transitions. More importantly, it
has been found to be a key factor in determining if any
two models belong to the same universality class. However,
for finite systems such as the one studied in this paper, no
definitive results are yet known. Moreover, there is no method
for either finite or infinite systems that sheds light on how to
define a new model that belongs to the same universality class
of a given model. This paper intends to makes progress in this
direction.

As a starting point, a fairly simple out-of-equilibrium finite
particle system is studied. This system corresponds to a gas
of N identical point particles in an open one-dimensional
space undergoing perfectly plastic collisions [14]. This ele-
gant model has been the subject of rigorous studies, and a
thorough characterization has been achieved. For this model,
an encompassing theorem is presented to define other models
in the same universality class. Based on this theorem’s result,
an infinite collection of mathematical models belonging to the
same universality class is introduced, and two of these models
are described.

II. A 1D PHYSICAL FUSING PARTICLE MODEL

At time zero, there are N identical point particles of mass m
in a one-dimensional space at different arbitrary positions. Let
the farthest left particle be considered particle 1, the second
be particle 2, and so on, with particle N being the right-
most one, i.e., their initial positions verify Y1 < Y2 < · · · < YN

respectively. In this model, velocity will take a protagonist
role. The initial velocities of each particle V1,V2, . . . ,VN are
considered as a sequence of iid random variables with an
absolute continuous distribution function F (x) := P (V1 � x).
Each particle evolves at constant velocity, Yi(t ) = Vit + Yi,
until it eventually collides with another particle. At this point,
a perfectly plastic collision is generated, resulting in a single
particle with a mass that is equal to the sum of the individual
particles’ masses. The velocity in which this particle moves is
determined by the conservation of momentum, which dictates
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FIG. 1. Example of the evolution of a system of N = 10 particles
suffering: (a) perfectly plastic collisions and (c) artificial collisions.
(b) Example of a model of N = 22 noninteracting particles escaping
into a larger container. Model 2 illustrates the use and positioning of
movable walls to create a temperature gradient. Recipients are at the
same pressure (P).

that the velocity of the fused particle will be the weighted
average particles’ velocities prior to collision. The merged
particles evolve equally to the nonmerged ones, i.e., they move
at constant velocity until a new plastic collision eventually
happens.

In this paper, the asymptotic properties of the stochastic
process XN (t ) = number of particles at time t, which starts
with XN (0) = N particles, are studied. XN (t ) converges to a
random variable X̃N that naturally depends on N ,

XN (t ) →
t→∞ X̃N .

On the left panel of Fig. 1, a realization of a system of N = 10
identical particles undergoing perfectly plastic collisions is
shown, identified as Model 1. The evolution of the number of
particles, X10(t ), is shown below. For this random realization,
at the time when the last collision occurs, henceforth referred
to as τ , only three particles remain in the system. In other
words, for this realization, X̃10 = 3 [or equivalent X10(t ) = 3
for t � τ ]. When looking at the mass of these three resulting
particles and comparing them to the mass of the initial ones,
one of them will be three times the original value; another, six
times the original value; and the last one, the one which has
not suffered any collision, will have the same mass of the orig-
inal particles. Specifically, the final masses are represented as
M = (1, 6, 3). This notation assigns the first coordinate of the
vector to the particle in the farthest left position, the second to
the next position, and so forth.

A. Literature review

The model was first studied numerically in [14], and later,
in [15], interesting analytical results were obtained. Three
significant results, listed below, have been proven. The first
result shows that changing the initial positions of each parti-
cle, while maintaining their order, does not alter the number
of final particles or their masses.

Theorem 1 (Sibuya et al. 1990 [15]). X̃N and M do not
depend on the initial positions.

These position changes can only affect the sequence of
collisions and, trivially, the timing of the last collision (τ ).

However, they do not affect the final configuration (X̃N and
M). The second result presents the distribution of X̃N .

Theorem 2 (Sibuya et al. 1990 [15]). The probability mass
function of X̃N is given by

P (X̃N = k) = |c(N, k)|
N!

, (1)

where c(n, k) is the Stirling number of the first kind given by
the equality a(a − 1) · · · (a − N + 1) = ∑N

k=0 c(N, k)ak .
In addition, the mean and variance of X̃N is given by

〈X̃N 〉 =
N∑

k=1

1

k

N�1≈ ln(N ) + γ , (2)

〈
X̃ 2

N

〉 − 〈X̃N 〉2 =
N∑

k=1

1

k
−

N∑
k=1

1

k2

N�1≈ ln(N ) + γ − π2

6
, (3)

where γ is the Euler-Mascheroni constant. As Theorem 2
states, X̃N is universal, also known as distribution-free; i.e.,
Eq. (1) [and the ones derived from it, Eqs. (2) and (3)] is
valid for any continuous initial velocity distribution (F ). In
essence, the specific distribution of initial particle positions
and velocities does not matter. This behavior is expected in
systems approaching a critical phase transition [16,17], or
in self-organized criticality systems [18–23]. In criticality,
scale-free behavior is also expected for some variables. As
explained in Theorem 3, the model exhibits power-law be-
havior, and a characterization of the final mass distribution is
presented. In particular, the expected number of final particles
with mass s, denoted as ns, is studied, where

ns :=
X̃N∑
i=1

δM[i],s, (4)

δi, j is the Kronecker delta, and M[i] is the mass of final
particle i.

Theorem 3 (Sibuya et al. 1990 [15]). For s = {1,

2, . . . , N}, the expected number of final particles with mass
s is given by

〈ns〉 = 1

s
. (5)

The result is particularly interesting, showing the first in-
dication of criticality with a power-law decay of exponent 1.
Equally interestingly, this expectation does not depend on N .

As demonstrated in the previous paragraph, both the num-
ber of final particles [Eq. (1)] and the expected number of final
particles with mass s [Eq. (5)] are found to be universal. How-
ever, some nonuniversal properties of this model have also
been studied. For instance, both the size and velocity of the
rightmost final particle were investigated in [24]. Another ex-
ample of nonuniversal behavior was examined in [25], where
the velocity distribution of the final particles was analyzed.

B. New results

Further evidence for the critical behavior of this out-of-
equilibrium system, as well as scaling behaviors, is shown in
this section. Additionally, a formula for the calculation of X̃N

and M is provided. This formula will be crucial for Sec. III.
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1. The last collision time distribution

The last collision time (τ ) distribution depends on the
initial conditions of the particles. To study this distribution,
two factors must be considered. First, their initial positions:
in this section, a grid of length N is used, where particles are
placed at Yk = k. Second, their initial velocities: as mentioned
before, these are considered i.i.d. continuous random variables
with cumulative distribution F . In this section different F
distributions are studied: Normal(0,1), Normal(0,10), Nor-
mal(10,1), Uniform(−1,1), Uniform(0,1), Uniform(−10,10),
and Beta(0.5,0.5).

As the last collision time is a random variable that depends
on F and N , it will be referred to as τF,N from this point
forward. In Fig. 2(a) the τF,N distribution is examined by
plotting P (τF,N > t ) =: hF,N (t ) as a function of t for each
of the different F distributions, and each of the four values
of N = {10, 30, 100, 300}. Note that all the curves exhibit
a similar behavior. In scale-invariant systems, such as those
observed in criticality, it is well known that the different
behaviors of hF,N (t ) can be collapsed into a single curve,
h(t ), with the appropriate scaling. Let σF be the variance of
F distribution, and let

W := τF,NσF N−α

be a rescaled version of τF,N . The new variable has length
units. Figure 2(b) shows the distribution of W for the curves
shown in Fig. 2(a), where the different F distributions and
N are studied. The value of α is constant and will be equal
to 1.65. When the scaling given by W is applied, as seen
in Fig. 2(b), all the curves will collapse into a single curve.
The distribution of W remains the same for any F with finite
variance. For example, for a power-law distribution with a
power exponent β > 2 in the probability density function,
expressed as ∼1/(x1+β ). Moreover, this scaling goes as 1/t ,1

P (W > t ) ∼ 1/t . This phenomenon provides additional evi-
dence to support the hypothesis that the system is in a critical
regime.

Interestingly, if the initial position configuration is
changed, the curves will also be collapsed under the appro-
priate scaling, as far as the study shows. An example of
this behavior is having N particles be placed in a confined
region, such as the one given by random positions from
a Uniform(−1,1) distribution. The same will also be true
even with random positions from a Normal(0,1) distribution.
Regardless of the specifics, as long as the initial position
configuration differs from that of the grid, the only change
reflected in the scaling is in α, now adopting the value 0.65,
exactly one less than that of the grid. Unfortunately, an ex-
planation as to why the exponent changes has not yet been
determined. These results are shown in Appendix A.

2. Expected number of particles evolution

This section introduces the time evolution of a specific
quantity of the fusing particles model: the expected number
of particles, 〈XN (t )〉. It begins at time zero with N particles,

1A fit yields a power exponent δ = 0.98 ± 0.04 for P (W > t ) ∼
1/t δ .

(a)

(b)

(c)

FIG. 2. (a) Last collision time distribution, P (τF,N > t ) and
(b) τF,N rescaled version P (τF,NσF N−α > t ) as a function of t .
(c) Evolution of the mean number of particles 〈XN (t 	)〉 as a
function of a rescaled time t 	. For F : Normal(0,1) (σF = 1), Nor-
mal(0,10) (σF = 10), Normal(10,1) (σF = 1), Uniform(−1,1) (σF =√

1/3), Uniform(−10,10) (σF = 10
√

1/3), Uniform(0,1) (σF =
1/

√
12), and Beta(0.5,0.5) (σF = √

1/8), and considering N =
{10, 30, 100, 300}.

and it ends at
∑N

k=1
1
k [see Eq. (2)]. Although the specific

evolution of this quantity has not yet been explored, as with
any nonuniversal variable, it is safe to assume it will depend
on N and F . With this in mind, this section will attempt to
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explore the evolution of this value in detail. In order to do
so, the same initial velocity distributions (F ) and values of N
previously studied will be considered. Additionally, the initial
position of the particles will be given by the grid introduced in
the previous section. Different curves are obtained for each F
and N condition studied (data not shown), similarly to the ob-
servations for τF,N in Fig. 2(a). However, when examining the
expected value of the rescaled variable, XN (t	) := XN (tσF ),
the curves collapse into a single unified curve. Figure 2(c)
shows the results of 〈XN (t	)〉 as a function of the rescaled
time t	 for each F and N combination. Note that for each N ,
〈XN (t	)〉 exhibits consistent behavior across all F distributions
studied.

3. A calculus for X̃N and M that does not require time evolution

For any given initial condition, the way to compute the
number of final particles (X̃N ) and their masses has been to
evolve the particles system numerically and study the results.
However, is there a way to calculate these values without
evolving the system? The main purpose of this section is to
show that it is indeed possible, and to present a proposal for
calculating both X̃N and the mass of each final particle, with
no need for time evolution.

Before presenting the main result, two points must be un-
derstood. First, note that in a system characterized by perfectly
plastic collisions, any fused particle (regardless of the order
in which the collisions occurred) will have a velocity equal
to the average of the velocity of the particles that formed
it. Specifically, when two particles with masses m1 and m2

and velocities V1 and V2 respectively collide, the resulting
fused particle of mass m1 + m2 has a velocity equal to V1 p1 +
V2(1 − p1) with p1 = m1/(m1 + m2). Calculating the velocity
of a system of particles of equal masses, such as the one in
this case, is surprising simple: the final velocity of any fused
particle, Ṽf , formed by Nf identical particles, such as particles
k, k + 1, . . . , k + Nf − 1, ends up being the average velocity
of the fused particles,

Ṽf = V
k+Nf −1
k , (6)

where V
j
i := 1

j−i

∑
k∈N j

i
Vk with N j

i := {k ∈ N : i � k � j}.
Before formally presenting the main result of this sec-

tion (Theorem 4), let’s first look at a simple explanation. In
order to do this, the time evolution of the system shown in
Fig. 1(a) will be taken as reference. As seen in this exam-
ple, after a time τ , the number of final particles remains the
same. These final particles, from left to right, have increasing2

velocities. This increasing behavior is always found in any
configuration, as additional collisions would occur otherwise.
Therefore, if the system culminates with more than one final
particle (X̃N > 1), then the condition

V
j1
1 < V

j2
j1+1 < V

j3
j2+1 < · · · < V

N
jX̃N −1+1

2Although the condition for particles not merging requires that the
final velocities form a nondecreasing sequence, we will specifically
consider an increasing sequence and disregard the case of equal
velocities, as the probability of this occurring is zero with continuous
random variables.

must be satisfied. A key step in obtaining the final configura-
tion is calculating the values j1, j2, . . . , jX̃N

and X̃N which (as
seen below) are coupled.

The procedure for determining the final number of particles
(X̃N ) and the masses of each final ( jk − jk−1 − 1) particle is as
follows:

(1) Identify a particle that meets a certain condition.
(2) Combine the identified particle with lower index parti-

cles.
(3) From the remaining particles, find another one that

satisfies the given condition.
(4) Combine this new particle with the remaining lower

index ones.
(5) Repeat this iterative process until particle N satisfies

the condition.
The specific condition that the target particle, denoted by

particle k, must satisfy is for the resulting merged particle to
have a lower velocity than any “merged” particle containing
particle k + 1.

At this point, some definitions, as well as the main result,
are introduced. Consider the vector vi representing the initial
velocities of N particles, expressed as vi = (V1,V2, . . . ,VN ),
and let wi = (V1,V2, . . . ,VN , 2 max{V1,V2, . . . ,VN }) be the
velocity vector augmented by an additional coordinate. This
coordinate has a value greater than the maximum velocity
of the N particles. The purpose of introducing w is only to
simplify the notation. Let v and w be a general vector obtained
by potentially excluding some of the first consecutive coordi-
nates, such as v = (V4,V5, . . . ,VN ). The set of all real vectors
v with lengths ranging from 1 to N will be referred to as

 := ∪k∈NN

1
Rk . Let s be an arbitrary vector, s[ j] correspond

to element j, and s[ j : k] correspond to the vector starting at
coordinate j and ending at element k of the sequence.

Definition 1. Let m̃ : 
 → NN
1 be the function

m̃(w) = min
{

j ∈ NL(w)−1
1 : w

j
1 < wi

j+1 ∀i ∈ NL(w)
j+1

}
,

where w
j
i = 1

j−i

∑ j
k=iw[k].

Definition 2. Let G be a function that verifies

G(w) =
{
w[(m̃(w) + 1) : L(w)] if m̃(w) < L(w) − 1
∅ if m̃(w) = L(w) − 1

and G(∅) = ∅.
Definition 3. Let Gk be the k-times composition of the

function G, with G0 the identity function. For example,
G3(w) = G(G(G(w))).

Theorem 4. It is possible to calculate the number of fi-
nal particles (X̃N ) and their individual masses (M) without
evolving the particle system (in time). Moreover, for a given
augmented initial velocity vector wi,

X̃N (wi ) = min
{
k ∈ NN

1 : Gk (wi ) = ∅}
, (7)

M(wi) = (m̃(G0(wi )), m̃(G1(wi)), . . . , m̃(GX̃N (wi )−1(wi))).
(8)

See Appendix B for a proof. Based on the previous the-
orem, a simple algorithm for computing X̃N and M can be
developed. It is worth noting that this is not the first paper
to present a result for X̃N and M without the need to evolve
the system. In [15], the authors show that these values can
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be obtained geometrically. The convex hull of the function
representing the cumulative momentum as a function of the
cumulative mass contains the information of both X̃N and
M. Theorem 4 is the analytical procedure of this geometric
approach, which, as seen in the next section, provides the
basis for defining other models within the same universality
class.

Finally, an example is presented.
Example 1. Let vi = (5.4, 2.1, 9.5, 1.3, 4.5, 3.7, 8.1), and

therefore wi = (vi, 19) then

m̃(G0(wi )) = 2, G1(wi) = (9.5, 1.3, 4.5, 3.7, 8.1, 19),
m̃(G1(wi )) = 4, G2(wi) = (8.1, 19),
m̃(G2(wi )) = 1, G3(wi) = ∅,

X̃7(wi ) = 3, and M(wi ) = (2, 4, 1). For completeness, the ve-
locities of the final particles are computed. The velocity of
the leftmost merged particle is (5.4 + 2.1)/2 = 3.75, and the
velocities of the remaining final particles (from left to right)
are 4.75, and 8.1. Note the increasing velocity behavior of the
final particles.

III. UNIVERSALITY CLASS OF THE FUSING PARTICLE
MODEL AND ITS POSSIBLE ENCOMPASSING THEOREM

It has been shown that the out-of-equilibrium fusing par-
ticle model behaves as a system in the critical regime. This
naturally leads to question its universality class and, in par-
ticular, which other models can be constructed within this
class. As far as it is known, the latter question has not
been answered for either equilibrium nor nonequilibrium sys-
tems. A proposal for the fusing particles model is presented
here.

The universality class of the model under consideration
will be referred to as the universality class of partition models.
In this fusing particles model, the final number of particles
and their masses are determined by a partition of their initial
velocity sequence. Given the initial velocities, there is only
one partition that reproduces the physics of the final state.
Theorem 4 shows how to construct this partition. What makes
this model special is that the partition verifies two conditions:
the final number of particles, X̃N , has a probability mass func-
tion given by Eq. (1); and the expected number of clusters
of size s is given by Eq. (5). If the function m̃ is modified, a
new partitioning or clustering model will be generated using
the same theorem. However, not all functions m̃ will ensure
the previously mentioned both conditions. Consequently, the
formal question becomes: given a sequence of i.i.d. random
variables, which m̃ functions satisfy these two conditions
when Eqs. (7) and (8) are applied?

Enhancing the definition of the function m̃ is the first step in
answering this question, in order to the limit the alternatives.
A new function g, explained below, will be used for this
purpose.

Definition 4. Let m̃ : 
 → NN
1 be the function

m̃(w) = min
{

j ∈ NL(w)−1
1 : g(w[1 : j])

< g(w[ j + 1 : i])∀i ∈ NL(w)
j+1

}
, (9)

with g :
⋃

k∈NN
1
Rk → R a function.

Now that m̃ has been specified, the next step is finding
which g functions generate models within the same universal-
ity class. This is answered in Theorem 5, which is the result of
combining two theorems found in two older papers ([26] and
[15]).

Theorem 5. A function g that verifies that, for 1 � a <

b � N ,

min{g(w[1 : a]), g(w[a + 1 : b])} � g(w[1 : b])

� max{g(w[1 : a]), g(w[a + 1 : b])} and

× g(w[1 : a]) �= g(w[1 : b]) (10)

also satisfies Eqs. (1) and (5) when X̃N and M are given
by Eqs. (7) and (8), considering m̃ given by (9) and wi =
(V1,V2, . . . ,VN , 2 max{V1,V2, . . . ,VN }) with V1,V2, . . . ,VN

being i.i.d. continuous random variables with an arbitrary
distribution F .

See Appendix C for a proof.
Examples of g functions that verify Eq. (10) include the

following:

Model 0: g(w[i : j]) = w[ j], (11)

Model 1: g(w[i : j]) = 1

j − i

j∑
h=i

w[h], (12)

Model 2: g(w[i : j]) = 1

j − i

j∑
h=i

(w[h])2. (13)

However, these examples are not exhaustive; an infinite col-
lection of models can be generated. Specifically, Model k can
be defined as one that has g(w[i : j]) = 1

j−i

∑ j
h=i(w[h])k for

k � 1. More generally, g(w[i : j]) = 1
j−i

∑ j
h=i f (w[h]) with f

being any real function (with domain in 
) that is not constant
on any interval.

Model 1 corresponds to the 1D physical fusing parti-
cles model studied in the previous section. Model 2 clusters
particles according to the empirical second moment of the
distribution. To understand this, consider the following exam-
ple: suppose there are N noninteracting point particles in a
recipient at a given temperature, and a small hole is made so
that the particles escape one by one into a larger container.
At this point, a theoretical question arises: assuming that the
velocities of each of the particles at the moment they enter
the larger container are known at time zero, is it possible to
use walls to create a temperature gradient? In other words,
if movable walls (or partitions) can be used to “trap” the
particles that have already entered, when and where should
they be positioned for a gradient of increasing temperatures to
be created? This model is portrayed in Fig. 1(b). The number
of particle clusters (number of walls plus one) generated using
the criteria given by Eq. (12) (which will also be called X̃N

in this section) has a probability law given by Eq. (1), proven
by Theorem 5. In addition, the mass vector M, which contains
the information of the number of particles trapped by the walls
in this particular model, verifies that the expected number
of clusters of trapped particles of size s follows Eq. (5). An
example can be seen in Fig. 1(b), where M = (2, 4, 6, 7, 3).
The observable difference between Models 1 and 2 lies in their
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mass vectors; each criterion yields a different probability law
for M, always satisfying Eq. (5).

There is another interpretation for Model 2, and a general
interpretation for Model k (k � 1) that relates to the fusing
particles model. Assuming that w[h] � 0 (positive velocities),
the segmentation produced by g(w[i : j]) = 1

j−i

∑ j
h=i(w[h])k

is the same as the one produced by f (g(w[i : j])), with f
being an increasing monotonic function. If f is considered the

kth root, f (g(w[i : j])) = k

√
1

j−i

∑ j
h=i(w[h])k , then the inter-

pretation of the model that f defines becomes straightforward
when working with fusing particles model. Assuming that all
particles now have positive initial velocities V1,V2, . . . ,VN ,
then, Model k will represent a fusing particles model with
conservation of the quantity defined here as

Qk =
N∑

j=1

mjV
k
j . (14)

For example, when k = 1, this quantity is momentum, while,
when k = 2, it is energy. In terms of energy conservation, the
model for k = 1 exhibits energy loss, and for k > 2, the model
is nonphysical due to energy being created as particles fuse.
In any case, when two particles with masses m1 and m2 and
velocities v1 and v2, respectively, collide, the resulting fused
particle, which mass is the sum of m1 and m2, will have a
velocity v f given by

v f = k

√
m1v

k
1 + m2v

k
2

m1 + m2
.

More generally, the final velocity of any fused particle, Ṽf ,
formed by Nf identical particles (particles j, j + 1, . . . . , j +
Nf − 1), is the kth power average velocity of the fused
particles,

Ṽf = k

√√√√√ 1

Nf

j+Nf −1∑
h= j

V k
h .

Model 0: A 1D nonphysical fusing particle model

Here Model 0 is studied. Its m̃ function can be rewritten,

m̃(w) = min
{

j ∈ NL(w)−1
1 : w[ j] < w[i] ∀i ∈ NL(v)+1

j+1

}
= {

k ∈ NL(w)−1
1 : w[k] = min(w)

}
,

where it is made explicit that the model partitions the se-
quence of velocities based on the minimum velocities. This
new model can be formulated as follows: taking the fus-
ing particles model,as reference, a new nonphysical collision
process for the same initial conditions is developed. In this
artificial process, once two particles collide, the resulting
merged particle continues at a velocity equal to the minimum
velocity of both particles involved in the collision. The only
difference between this new process and the original one is
that there is no conservation of momentum: the velocity of the
merged particle, which is the average velocity of the original
particles prior to the merger, is replaced by the minimum
velocity of the colliding particles.

A realization of this nonphysical case is shown in Fig. 1(c).
The initial conditions are the same as the ones in the physical
system shown in the left panel. Note that in this particular
realization, the number of final particles is equal to 2, while in
the physical model it is equal to 3. The evolution of the total
number of particles is shown in the lower panel of Fig. 1(c).
The pattern for calculating the number of final particles can
be easily found by looking at this figure. First, the particle
with the minimum velocity must be found, let us say it is
particle j. Then, particles 1, 2, . . . , j − 1 merge with particle
j, producing the leftmost final particle with mass j. Then the
minimum velocity particle among the remaining particles j +
1, j + 2, . . . , N is identified; let us say it is particle k. Then
all the previous particles in this group ( j + 1, j + 2, . . . , k)
are merged, producing a second final particle of mass k − j.
This process is repeated until the minimum velocity particle
is particle N . For example, in Fig. 1(c) the minimum velocity
is seen to correspond to particle number 7, which merges
particles from 1 to 7, and the second minimum velocity of the
remaining particles to correspond to particle 10, which merges
particles from 8 to 10. As a result, the two final particles
(X̃10 = 2) have masses of 7 and 3, respectively M = (7, 3).
It is important to note that this final configuration remains
the same [X̃10 = 2 and K = (7, 3)] for any initial position
satisfying Y1 < Y2 < · · · < Y10. This will always be the case;
the positions will be irrelevant, the order of the particle(s)
velocities being the only key element, rather than the specific
values. This is why the behavior of Z̃10 and their masses is,
once again, universal. Theorem 5 ensures that P (X̃N = k) =
|c(N,k)|

N! and and that the scale-free behavior given by Eq. (5) is
satisfied for the expected number of final particles of size s.

The last collision time distribution

In this section, the distribution of the last collision time
(τ ) is studied. Unlike the physical model, this one allows for
an explicit expression for τ . The derived expression for τ is
presented below.

Let Ṽ1, Ṽ2, . . . , ṼX̃N
be the velocities of the final particles.

In this nonphysical model, these final velocities correspond to
the velocities of certain specific particles. As expected,

Ṽk = VMk for k = {1, 2, . . . , X̃N },
where Mk = ∑k

h=1m(Gh−1(wi)). A final particle, let’s say fi-
nal particle k, is considered to be born when all its constituent
particles have merged. Let this time be denoted by τk , and this
variable can be defined by the following equation:

τk =
{

max
Mk−1<i<Mk

YMk −Yi

Vi−VMk
if m(Gk−1(wi )) > 1

0 if m(Gk−1(wi )) = 1
(15)

with M0 = 0 and Yi the initial position of particle i. With this
definition in mind, the last collision time is given by

τ = max
{
τ1, τ2, . . . , τX̃N

}
. (16)

Based on Theorem 4, as well as Eqs. (15) and (16), it is
straightforward to define an algorithm that quickly computes
τ without the need to evolve the particle system.

Obtaining an analytical result for P (τ > t ) is challenging,
so numerical simulations are presented in this case instead. As
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FIG. 3. (a) Last collision time distribution, P (τF,N > t ), (b) τF,N

rescaled version P (τF,NσF N−αF > t ) as a function of t . For F : Nor-
mal(0,1) (σF = 1), Normal(0,10) (σF = 10), Normal(10,1) (σF =
1), Uniform(−1,1) (σF = √

1/3), Uniform(-10,10) (σF = 10
√

1/3),
Uniform(0,1) (σF = 1/

√
12), and Beta(0.5,0.5) (σF = √

1/8), and
considering N = {10, 30, 100, 300, 1000}. The evolution of the
mean number of particles 〈XN (t 	)〉 as a function of a rescaled time
t 	, considering F the three previous (c) normal and (d) uniform
distributions and N = {10, 30, 100, 300, 1000}.

seen in Eqs. (15) and (16), τ depends on N , F , and the initial
positions of the particles. Figure 3(a) shows an estimation of
P (τ > t ) as a function of t , considering initial positions on
the grid of length equal N previously used, as well as Uniform
and Normal initial velocity distributions. It is noteworthy that,
across all studied values of N = 10, 30, 100, 300, the curves
exhibit similar behavior. In order for these curves to collapse,
the parameter αF must vary, resulting in the rescaled τ :

WF := τF,NσF N−αF .

The results for WF are shown in Fig. 3(b). For the
three Uniform distributions [Uniform(0,1), Uniform(−1,1),
Uniform(−10,10)], the parameter αF equals 2. Conversely,
for the three Normal distribution cases [Normal(0,1), Nor-
mal(0,10), Normal(10,1)] αF = 1.15.

Unlike the physical model discussed earlier, the αF pa-
rameter in this model varies depending on the initial velocity
distribution. Furthermore, not all distributions collapse into a
single curve. Further analysis is necessary to fully understand
this specific behavior.

Finally, in Figs. 3(c) and 3(d), the evolution of the num-
ber of particles in the rescaled time t	 = σFt is presented.
Figure 3(c) displays the results for the three Normal distri-
butions studied, while Fig. 3(d) shows those for the three
Uniform distributions. The evolution collapses within the
same distribution type, but different distributions exhibit dis-
tinct behaviors.

IV. CONCLUSIONS

A 1D particle system of N identical point particles under-
going perfectly plastic collisions has been studied in detail.
One notable property of this model is its analytical tractability
for finite N . The distribution of the number of final particles,
along with its mean and variance, has already been achieved
[15]. Additionally, the expected number of final particles of
mass s follows a power-law behavior, indicating that this
nonequilibrium system behaves as a system in criticality.
Moreover, these results are universal, meaning they do not
depend on the initial conditions of the particle system.

Further evidence supporting the criticality hypothesis in
this out-of-equilibrium system has been presented. Specif-
ically, the last collision time (τ ) and the evolution of the
number of particles [〈XN (t )〉] have been studied. The differ-
ent τ curves collapse under the appropriate scaling, yielding
a probability density that decays as 1/t2. The behavior of
〈XN (t )〉 is more complex, but for each N , all different curves
collapse into a single curve.

Additionally, a procedure for calculating the number of
final particles and each of their masses has been developed
(Theorem 4). This result allows for the calculation of these
quantities without the need for the system to evolve. This pro-
cedure is significant and particularly useful for studying very
large systems, primarily due to its computational efficiency.
Moreover, this finding also raises an important question: what
other conditions might lead to the same fundamental statistical
properties observed in the fusing particles model? In other
words, which other models belong to this same universal-
ity class in the context of criticality? Whether Theorem 5
fully comprehends every model within this universality class
or not is a question that extends beyond the scope of this
work. Nevertheless, this theorem represents a comprehensive
attempt to provide an infinite set of models within this class,
offering valuable tools for understanding and addressing other
nonequilibrium processes.
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APPENDIX A: τ DISTRIBUTION FOR UNIFORM
AND NORMAL INITIAL POSITIONS

This Appendix presents results for τF,N when the initial
positions of the particles are randomly distributed according
to a Uniform(−1,1) or Normal(0,1) distribution. The rescaled
versions of τF,N are denoted as WU and WG for Uniform and
Gaussian initial positions, respectively, where WU (WG) is
defined as WU := τF,NσF N−αU . Figure 4(a) shows the distri-
bution of WU , while Fig. 4(b) shows the results for WG. Note
that for the different velocity distributions studied, the results
collapse to a single curve in both cases. The only difference
lies in the α parameter: αU = 0.6 and αG = 0.65. Further
analysis is needed to understand the impact of other initial
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FIG. 4. P (WU > t ), (b) P (WG > t ) as a function of t . For
F : Normal(0,1) (σF = 1), Normal(0,10) (σF = 10), Normal(10,1)
(σF = 1), Uniform(−1,1) (σF = √

1/3), Uniform(−10,10) (σF =
10

√
1/3), and Uniform(0,1) (σF = 1/

√
12), and considering N =

{10, 30, 100, 300, 1000}.

velocity distributions, as well as different distributions for the
initial positions.

APPENDIX B: PROOF OF THEOREM 4

The process begins with a configuration of velocities v1 :=
vi = (V1,V2, . . . ,VN ) and a set of positions Y1 < Y2 < · · · <

YN . The specific positions determine the sequence of colli-
sions, dictating which ones occur initially and which ones
follow. Importantly, this sequence doesn’t impact the total
number of final particles or the mass of each individual parti-
cle (see Theorem 1). Consequently, in the following, we will
assume a particular order in which the collisions take place.

For particles 1 and 2 to merge, one of two alternatives must
occur: (1) V1 > V2, or (2) V1 > 1

s−1

∑s
i=2Vi for some s > 2

(i.e., particle 1 collide with a fused particle that contains par-
ticle 2). Alternatively, we can express that particle 1 merges
with other particles if s1(vi ) �= ∅, where

s1(v1) = min
{
s ∈ NN

2 : V1 > V
s
2

}
,

with V
k
j = 1

k− j

∑k
i= jVi. In this case, particle 1 will collide with

a merged particle comprising particles 2, 3, . . . , s1(v1). In
essence, a merged particle will form, incorporating particles
1, 2, . . . , s1(v1), and it will have a velocity V

s1(v1 )
1 .

Now, with this new merged particle, we work as we did
before, i.e., as if it were the original particle 1, which can be
merged when s2(vi ) �= ∅, where

s2(v1) = min
{
s ∈ NN

s1(v1 )+1 : V
s1(v1 )
1 > V

s
s1(v1 )+1

}
.

If s2(v1) �= ∅, then the merged particle containing particles
1, 2, . . . , s1(v1) will inevitably collide with another merged
particle containing particles s1(v1) + 1, 3, . . . , s2(v1). Con-
sequently, a new merged particle will form, incorporating
particles 1, 2, . . . , s2(v1), and it will possess a velocity of
V

s2(v1 )
1 . This process repeats until, for the first time,

k̃(v1) = min
{
k ∈ NN

1 : sk (v1) = ∅ or sk (v1) = N
}

with

sk (v1) = min
{
s ∈ NN

sk−1(v1 )+1 : V
sk−1(v1 )
s0(v1 ) > V

s
sk−1(v1 )+1

}
,

and s0(v1) = 1.
Finally, the resulting final particle 1, the leftmost particle,

will be a fusion of particles 1, 2, . . . , sk̃(v1 )(v1). That is, the

FIG. 5. Solution based on system evolution.

mass will be sk̃(v1 )(v1), and if its mass is smaller than N , the
following condition will be satisfied:

V
sk̃(v1 ) (v1 )

1 < V
s
sk̃(v1 ) (v1 )+1 ∀s ∈ NN

sk̃(v1 )+1. (B1)

The general case of sk̃(v1 )(v1), which includes the value N , can
be written as

sk̃(v1 )(v1) = min
{

j ∈ NN
1 : V

j
1 < V

i
j+1 ∀i ∈ NN+1

j+1

}
(B2)

=: ˜̃m(v1), (B3)

where, to improve the notation, an additional “phantom” parti-
cle is added: particle N + 1, positioned to the right of particle
N , with a velocity equal to 2Vmax := 2 max{V1,V2, . . . ,VN }.
The upper row in Fig. 5 presents an illustration of a system
involving N = 9 particles, solved through the temporal evolu-
tion of the process. In contrast, the analogous scenario without
temporal evolution, as outlined by Eq. (B2), is portrayed in the
upper row of Fig. 6.

Now that the composition of the final particle 1 is under-
stood, consisting of the particles 1, 2, . . . , ˜̃m(v1), a similar
analysis can be applied to the remaining particles on the
right-hand side. Assuming m̃(v1) < N , we initiate the anal-
ysis starting with particle ˜̃m(v1) + 1 to investigate potential
mergers with the remaining particles. Let v2 = v1[ ˜̃m(v1) + 1 :
N]=(V ˜̃m(v1 )+1,V ˜̃m(v1 )+2, . . . ,VN ) and define

s1(v2) = min
{
s ∈ NN

˜̃m(v1 )+2 : Vm̃(v1 )+1 > V
s
˜̃m(v1 )+2

}
.

If s1(v2) �= ∅, particle ˜̃m(v1) + 1 will collide with a
merged particle comprising particles ˜̃m(v1) + 2, ˜̃m(v1) +
3, . . . , s1(v2). A merged particle will form, incorporating
particles ˜̃m(v1) + 1, ˜̃m(v1) + 2, . . . , s1(v2), and it will have
a velocity V

s1(v2 )
˜̃m(v1 )+1. This fused particle can fuse with other

particles if s2(v2) �= ∅, with

s2(v2) = min
{
s ∈ NN

s1(v2 )+2 : V
s
s1(v2 )+1 > V

s
s1(v2 )+2

}
.

If s2(v2) �= ∅, the fused particle will collide. The new fused
particle will be formed by particles s1(v1) + 1, s1(v1) +

FIG. 6. Solution without relying on system evolution.
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2, . . . , s2(v2), and this process continues until the first time
that

k̃(v2) = min
{
k ∈ NN

1 : sk (v2) = ∅ or sk (v2) = N
}

with

sk (v2) = min
{
s ∈ NN

sk−1(v2 )+1 : V
sk−1(v2 )
s0(v2 ) > V

s
sk−1(v2 )+1

}
,

and s0(v2) = sk̃(v1 )(v1) + 1. It is crucial to reemphasize that,
within the context of this proof,

sk̃(v2 )(v2) = ˜̃m(v2).

This continues until we have j̃ final particles, with

j̃ = min

⎧⎨
⎩ j ∈ NN

1 :
j∑

h=1

k̃(vh) = N

⎫⎬
⎭.

Finally, evolving the system, we obtain the following final
masses:

M = (sk̃(v1 )(v1), sk̃(v2 )(v2), . . . , sk̃(v j̃ )
(v j̃ )),

= ( ˜̃m(v1), ˜̃m(v2), . . . , ˜̃m(v j̃ )),

= ( ˜̃m(G0(vi )), ˜̃m(G1(vi )), . . . , ˜̃m(GX̃N (vi )−1(vi ))).

To conclude the proof, note that ˜̃m(v) = m̃(w) and the last
equality is valid, since v j = Gj−1(vi ) and

X̃N (vi ) = min
{
k ∈ NN

1 : Gk (vi ) = ∅}
,

= min

⎧⎨
⎩k ∈ NN

1 :
k−1∑
j=0

˜̃m(Gj (vi )) = N

⎫⎬
⎭.

APPENDIX C: PROOF OF THEOREM 5

The combination of two older results led to this theo-
rem. One is an old mathematical statistics paper [26] that
addresses the statistical test problem of comparing different
means (H0 : μ1 = μ2 = · · · = μk) under the ordered alterna-
tive (HA : μ1 � μ2 � · · · � μk) [27]. In the context of our
study, Brunk [26] demonstrates that functions g which satisfy
Eq. (10) also verify Eq. (1). The other result comes from
Sibuya et al. [15], which establishes that the only condition
required to obtain an expected number of clusters verifying
Eq. (5) is that the number of final particles satisfies Eq. (1) and
the sequence of velocities is i.i.d. with a common continuous
distribution. The combination of these two results forms the
basis of the proof.

The proof of Theorem 3 presented in [15] does not use any
detail about the particles system model, it just uses that the
number of final particles has a probability mass function given
by 1 and then combinatorial arguments are used taking into
account that initial velocities are iid. Therefore, Theorem 3
can be reformulated in the following way.

Theorem 3′. If a sequence of N iid random variables is
partitioned in such a way that the final number of clusters,
X̃N , has a probability mass function given by

P (X̃N = k) = |c(N, k)|
N!

, (C1)

where c(n, k) is the Stirling number of the first kind, then
the number of final particles with mass s, ns := ∑X̃N

i=1δM(i),s,
verify

〈ns〉 = 1

s
.

The other important result is given in [27]. The author
proposed an statistics for the statistical testing problem of
determining if the means μ1, μ2, . . . , μk of k independent
random variables V1,V2, . . . ,Vk with Vi ∼ Normal(μi, σi ) are
equal, H0 : μ1 = μ2 = .. = μk , or the ordered alternative hy-
pothesis is true, HA : μ1 � μ2 � · · · � μk with at least one
greater inequality. In the following, the simplest case σi = 1
is examined, which is the case of interest in our context. The
proposed statistics was

T =
k∑

i=1

(
μ̂i − V

N
1

)2
,

where V
N
1 is the overall average and μ̂i in our notation

would be

μ̂i =
X̃N (wi )∑

h=1

V
Mh

Mh−1+11N
Mh
Mh−1+1

(i),

with M0 = 0, Mh = ∑h−1
j=0m̃(Gj (wi)) for h � 1, wi =

(V1,V2, . . . ,VN , 2 max{V1,V2, . . . ,VN }). and 1A(x) the indi-
cator function. In other words, μ̂i is the velocity of fused final
particle that contains particle i. Moreover, the statistics T for
X̃N (wi ) > 1 can be written as

T =
X̃N (wi )∑

h=1

M[h]
(
V

Mh

Mh−1+1 − V
N
1

)2
.

The distribution of the statistics under the null hypothesis
verifies

P (T > t ) =
N∑

k=1

P (T > t |X̃N (wi) = k)P (X̃N (wi) = k)

= P
(
χ2

k−1 > t
)
P (X̃N = k),

where χ2
k−1 is a random variable with a χ2 distribution with

k − 1 degrees of freedom. Bartholomew [27] also calculates
P (X̃N = k) for the particular cases of N = {2, 3, 4}. In a sub-
sequent paper, Miles [28] proved that P (X̃N = k) is given by
Eq. (1). Finally, Brunk [26] answered what other partitions
of the particles give the same P (X̃N = k). In our context, this
is equivalent to asking which g functions verify P (X̃N = k)
considering Eqs. (7)–(9). The answer is given by Eq. (10).
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