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Measuring Trotter error and its application to precision-guaranteed Hamiltonian simulations
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Trotterization is the most common and convenient approximation method for Hamiltonian simulations on
digital quantum computers, but estimating its error accurately is computationally difficult for large quantum sys-
tems. Here, we develop a method for measuring the Trotter error without ancillary qubits on quantum circuits by
combining the mth- and nth-order (m < n) Trotterizations rather than consulting with mathematical error bounds.
Using this method, we make Trotterization precision guaranteed, developing an algorithm named Trotter(m, n),
in which the Trotter error at each time step is within an error tolerance ε preset for our purpose. Trotter(m, n) is
applicable to both time-independent and -dependent Hamiltonians, and it adaptively chooses almost the largest
step size δt , which keeps quantum circuits shallowest, within the error tolerance. Benchmarking it in a quantum
spin chain, we find the adaptively chosen δt to be about 10 times larger than that inferred from known upper
bounds of Trotter errors.
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I. INTRODUCTION

The rapid development of quantum devices in recent years
has led researchers to find useful applications with significant
quantum advantage [1–3]. On top of the eigenvalue prob-
lems [4–9], quantum many-body dynamics, or Hamiltonian
simulation [10–15], is one of the most promising candidates
because quantum computers could overcome the exponen-
tial complexity that classical computers face [5], enabling us
to address intriguing dynamical phenomena like nonequilib-
rium phases of matter [16–19] and to implement fundamental
quantum algorithms like phase estimation [20]. Among sev-
eral algorithms for the Hamiltonian simulation, Trotterization
[21,22] is and will be used most commonly in the current
noisy intermediate-scale quantum (NISQ [23]) era and the
coming early fault-tolerant quantum computing (FTQC) era
because it does not demand additional ancillary qubits or
largely controlled quantum gates. Indeed, quantum advantage
in Trotterized dynamics simulation has been reported using a
127-qubit NISQ computer only recently [24].

One major and presumably inevitable issue of Trotteriza-
tion is the tradeoff relation between the simulation accuracy
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and the circuit depth (see, however, Refs. [25–30] for varia-
tional approaches). The kth-order Trotterization accompanies
an error of O(δt k+1) during a single time step δt , which de-
creases when δt is taken shorter. In the meantime, the number
of steps to reach a final time increases, meaning a deeper
quantum circuit. To suppress the gate depth, it is desirable to
choose the largest possible step size δt , i.e., the shallowest
circuit, within our error tolerance ε preset for our purposes.

However, it is difficult to find the optimal step size δt
because the Trotter error is complex in generic many-body
systems. According to the previous studies on the Trotter
error, its upper bounds [31,32] and typical values [33] are
available. If we choose δt so that the upper bound is below
our tolerance ε, the precision is guaranteed, but δt tends to
be too small, as we will see below. On the other hand, if
we choose δt based on the typical values, δt can be larger,
but the precision guarantee is lost. Recently, Zhao et al.
[34] proposed an approach where δt is chosen adaptively in
each time step based on the energy expectation value and
variance. Yet, the precision guarantee of this method is still
elusive, and the applicability is limited to time-independent
Hamiltonians [35].

In this paper, we develop a method to measure the Trotter
error on quantum circuits by combining Trotterization for-
mulas at different orders, m and n(> m). Since measured,
the estimated error is significantly more accurate than known
upper bounds for it and thus allows us to accurately choose
the largest possible step size δt so that the error does not
exceed our tolerance ε. Using this method, we make Trot-
terization precision guaranteed, in which almost the largest
δt is adaptively chosen within a preset error tolerance ε (see
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FIG. 1. Key concept of (fidelity-based) Trotter24. (Left) At each time step N , we ask what the optimal step size δtN for the second-order
Trotterization formula T2(δtN ). Here the optimal means the largest with the fidelity error kept less than our tolerance ε. (Middle) The fidelity
error that T2(δtN ) can be measured using the fourth-order Trotterization T4(δtN ), instead of the exact evolution U (δtN ) when we neglect
higher-order corrections in terms of δtN . (Right) If the measured error is below our tolerance, we accept the value of δtN and proceed to the
next time step N + 1. Otherwise, we reject the value and try the same protocol with a smaller value for δtN again. In the paper, we also
develop an observable-based, rather than fidelity-based, algorithm, establish an efficient scheme for avoiding the possible rejections of δtN ’s,
and analyze how errors propagate with time steps.

Fig. 1 for its structure). We name this algorithm Trotter (m, n)
in analogy to RFK45 (Runge-Kutta-Fehlberg) for classical
simulations, where the fourth- and fifth-order methods are
combined. We benchmark Trotter24 in a quantum spin chain
under time-independent and -dependent Hamiltonians, finding
that the adaptively chosen δt is about 10 times larger than that
inferred from the upper bound of Trotter errors.

II. MEASURING TROTTER ERROR

In this section, we present a way to measure a Trotter error
on quantum circuits without ancillary qubits when a quantum
state is evolved by an mth order Trotterization for a small
time step δt . A key idea is making use of a higher-order
n(> m)th Trotterization to approximate the unknown exact
solution accurately enough.

A. Extracting Trotter error using different orders

For simplicity, we first consider a time-independent Hamil-
tonian H consisting of two parts,

H = A + B, (1)

where A and B do not necessarily commute with each other.
Generalization to more noncommuting parts is straightfor-
ward, and we will generalize the arguments to time-dependent
ones later in Sec. VI. We assume that the quantum state at time
t is known to be |ψ (t )〉 and consider evolving it by a small
time step δt ,

|ψ (t + δt )〉 = U (δt ) |ψ (t )〉 = e−iHδt |ψ (t )〉 . (2)

Trotterization approximately decomposes e−iHδt into
quantum-gate-friendly parts consisting of either A and B.
We take an mth-order Trotterization Tm(δt ). For example,
Tm(δt ) can be the Lie-Trotter formula T1(δt ) = e−iAδt e−iBδt for
m = 1 or its symmetrized form T2(δt ) ≡ e−iAδt/2e−iBδt e−iAδt/2

for m = 2. In general, Tm(δt ) approximates U (δt ) up to the
order of δtm and satisfies

Tm(δt ) = e−iHδt+ϒm+1 , (3)

where ϒm+1 = O(δtm+1) is an anti-Hermitian error operator.
These relations imply

|ψm(t + δt )〉 ≡ Tm(δt ) |ψ (t )〉 = |ψ (t + δt )〉 + O(δtm+1),

(4)

meaning that Tm(δt ) approximates the exact one-step evolu-
tion within an error of O(δtm+1).

To quantify the error arising in the one step, we adopt the
square root of the infidelity

ηF ≡
√

1 − | 〈ψ (t + δt )|ψm(t + δt )〉 |2. (5)

We can also use other quantities depending on our purposes
and make parallel arguments. For example, when we are in-
terested in the expectation value of an observable O, we care
about the error in it,

ηO ≡ 〈ψ (t + δt )|O|ψ (t + δt )〉 −〈ψm(t + δt )|O|ψm(t + δt )〉.
(6)

In either case, calculating ηF or ηO is difficult because we do
not know the exactly evolved state |ψ (t + δt )〉.

We remark that both ηF and ηO are O(δtm+1), but showing
ηF = O(δtm+1) is less obvious. To show this, we note that
the leading O(δtm+1) term of 1 − 〈ψ (t + δt )|ψm(t + δt )〉 is
pure imaginary as shown in Appendix A, and its leading-order
contribution of ηF is given by

ηF =
√

〈ψ (t )|(iϒm+1)2|ψ (t )〉 − 〈ψ (t )|(iϒm+1)|ψ (t )〉2

+ O(δtm+2), (7)

where iϒm+1 is Hermitian. Equation (7) dictates that ηF is
the variance of the “observable” iϒm+1, giving a way to
estimate ηF using |ψ (t )〉 and the explicit form of iϒm+1.
Indeed this is a possible way of measuring ηF , but it requires,
for generic many-body Hamiltonians, measuring numerous
Hermitian operators involved in iϒm+1 consisting of doubly
nested commutators between A and B. Hence, in the following
subsection, we will also discuss another way to estimate ηF

with less sampling costs.
Our idea of estimating the errors is the following: In calcu-

lating ηF and ηO in the leading order, we can safely replace the
exact |ψ (t + δt )〉 by a higher-order approximant |ψn(t + δt )〉
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for n > m. Replacing |ψ (t + δt )〉 by |ψn(t + δt )〉 in ηF

and ηO, we obtain the following key analytical results (see
Appendix A for derivation): For the fidelity error,

ηF = η
(mn)
F + O(δt n+1), (8)

η
(mn)
F ≡

√
1 − | 〈ψn(t + δt )|ψm(t + δt )〉 |2, (9)

and, for the observable error,

ηO = η
(mn)
O + O(δt n+1), (10)

η
(mn)
O ≡ 〈ψn(t + δt )|O|ψn(t + δt )〉

− 〈ψm(t + δt )|O|ψm(t + δt )〉 . (11)

Given that ηF = O(δtm+1) and ηO = O(δtm+1), these results
mean that η

(mn)
F (η(mn)

O ) coincides with ηF (ηO) in the leading
order since m < n. If n � m, the above equations hold true,
but O(δt n+1) contributions are non-negligible, and η(mn) do
not give good estimates for η.

Unlike ηF and ηO, η
(mn)
F and η

(mn)
O consist of Tm(δt ) and

Tn(δt ) and are thereby implementable in quantum circuits. In
other words, we can estimate the deviation from the exact so-
lution induced by Tm(δt ) without knowing the solution when
supplemented with the fourth-order Trotterization and neglect
higher-order corrections. We will discuss in more detail how
to measure η

(mn)
F and η

(mn)
O in Sec. II B.

We emphasize that ηF and ηO are the actual Trotter error
specific to the current state |ψ (t )〉. This contrasts the upper-
bound arguments on the operator difference U (δt ) − Tm(δt )
[31,32]. Such upper bounds apply to arbitrary states and are
thus always larger than or equal to the error occurring at a
specific state |ψ (t )〉. The fact that ηF and ηO are state depen-
dent enables us to choose δt more accurately so that the error
is below our tolerance, as we will see in detail below.

We highlight two sets of (m, n) of particular interest in
practical use. The first choice is the minimum pair (m, n) =
(1, 2), for which the Trotterizations Tm and Tn involve the
minimum possible exponentials, i.e., the gate complexity in
the quantum circuit. For noisy circuits, such lowest-order
Trotterizations are commonly used to avoid gate errors as
much as possible. The second choice is the pair of minimum
even numbers (m, n) = (2, 4), which can be useful when we
can use more gates to achieve higher accuracy. Changing m
from 1 to 2 increases the number of exponentials in Tm from
2 to 3, by which the Trotter error ηF or ηO becomes one order
smaller. In this case, using n = 4 rather than n = 3 could
be beneficial. To see this, let us compare Ruth’s third-order
formula [22,36]

T3(δt ) ≡ e−i 7
24 Aδt e−i 2

3 Bδt e−i 3
4 Aδt ei 2

3 Bδt ei 1
24 Aδt e−iBδt (12)

and the fourth-order Forest-Ruth-Suzuki (FRS) formula
[37,38]

T4(δt ) ≡ e−i s
2 Aδt e−isBδt e−i 1−s

2 Aδt e−i(1−2s)Bδt

× e−i 1−s
2 Aδt e−isBδt e−i s

2 Aδt , (13)

where s = (2 − 21/3)−1. Here we note that the FRS formula
involves only one extra exponential but is one order more
accurate than Ruth’s third-order formula. Since η(24) estimates

η(23) one order more accurately at the expense of an extra
exponential, it can be worth using n = 4 for m = 2.

B. Quantum circuit implementations

In Sec. II A we derived two expressions, Eqs. (7) and
(8), for estimating the fidelity error ηF and one (10) for the
observable error ηO. We are assuming a quantum advantage
regime, where the number of qubits is so large that |ψ (t )〉
cannot be stored in classical computer memory but is realized
on a quantum circuit. In such a regime, all the expressions for
ηF and ηO cannot be evaluated with classical linear algebraic
computations, and we need to develop ways to evaluate them
on quantum circuits.

First, let us consider how to measure the leading-order
contribution in Eq. (7) of the fidelity error ηF , assuming that
|ψ (t )〉 is realized on a quantum circuit accurately enough. For
concreteness we focus on the first-order Trotterization m = 1,
for which T1(δt ) = e−iAδt e−iBδt and iϒ2 = −i[A, B]δt2. Since
iϒ2 and (iϒ2)2 are Hermitian, one can evaluate the expecta-
tion values for them based on samplings (we will discuss the
sampling cost below).

Although this method is useful for small quantum systems,
it becomes quadratically costly for larger systems. To see
this we consider a Hamiltonian H with A and B are linear
combinations of L distinct local Pauli strings. Thanks to the
commutator scaling [32], iϒ2 consists of O(L) distinct Pauli
strings, and its expectation values are evaluated by estimating
the expectation values of each Pauli string. Notably, the trans-
lation symmetries can reduce the number of combinations of
measurements for expectation value estimations, even down
to O(1). However, (iϒ2)2 is no more a commutator and in-
volves O(L2) Pauli strings. In most cases symmetries cannot
reduce the number of measured operators to be subextensive,
and the sampling cost tends to be extensive. This extensive
sampling cost also appears in the energy variance estimation
in Refs. [34,39]. Thus, Eq. (7) tends to be useful only in small
quantum systems.

In contrast, η
(mn)
F in Eq. (8) avoids measuring numer-

ous distinct Pauli strings. To show this we write |ψ (t )〉 as
|ψ (t )〉 = UT (t ) |ψ (0)〉 = UT (t )Uprep |0〉. Here |0〉 denotes the
initialized state, Uprep is an initial state preparation unitary,
and UT (t ) is some Trotterized unitary propagation from time
0 to t . We assume Uprep and UT (t ) have appropriate circuit
realizations. With these notations η

(mn)
F can be obtained by

η
(mn)
F =

√
1 − p0, (14)

p0 ≡ |〈0|U †
prepU

†
T (t )T †

n (δt )Tm(δt )UT (t )|0〉|2. (15)

Our assumptions tell us that U †
prepU

†
T (t )T †

n (δt )Tm(δt )UT (t ) has
a circuit realization, so p0 can be interpreted by the prob-
ability of finding |0〉 after |0〉 being evolved by the circuit
(see also the middle panel of Fig. 1). Note that p0 is a kind
of the Loschmidt echo [40]. A challenge is that p0 becomes
exponentially small when the system size L increases, so
this procedure makes practical sense only in small systems.
This issue is not technical but intrinsic in the fidelity error
because it is the most stringent quantifier among many-body
wave-function errors.
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The observable error ηO is more useful for extensive quan-
tum systems. Typically we are interested in local Pauli strings
or their linear combinations of O(L). The expectation value
of each Pauli string can be estimated by measuring the wave
function |ψ (t )〉 in its eigenbasis. Unlike fidelity, the expecta-
tion value does not decay exponentially with the system size.
Also, symmetries, such as the translation one, can reduce the
number of measured strings to possibly O(1). When one is
only interested in local observables, using ηO is the cheapest
option to guarantee precision.

In each method, the Trotter error estimation is based on
sampling, and the statistical error can be a bottleneck to
achieve high accuracy. The statistical error in general scales
as ∝ N−1/2, with N denoting the number of samples (or
shots). For the error estimation to be successful, this error
should be smaller enough than the error, ηF or ηO, so δtm+1 �
N−1/2 must hold true. When we use η(mn) as an estimator,
the estimation error is determined by the larger of ∼N−1/2

and ∼δt n+1 [see Eqs. (8) and (10)]. So, one cannot make
the error estimation infinitely accurate by increasing n when
the available number of shots N is limited finitely. Rather,
δt n+1 ∼ N−1/2 would hold for a reasonably chosen set of δt ,
n, and N . In Sec. V B, we will benchmark our way to estimate
ηO for (m, n) = (2, 4) in an example spin system and show
that it works with N ∼ 105(107) for εO = 10−2(10−3).

III. PRECISION-GUARANTEED TROTTERIZATION

In the previous section, we developed the methods to eval-
uate Trotter errors on quantum circuits. Given that the Trotter
error is known, one can make Trotterization precision guaran-
teed: In each time step, one can make sure that the Trotter error
is within a preset accuracy target ε. In this section we develop
such an algorithm consisting of error measurements and step-
size optimization, as illustrated in Fig. 1 (the figure is for the
fidelity version, but it works, in parallel, for the observable
version).

Our algorithm uses either η
(mn)
F and η

(mn)
O as the Trotter

error estimator, and we name it Trotter(m, n). For concrete-
ness we set (m, n) = (2, 4) and describe Trotter24 since the
generalization to other (m, n) is straightforward [we may
use Trotter(m, n) and Trottermn interchangeably]. In current
NISQ devices, (m, n) = (1, 2) could be more realistic. Since
the argument goes in parallel, we first focus on the fidelity
error and will address the observable error later in this section.

Our overall task is to simulate the time evolution according
to the Hamiltonian H from the initial time tini to the final time
tfin, starting from an initial state |ψ0〉. We set an error tolerance
ε for the fidelity error in each time step. Initially, we have no
a priori information about the appropriate time step, so take
a reasonably small trial step size δt0, say, δt0 = 0.1J−1 with J
being a typical energy scale of H . One could also choose δt0
so small that T2(δt0) never gives larger error than our tolerance
ε, as guaranteed by a mathematical bound [see Eq. (29) and
Appendix C for detail]. One can also use this δt0 to know the
upper bound, in advance, for the required quantum resources
for the calculation, although they tend to be too pessimistic,
as we will see below.

For the trial δt0 taken in either way, we implement T2(δt0)
and T4(δt0) and calculate η

(24)
F using a quantum circuit.

Basically, we aim the step size to be so small that

η
(24)
F < ε. (16)

If this is true, we accept our trial δt0 and evolve our state as
|ψ2〉 = T2(δt0) |ψ0〉. If η

(24)
F � ε instead, our trial δt0 is too

large and we need a smaller δt ′
0. In choosing δt ′

0 appropriately,
we invoke the leading-order scaling relation η

(24)
F ≈ αδt3

0 for
some unknown α independent of δt0. We can use this relation
to estimate α by α ≈ η

(24)
F /δt3

0 since we measured η
(24)
F . For

δt ′
0, we expect η

(24)
F

′ ≈ α(δt ′
0)3 ≈ η

(24)
F (δt ′

0/δt0)3, which we
wish is smaller than ε. Thus, the condition η

(24)
F

′ < ε leads
to δt ′

0 ≈ δt0(ε/η(24)
F )1/3 as an optimal choice within our error

tolerance. For a safety margin, we introduce a constant C
(0 < C < 1) and set δt ′

0 = Cδt0(ε/η(24)
F )1/3 as an updated trial

δt0. We repeat this update procedure until η
(24)
F gets smaller

than ε and accept the latest δt0 to evolve our state as |ψ2〉 =
T2(δt0) |ψ0〉.

Next, we move on to the second step, using a time step
δt1. In choosing this, we again use the latest η

(24)
F obtained

at the end of the previous time step. Since |ψ2〉 ≈ |ψ0〉, we
can expect the error scaling coefficient α to be almost the
same in the present and previous steps. Therefore, like in
the updated trials within the previous time step, we have
δt1 = Cδt0(ε/η(24)

F )1/3 as a good candidate for the optimal step
size in the present time step. We note that η

(24)
F here is what

was measured in the previous step, and we have not made any
measurements in the present step yet. Using this δt1 as a trial
step size, we implement T2(δt1) and T4(δt1) and calculate η

(24)
F

using a quantum circuit. Depending on whether η
(24)
F is less

or greater than ε, we accept or update δt1 like in the previous
step.

The following iteration is straightforward and repeated
until the accumulated evolution time tini + δt0 + δt1 + · · · ex-
ceeds the final time tfin. We summarize a pseudocode for the
algorithm in Algorithm 1.

Let us make a parallel argument for the observable error ηO

instead of the fidelity error ηF . At each time step, we measure
η

(24)
O and judge if the condition∣∣η(24)

O

∣∣ < εO‖O‖ (17)

is met. This is an analog of Eq. (16), and we introduced the
operator norm ‖O‖ as a reference scale and put the subscript
O on the tolerance as εO to avoid confusion. The iteration
scheme is parallel to the fidelity case. We summarize a pseu-
docode for the observable-based algorithm in Algorithm 2.

IV. ERROR PROPAGATION

In this section we analyze the fidelity and observable Trot-
ter errors in multiple Trotter steps, showing that both errors
increase at most linearly in the number of steps. For generality
we consider an mth-order Trotterization, which was set to be
m = 2 in the previous section.

After N (� 1) steps, we obtain a quantum state

|ψm(tN )〉 =
←∏

i=0,...,N−1

Tm(δti ) |ψ0〉 (18)
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ALGORITHM 1. Fidelity-based Trotter24.

Input: Initial and final times, tini and tfin, an initial state |ψ0〉, a
Hamiltonian H = A + B, an error tolerance ε, an initial step size
δt0, a safety constant C (0 < C < 1), an oracle function
FIDELITY(|φ〉 , |ψ〉) that calculates | 〈φ|ψ〉 |2.
Output: An ordered list of unitaries Ulist that approximates
e−iH (tfin−tini ) within the error tolerance for each time step.
1: t ← tini

2: δt ← δt0

3: Ulist = {} (empty list)
4: while t + δt < tfin do
5: |ψ (t )〉 ← ∏

k (Ulist )k |ψ0〉
6: do
7: T2(δt ) ← e−iAδt/2e−iBδt e−iAδt/2

8: T4(δt ) ← e−i s
2 Aδt e−isBδt e−i 1−s

2 Aδt e−i(1−2s)Bδt e−i 1−s
2 Aδt

e−isBδt e−i s
2 Aδt

9: η ← 1 − FIDELITY(T4(δt ) |ψ (t )〉 , T2(δt ) |ψ (t )〉)
10: δt ← C · (ε/η)1/3δt
11: while η > ε

12: Prepend T2(δt ) to the ordered list Ulist

13: t ← t + δt
return Ulist

at time

tN = tini +
N−1∑
i=0

δti (19)

as an approximation for the exact state

|ψ (tN )〉 =
←∏

i=0,...,N−1

U (δti ) |ψ0〉 = e−iH (tN −tini ) |ψ0〉 . (20)

ALGORITHM 2. Observable-based Trotter24.

Input: Initial and final times, tini and tfin, an initial state |ψ0〉, a
Hamiltonian H = A + B, an error tolerance εO, an initial step size
δt0, a safety constant C (0 < C < 1), an oracle function
EXP(O, |ψ〉) that calculates 〈ψ |O|ψ〉.
Output: An ordered list of unitaries Ulist that approximates
e−iH (tfin−tini ) within the error tolerance for each time step.
1: t ← tini

2: δt ← δt0

3: Ulist = {} (empty list)
4: while t + δt < tfin do
5: |ψ (t )〉 ← ∏

k (Ulist )k |ψ0〉
6: do
7: T2(δt ) ← e−iAδt/2e−iBδt e−iAδt/2

8: |ψ2〉 ← T2(δt ) |ψ (t )〉
9: T4(δt ) ← e−i s

2 Aδt e−isBδt e−i 1−s
2 Aδt e−i(1−2s)Bδt × e−i 1−s

2 Aδt

e−isBδt e−i s
2 Aδt

10: |ψ4〉 ← T4(δt ) |ψ (t )〉
11: η ← |EXP(O, |ψ4〉) − EXP(O, |ψ2〉)|
12: δt ← C · (ε/η)1/3δt
13: while |η| > εO‖O‖
14: Prepend T2(δt ) to the ordered list Ulist

15: t ← t + δt
return Ulist

This section gives upper bounds for accumulated errors in the
N steps. As expected, we will have error propagation linear in
N . Throughout this section, we let ∼ and � denote = and �,
respectively, when subleading terms in δt j ( j = 0, . . . , N − 1)
are neglected.

For the fidelity-based Trotter(m, n), let us find an upper
bound for the accumulated error

ηF,N ≡
√

1 − |〈ψ (tN )|ψm(tN )〉|2. (21)

As we derive in Appendix B,

ηF,N � Nε, (22)

meaning a linear increase in the fidelity error. This upper
bound implies an upper bound for the error in the expectation
value of an arbitrary observable O,

ηO,N ≡ |〈ψ (tN )|O|ψ (tN )〉 − 〈ψm(tN )|O|ψm(tN )〉|. (23)

To derive the bound for ηO,N , we recall ηO,N �
2D( |ψ (tN )〉 〈ψ (tN )| , |ψm(tN )〉 〈ψm(tN )| )‖O‖, where D(ρ, σ )
denotes the trace distance, which is known to satisfy
D(ρ, σ ) � √

1 − F (ρ, σ ) with F (ρ, σ ) being the fidelity.
Using Eq. (22), we obtain

ηO,N � Nε‖O‖, (24)

which linearly increases with N .
For the observable-based Trotter(m, n) using an observable

O, let us find an upper bound with the tolerance εO for the
accumulated error (23) arising in the same observable. We can
prove

ηO,N � NεO‖O‖ (25)

by induction on N . This claim trivially holds when N = 1 by
the definition of δt0. Suppose that Eq. (25) for N . For N + 1,
the triangle inequality gives

ηO,N+1 � | 〈ψ (tN+1)|O|ψ (tN+1)〉
− 〈ψm(tN )|U †(δtN )OU (δtN )|ψ (tN )〉|
+ |〈ψm(tN )|U †(δtN )OU (δtN )|ψ (tN )〉
− 〈ψm(tN+1)|O|ψm(tN+1)〉|. (26)

Since U †(δtN )OU (δtN ) ∼ O, the first term on the right-hand
side is �NεO‖O‖ by the inductive hypothesis. The second
term on the right-hand side is less than εO‖O‖, as imple-
mented in the algorithm. Combining these two, we obtain
ηO,N+1 � (N + 1)εO‖O‖, which completes the induction.

V. BENCHMARK IMPLEMENTATIONS

In this section we implement and benchmark Trotter(m, n),
using a classical computer. In the first subsection we consider
the ideal limit of the infinite number of shots, for which the
error estimators η

(mn)
F and η

(mn)
O can be obtained without statis-

tical errors. Then, in the second subsection, we discuss a more
realistic situation, where the number of shots is limited to be
finite. In both subsections we neglect errors in the quantum
circuit.
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FIG. 2. (a) Dynamics of x-magnetization density calculated by
fidelity-based Trotter24 for tolerance ε = 10−3/2 (circle) and 10−2

(square). The solid curve shows the accurate solution, the system
size is L = 18, and the safety constant is C = 0.95. (b) The actual
fidelity errors ηF [Eq. (5)] in the simulation presented in (a). The
solid curves show their upper bounds (22). Blue (orange) points and
curve correspond to the case of ε = 10−3/2 (10−2). (c) The ratio of the
step size δt chosen in each step to δtbound obtained by the error-bound
approach (29). Different symbols correspond to those in (a).

A. Ideal limit of Nshots = ∞
First, we implement the fidelity-based Trotter24 and will

address the observable-based one later in this section. In both
cases we assume that both η

(mn)
F and η

(mn)
O can be obtained

without statistical errors. Following Ref. [34], we consider the
following Hamiltonian:

A = hx

L∑
j=1

σ x
j , B =

L∑
j=1

(
Jzσ

z
j σ

z
j+1 + hzσ

z
j

)
, (27)

where σα
j are the Pauli matrices acting on the jth site, periodic

boundary conditions are imposed, and we set Jz = −1.0, hz =
0.2, and hx = −2.0. Taking the initial state fully polarized
along the −y direction, we let it evolve for a while. Figure 2(a)
shows the expectation value of the x-magnetization density

mx ≡ 1

L

L∑
j=1

σ x
j (28)

FIG. 3. The C dependence of the average step size δt (left y axis)
and the rejection rate (right y axis), i.e., the occurrence of η

(24)
F > ε

per time step. Different symbols correspond to ε = 10−3/2 (circle)
and 10−2 (square). The averages are taken for tini = 0.0 and tfin = 2.0
with the initial trial step size δt0 = 0.1.

for different tolerances ε = 10−3/2 and 10−2 at L = 18, and
we set C = 0.95. As expected, for smaller tolerance, the sim-
ulated dynamics resemble the exact result better, as shown in
the upper panel. We note that we encounter few η(24) > ε in
these simulations: it happens three (five) times for ε = 10−3/2

(10−2) during the simulation time range. These numbers fur-
ther decrease as we decrease the safety constant C, as we will
discuss below. Figure 2(b) shows the actual fidelity error ηF in
those simulations. We confirm that the errors are well below
the upper bound (22), especially in late times.

The adaptively chosen step size δt is significantly larger
than the one obtained by the error-bound approach. Accord-
ing to Ref. [31], their tight error bound of the second-order
product formula gives the possible maximum step size (see
Appendix C for more detail)

δtbound =
(

ε

‖[B, [B, A]]‖ + 1
2‖[A, [B, A]]‖

)1/3

, (29)

for which the difference between U (δt ) and the second-order
Trotterization does not exceed the tolerance ε. As shown in
Fig. 2(c), the ratio of the adaptively chosen δt to δtbound is
roughly greater than 10. This means that the step size deter-
mined by the error bound tends to be too small for a given
tolerance, and the adaptive step size is significantly larger.
This discrepancy derives from the fact that Trotter24 utilizes
the quantum state at each time step while the error bound
applies to arbitrary states and tends to be too pessimistic.

The C dependence of the algorithm is shown in Fig. 3.
For various C (0.8 � C � 1.0), we run the Trotter24 with the
other parameters being the same as in Fig. 2. Over the time
interval tini = 0.0 and tfin = 4.0, we measure the average of
the adopted step size δt and the rejection rate, i.e., the average
number of occurrences of η

(24)
F > ε per each time step. As the

left y axis shows, the average step size is nearly proportional
to C, as expected from its definition. Meanwhile, the rejection
rate increases only slowly as C increases, except for the close
vicinity of C = 1 (0.99 � C � 1), where C rapidly increases
to exceed unity. If we never mind repeatedly measuring η

(24)
F ,
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FIG. 4. (a) Dynamics of x-magnetization density mx under the
Hamiltonian (27) calculated by observable-based Trotter24 for O =
mx and tolerance εO = 10−2 (circle) and 10−3 (square). The error
bar shows the range where the exact solution resides as indicated by
the theoretical upper bound (25). The solid curve shows an accurate
solution obtained by a small enough δt , the system size is L = 18,
and the safety constant is C = 0.95. (b) The ratio of the step size δt
chosen in each step to δtbound obtained by the error-bound approach
(29) in the simulations shown in (a).

the choice C = 1 is ideal for making δt larger, i.e., the circuit
depth shallower. However, by choosing a slightly smaller C,
like C = 0.95 or 0.90, we benefit from a dramatically reduced
rejection rate in exchange for a slight increase in the circuit
depth.

Now we implement the observable-based Trotter24 for the
same model (27) in the same setup. Suppose again that we are
interested in simulating the dynamics of mx. For this purpose,
it is natural to set O = mx, for which the Trotter24 generates
Fig. 4. For the smaller tolerance εO = 10−3, we obtain more
accurate results for 〈ψ (t )|mx|ψ (t )〉, as expected. As shown in
Fig. 4(b), the step size is at least five times larger than δtbound

given by Eq. (29), whose values are δtbound = 2.31 × 10−2 for
ε = 10−2 and 1.07 × 10−2 for ε = 10−3. We note that the
exact value always resides within the error bar representing
the theoretical upper bound (25). Even when the exact values
are not available, the upper bound tells us in what region they
are.

Before closing this section, we remark on the stability
and efficiency of Trotter24 for simulations over reasonably
long times, as seen in Fig. 2(a). This is an advantage over
extrapolation methods, such as Richardson’s [41], in which
physical quantities like 〈ψ (t )|mx|ψ (t )〉 are obtained by ex-
trapolating their estimates using different Trotter steps. The
extrapolation methods are particularly useful for short times
t � 1 (in units of an inverse local energy scale) because
〈ψ (t )|mx|ψ (t )〉 is well approximated by a low-order poly-
nomial in the Trotter steps and allows us to extrapolate the
exact solution as the infinite steps limit [42]. For t 
 1,
however, the required steps increase significantly, and the
estimates with limited steps tend to be unstable due to Runge’s
phenomenon (see Appendix D for demonstration). Although
this pathologic behavior has been addressed using quantum

singular value transformations [43], it requires a fault-tolerant
quantum computer. When compared under the same gate com-
plexity, Trotter24 is more stable than extrapolation methods,
as detailed in Appendix D.

B. Effects of finite Nshots

In Sec. V A, we assumed that expectation values are ex-
actly obtained without statistical errors, demonstrating the
idealistic behavior of Trotter(m, n). There the only source of
error was the Trotter error. In reality, however, the number of
available shots (i.e., the number of measurements of circuits)
is limited finitely. Thus, in order to guarantee the accuracy of
simulations, we need to make sure both the statistical error
in the observable evaluation and the Trotter error are within
our tolerance. In this subsection we discuss how to implement
Trotter(m, n) to control the Trotter error. We consider the
same setup as in Sec. V A and aim to estimate Nshots necessary
in obtaining the time evolution of O = mx in the time interval
[tini, tfin] within tolerance εO.

Before discussing Trotter24, we consider the conventional
constant-step (second-order) Trotterization approach. For a
fixed step size δt , we compute |ψ2(Nδt )〉 = T2(δt )N |ψ0〉 for
an N-step evolution. For each step N , we are computing the
desired expectation value

〈ψ2(Nδt )|O|ψ2(Nδt )〉

= 1

L

L∑
j=1

〈ψ2(Nδt )|σ x
j |ψ2(Nδt )〉 (30)

= 1

L

L∑
j=1

〈ψ2(Nδt )|Hjσ
z
j Hj |ψ2(Nδt )〉 (31)

=
∑

z

1

L

L∑
j=1

z jP(z) = 1

L

L∑
j=1

∑
z j=±1

z jPj (z j ), (32)

where Hi is the Hadamard gate acting on site
j, P(z) = | 〈z|Hj |ψ2(Nδt )〉 |2 denotes the probability of
finding z = (z1, z2, . . . , zL ) with z j = 1 − 2b j and b j = 0, 1,
and Pj (z j ) = ∑

z\z j
P(z) is the marginal probability for site

j. Equation (32) allows us to evaluate the expectation value
based on sampling, and the statistical error of estimating the
set of marginal probabilities P1, . . . , PL is ∼N−1/2

meas with Nmeas

being the number of measurements for each time step N . If
we take account of the statistical independence among Pj’s,
the statistical error of 〈O〉 is reduced to be ∼(LNmeas)−1/2.
Thus, to make sure the estimation error is within the target
accuracy with the p-σ confidence interval (p > 0), we impose
p(LNmeas)−1/2 < εO, which means that the minimum required
number of measurements is

N 0
meas =

⌈(
p

εO

)2/
L

⌉
, (33)

where �. . . � denotes the ceiling function. For instance, if
we demand 2-σ confidence interval for εO = 1%, N 0

meas =
4 × 104/L. As shown below, this number is smaller than those
for Trotter24 and the adaptive-step (ADA) Trotter [34]. On the
other hand, a challenge in the conventional Trotterization is
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choosing appropriate step size δt so that the Trotter error is
within our tolerance εO. As discussed in Sec. V, δt , if chosen
based on rigorous bounds, tends to be too small, and the
number of steps Nstep ≈ (tfin − tini )/δt and hence the circuit
depth become too large. If one measures O = mx at every step,
the total number of shots becomes Nshots = NstepN 0

meas.
The number of measurements at each step that Trotter24

requires is twice as large as that the conventional Trotteriza-
tion does because the Trotter error estimator η

(24)
O involves two

expectation values [see Eq. (10)]. Thus, Nshots = 2N ′
stepN 0

meas,
where N ′

step is the number of steps for Trotter24 and tends to

be smaller than Nstep. This statistical error contributes to η
(24)
O

by (2LN 0
meas)−1/2‖O‖, where the factor 2 again takes account

of the two expectation values for the second- and fourth-
order Trotterizations in η

(24)
O and the criterion |η(24)

O | < εO‖O‖
should be modified as |η(24)

O | + (2LN 0
meas)−1/2‖O‖ < εO‖O‖

to guarantee precision within the p-σ confidence interval.
Equation (33) simplifies this inequality as∣∣η(24)

O

∣∣ <

(
1 − 1√

2p

)
εO‖O‖. (34)

We note that the formulation reduces to the ideal case in
Sec. V A in the limit of p → ∞, where N 0

meas → ∞ and
Eq. (34) becomes |η(24)

O | < εO‖O‖.
Figure 5 demonstrates how Fig. 4 changes when we eval-

uate the expectation values based on sampling with the p-σ
confidence interval discussed above. The implementation is
the same as in there except for the following two parts. First,
the expectation values for the observable and η

(24)
O are ob-

tained by sampling using Eq. (32) and its counterpart for
|ψ4(Nδt )〉 with Eq. (33). Second, the error threshold is re-
placed by Eq. (34) in the p-dependent way. Note that the error
bound (25) is interpreted as the p-σ confidence interval since
the error estimation involves statistical errors. The Trotter er-
ror tends to decrease as εO decreases or p increases, although
such p dependence is unclear for t � 2 in εO = 10−2, where
the error bar becomes very large.

The cumulative number of measurements before time t is
plotted in Fig. 5(c). Considering Eq. (33) representing the
number of measurements at each evaluation of η

(24)
O and 〈O〉t ,

we have rescaled the number by ε−2
O in the plot. Nicely, the

number increases in time almost linearly since the rejection
rate in finding an optimal δt in each step is kept low. Typical
cumulative numbers of measurements for a unit of time t = 1
are 105 for εO = 10−2 and 107 for εO = 10−3, which could be
achievable in current NISQ devices.

Finally, we discuss the number of measurements required
in the ADA Trotter [34], which adaptively chooses δt so that
the energy expectation value and variance are close to their
ideal values within tolerance. Unlike Trotter24 evaluating O,
the ADA needs the expectation values of H = A + B and
H2 = (A + B)2. While 〈H〉t only requires a similar number of
measurements to 〈O〉t , computing 〈H2〉t based on sampling
is significantly more costly because H2 is not necessarily
local. For example, H2 involves AB + BA, and it contains
terms like σ x

j′σ
z
j σ

z
j+1 (1 � j, j′ � L). Such terms cannot be

simultaneously measured in a single circuit, and one needs
multiple, at least O(L), circuits for measurements. Thus, the
number of shots required in the ADA Trotter is O(L) greater

FIG. 5. (a), (b) Dynamics of x-magnetization density mx under
the Hamiltonian (27) calculated by observable-based Trotter24 for
O = mx and tolerance (a) εO = 10−2 and (b) 10−3, where the expecta-
tion values are calculated by sampling with p = 2 (circle) and p = 3
(square) (see text for detail). The error bar shows the range where
the exact solution resides as indicated by the theoretical upper bound
(25), which is here interpreted as the p-σ confidence interval. The
solid curve shows an accurate solution obtained by a small enough
δt , the system size is L = 18, and the safety constant is C = 0.95.
(c) Cumulative number of measurements performed in obtaining
(a) and (b) divided by ε2

O.

than that in Trotter24 and the conventional Trotterization.
Also, we emphasize again that the tolerance ε set for the
energy expectation value and variance in the ADA Trotter
cannot be translated to the error in the observable O of interest
for nonequilibrium states, and the precision guarantee is still
elusive, unlike Trotter(m, n).

VI. GENERALIZATION TO TIME-DEPENDENT
HAMILTONIANS

Trotter24, developed thus far for time-independent Hamil-
tonians, is straightforwardly generalized for time-dependent
Hamiltonians unlike the previous study [34]. Their study is
based on the energy conservation law, which is absent in
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time-dependent Hamiltonians, and its generalization to those
Hamiltonians is not straightforward and has not been estab-
lished yet.

Our setup is a generalization of Eq. (1) as

H (t ) = A(t ) + B(t ), (35)

and we consider approximating the exact evolu-
tion |ψ (t + δt )〉 = U (t, δt ) |ψ (t )〉 for U (t, δt ) =
T exp(−i

∫ t+δt
t H (s)ds), where T denotes the time ordering.

Assuming that the quantum state |ψ (t )〉 at time t is known,
we try to approximate the subsequent time evolution for a
step size δt by the so-called midpoint rule

|ψ2(t + δt )〉 = T2(t, δt ) |ψ (t )〉 , (36)

T2(t, δt ) ≡ e−iA(t+δt/2) δt
2 e−iB(t+δt/2)δt e−iA(t+δt/2) δt

2 . (37)

The midpoint rule is known to be a second-order formula, and
the fidelity error ηF and the observable error ηO are as small
as O(δt3), like in the time-independent-Hamiltonian cases.

To measure the errors in the leading order without using
the exact state |ψ (t + δt )〉, we use a fourth-order Trotteriza-
tion formula for time-dependent Hamiltonians. Focusing on a
special case where A(t ) = a(t )A and B(t ) = b(t )B with a(t )
and b(t ) are scalars, we utilize the minimum fourth-order
Trotterization formula [44]

|ψ4(t + δt )〉 = T4(t, δt ) |ψ (t )〉 , (38)

T4(t, δt ) ≡ e( sβ1
2 −u)Aesβ2Be

1−s
2 β1Ae(1−2s)β2Be

1−s
2 β1Aesβ2Be( sβ1

2 +u)A

(39)

consisting of seven exponentials, where β1 = ∫ t+δt
t a(s)ds,

β2 = ∫ t+δt
t b(s)ds, and β12 = 1

2

∫ t+δt
t dt2

∫ t2
t dt1[b(t2)a(t1) −

a(t2)b(t1)], and u ≡ β12/β2 is assumed to be O(δt2). For
more general A(t ) and B(t ), one can utilize the fourth-order
Suzuki formula [22] consisting of 15 exponentials. We can
define η

(24)
F and η

(24)
O similarly to the case of time-independent

Hamiltonians and confirm that ηF ≈ η
(24)
F and ηO ≈ η

(24)
O in

their leading orders.
The algorithms of Trotter24 for time-dependent Hamil-

tonians are obtained by the replacements T2(δt ) → T2(t, δt )
and T4(δt ) → T4(t, δt ) in Algorithms 1 and 2. Even though
the time-ordered exponential T exp complicates the propaga-
tor U (t, δt ) for time-dependent Hamiltonians, Trotterizations
T2(t, δt ) and T4(t, δt ) tailored for these cases correctly ap-
proximate it as U (t, δt ) = T2(t, δt ) + O(δt3) and U (t, δt ) =
T4(t, δt ) + O(δt5). The algorithms of Trotter24 are thus
straightforwardly applied to time-dependent Hamiltonians
because the complication due to the time dependence is ap-
propriately taken care of by Trotterization formulas.

Let us now implement Trotter24 in an example time-
dependent Hamiltonian. Our model is a generalization of
Eq. (27) as

H (t ) = tA + B, (40)

where A and B are given in Eq. (27). Although this Hamil-
tonian is linear in t , Trotter24 equally applies to nonlinear
ones. We take the same initial state as in Sec. V and set the
time interval as tini = −3.0 and tfin = +3.0. Here we only
demonstrate the observable-based one since the fidelity-based

FIG. 6. (a) Dynamics of x-magnetization density mx under the
time-dependent Hamiltonian (40), calculated by observable-based
Trotter24 for O = mx and tolerance εO = 10−2 (circle) and 10−3

(square). The error bar shows the theoretical upper bound (25).
The solid curve shows an accurate solution obtained by the fourth-
order Trotterization with δt = 10−2, the system size is L = 18, and
the safety constant is C = 0.95. (b) Step size δt chosen adaptively
in the algorithm in each step. Different symbols correspond to
those in (a).

one works similarly. Figure 6 shows the x-magnetization den-
sity dynamics obtained by Trotter24 for different tolerance
εO = 10−2 and 10−3. Like in the time-independent case, Trot-
ter24 provides the dynamics in a precision-guaranteed way, in
which the exact solution resides in the error bars given by the
preset tolerance εO.

Unlike in the time-independent case, the step size tends
to decrease as |t | increases, as shown in Fig. 6(b). This is
consistent with the fact that the Hamiltonian (40), or the
energy scale, is proportional to t when |t | 
 1, for which
the step size needs to be decreased to keep the error below
the tolerance. Trotter24 automatically chooses the appropriate
step size, depending on the instantaneous Hamiltonian as well
as the instantaneous quantum state.

VII. CONCLUSIONS AND DISCUSSIONS

We have developed a method of measuring the Trotter
error by combining it with another higher-order Trotterization
without ancillary qubits. Using this, we devised an algorithm
named Trotter (m, n) for Hamiltonian simulations, during
which the step size δt is adaptively chosen as large as possible
within an error tolerance we set in advance. In each time
step, the precision is guaranteed in the sense of Eqs. (22)
and (25) with higher-order corrections being neglected. Our
algorithm applies to both time-independent and -dependent
Hamiltonians, as we benchmarked in the example Hamilto-
nians in the quantum spin chain mainly for Trotter24, i.e.,
the case of (m, n) = (2, 4). Another merit of Trotter24 is the
efficiency in finding the optimal step size δt . According to
the benchmark, the estimated δt is rejected less than once on
average during each time step by setting the safety constant
C � 0.99. In exchange for conducting measurements in each
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step, Trotter24 adaptively finds almost the largest δt , which
was about 10 times as large as that inferred from the upper
bound arguments. Thus, this algorithm keeps the circuit sig-
nificantly shallower within our error tolerance ε.

Although we focused on applying Trotter(m, n) to quantum
computers, this algorithm also applies to classical compu-
tations. Beyond the system sizes accessible with the full
exact diagonalization of Hamiltonians, Trotterization-based
algorithms, such as the time-evolution block decimation
[45] and the full state-vector evolution [8], are useful on
high-performance computers. When we use an mth-order
Trotterization, one may want to estimate its error and guar-
antee that the error is within a tolerance ε. For such a purpose,
Trotter (m, n) provides these classical computations with a
precision-guaranteed adaptive step-size method, enabling reli-
able simulations for quantum many-body dynamics, although
there could be other possible methods.

We have neglected the statistical error in measuring the
Trotter error through sampling and the device error inherent
to NISQ computers. These errors are, in principle, estimated
from the available number of measurements and the device
assessment. Also, the error mitigation technique [41,46] helps
to reduce these errors, as demonstrated on a 100-qubit-scale
NISQ computer [24]. If these errors are below our tolerance
and the Trotter error is the bottleneck, Trotter24 will benefit us
in optimizing Trotterization in a precision-guaranteed manner.
We leave real-device implementations for future work.

ACKNOWLEDGMENTS

Fruitful discussions with H. Zhao, J. Ostmeyer, and K.
Mizuta are gratefully acknowledged. T.N.I. was supported
by JST PRESTO Grant No. JPMJPR2112 and by JSPS
KAKENHI Grant No. JP21K13852. A part of numerical cal-
culations have been performed using Qulacs [47]. This work
is supported by MEXT Quantum Leap Flagship Program
(MEXTQLEAP) Grants No. JPMXS0118067394 and No. JP-
MXS0120319794, and JST COI-NEXT program Grant No.
JPMJPF2014.

APPENDIX A: SCALINGS OF TROTTER ERRORS

1. Leading-order expression for ηF

According to the Baker–Campbell–Hausdorff (BCH) for-
mula, we have

U (δt )†Tm(δt ) = eiHδt e−iHδt+ϒm+1 = eϒ̃m+1 , (A1)

where Tm(δt ) denotes an mth-order Trotterization and

ϒ̃m+1 = ϒm+1 + [iHδt, ϒm+1] + · · · = ϒm+1 + O(δtm+2)

(A2)

is an anti-Hermitian operator, and we used ϒm+1 = O(δtm+1).
Thus, we have

|〈ψ (t + δt )|ψm(t + δt )〉|2 = |〈ψ (t )|eϒ̃m+1 |ψ (t )〉|2 (A3)

= |〈ψ (t )|[1 + ϒ̃m+1 + 1
2 ϒ̃2

m+1 + O(δt3(m+1))
]|ψ (t )〉|2 (A4)

= 1 + 〈ψ (t )|ϒ̃2
m+1|ψ (t )〉 + | 〈ψ (t )|ϒ̃m+1|ψ (t )〉 |2 + O(δt3(m+1)) (A5)

= 1 − 〈ψ (t )|(iϒ̃m+1)2|ψ (t )〉 + 〈ψ (t )|(iϒ̃m+1)|ψ (t )〉2 + O(δt3(m+1)) (A6)

= 1 − 〈ψ (t )|(iϒm+1)2|ψ (t )〉 + 〈ψ (t )|(iϒm+1)|ψ (t )〉2 + O(δt2m+3), (A7)

where we used Re 〈ψ (t )|ϒ̃m+1|ψ (t )〉 = 0 (since ϒ̃m+1 is anti-
Hermitian) and Eq. (A2). Therefore, we obtain

ηF =
√

〈ψ (t )|(iϒm+1)2|ψ (t )〉 − 〈ψ (t )|(iϒm+1)|ψ (t )〉2

+ O(δtm+2). (A8)

Notice that the right-hand side is non-negative since iϒm+1 is
Hermitian.

2. Fidelity difference between the exact
and measurable expressions

Here we study the difference between

χ ≡ 〈ψ (t + δt )|ψm(t + dt )〉 , (A9)

χmn ≡ 〈ψn(t + δt )|ψm(t + dt )〉 (A10)

and show ηF = η
(mn)
F + O(δt n+1). We begin by noting

χ − χmn = 〈ψ (t )|U †(δt )[1 − U (δt )T †
n (δt )]Tm(δt )|ψ (t )〉 .

(A11)

According to the BCH formula, we have

U (δt )†Tn(δt ) = eiHδt e−iHδt+ϒn+1 = eϒ̃n+1 , (A12)

where

ϒ̃n+1 = ϒn+1 + [iHδt, ϒn+1] + · · · = O(δt n+1) (A13)

is an anti-Hermitian operator, and we used ϒn+1 = O(δt n+1).
Thus, we have

χ − χmn = 〈ψ (t )|U †(δt )ϒ̃n+1Tm(δt )|ψ (t )〉 + O(δt2(n+1))

(A14)

= 〈ψ (t )|T †
m (δt )ϒ̃n+1Tm(δt )|ψ (t )〉 + O(δtm+n+2),

(A15)

where we used U (δt ) = Tm(δt ) + O(δtm+1) and ϒ̃n+1 =
O(δt n+1). Since ϒ̃n+1 is anti-Hermitian,

δχ ≡ 〈ψ (t )|T †
m (δt )ϒ̃n+1Tm(δt )|ψ (t )〉 = O(δt n+1) (A16)

is pure imaginary.
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Now we rewrite ηF using χmn as follows:

η2
F = 1 − |χ |2 = 1 − |χmn + δχ |2 (A17)

= 1 − |χmn|2 − (χ∗
mnδχ + c.c.) + O(δt2(n+1)). (A18)

Here we note

χmn = 〈ψ (t )|Tn(δt )†Tm(δt )|ψ (t )〉 (A19)

= 〈ψ (t )|[Tn(δt )†U (δt )][U †(δt )Tm(δt )]|ψ (t )〉 (A20)

= 〈ψ (t )|e−ϒ̃n+1 eϒ̃m+1 |ψ (t )〉 (A21)

= 1 + 〈ψ (t )|ϒ̃m+1|ψ (t )〉 + O(δt n+1), (A22)

where we used Eqs. (A1) and (A12) to have Eqs. (A21), and
(A13) to obtain Eq. (A22). Substituting Eq. (A22) and using
the facts Reδχ = 0, δχ = O(δt n+1), and ϒ̃m+1 = O(δtm+1),
we obtain

η2
F = 1 − |χmn|2 + O(δtm+n+2), (A23)

ηF = η
(mn)
F + O(δt n+1), (A24)

where we used η
(mn)
F = O(δtm+1).

3. Observable difference between the exact
and fourth-order expressions

Here we show

ηO − η
(mn)
O = O(δt n+1). (A25)

This is simply obtained from

〈ψn(t + δt )|O|ψn(t + δt )〉
= 〈ψ (t )|eiHδt−ϒn+1 Oe−iHδt+ϒn+1 |ψ (t )〉 (A26)

= 〈ψ (t )|eiHδt e−ϒn+1 Oeϒn+1 e−iHδt |ψ (t )〉 + O(δt n+2) (A27)

= 〈ψ (t + δt )|O|ψ (t + δt )〉 − 〈ψ (t )|[ϒn+1, O]|ψ (t )〉
+ O(δt n+2) (A28)

= 〈ψ (t + δt )|O|ψ (t + δt )〉 + O(δt n+1), (A29)

which means

ηO − η
(24)
O = 〈ψ (t + δt )|O|ψ (t + δt )〉

− 〈ψ4(t + δt )|O|ψ4(t + δt )〉
= O(δt n+1). (A30)

APPENDIX B: FIDELITY ERROR PROPAGATION

To prove Eq. (22) for a general order m [we obtain a proof
of Eq. (22) by setting m = 2 in the following argument], we
begin by introducing

δU (δt ) ≡ T †
m (δt )U (δt ) − 1 = e−ϒ̃m+1(δt ) − 1 = O(δtm+1),

(B1)

where we used Eq. (A2) and explicitly showed the δt depen-
dence of ϒ̃m+1. Introducing


m+1(δt ) ≡ iϒ̃m+1(δt ) = O(δtm+1), (B2)

which is Hermitian, we have

δU (δt ) = ei
m+1(δt ) − 1 (B3)

= i
m+1(δt ) − 
m+1(δt )2

2
+ O(δt3(m+1)). (B4)

Now we define

χN ≡ 〈ψ (tN )|ψ2(tN )〉 , (B5)

which satisfies

δFN ≡ 1 − |χN |2 = η2
F,N . (B6)

Then we have

χN = 〈ψ0|
→∏

i=0,...,N−1

{
T †

m (δt )

[
1 + i
m+1(δti ) − 
m+1(δti )2

2

]} ←∏
i=0,...,N−1

Tm(δti) |ψ0〉 (B7)

= 1 − i
N∑

i=1

〈ψ (ti )|
m+1(δti )|ψ (ti )〉 − 1

2

N∑
i=1

〈ψ (ti )|
m+1(δti )
2|ψ (ti)〉

−
∑

1�i< j�N

〈ψ (ti )|
m+1(δti )T
†

m (δti+1) . . . T †
m (δt j )
m+1(δt j )|ψ (t j )〉 + O(δt3(m+1)); (B8)

δFN =
N∑

i=1

〈ψ (ti )|
m+1(δti )
2|ψ (ti )〉 + 2 Re

⎡⎣ ∑
1�i< j�N

〈ψ (ti )|
m+1(δti )T
†

m (δti+1) . . . T †
m (δt j )
m+1(δt j )|ψ (t j )〉

⎤⎦
−

(
N∑

i=1

〈ψ (ti )|
m+1(δti )|ψ (ti )〉
)2

+ O(δt3(m+1)), (B9)

where we used Im 〈ψ (ti )|
m+1(δti )|ψ (ti )〉 = 0. Here we notice that

‖Tm(δt j ) . . . Tm(δti )
m+1(δti ) |ψ (ti )〉 − 
m+1(δt j ) |ψ (t j )〉 ‖2

= 〈ψ (ti )|
m+1(δti )
2|ψ (ti )〉 + 〈ψ (t j )|
m+1(δt j )

2|ψ (t j )〉
− 2 Re[〈ψ (ti )|
m+1(δti )T

†
m (δti+1) . . . T †

m (δt j )
m+1(δt j )|ψ (t j )〉] (B10)
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is higher order and negligible in our leading-order calculations, meaning that we can replace 2 Re[〈ψ (ti)|
m+1

(δti )T †
m (δti+1) . . . T †

m (δt j )
m+1(δt j )|ψ (t j )〉] by 〈ψ (ti )|
m+1(δti )2|ψ (ti)〉 + 〈ψ (t j )|
m+1(δt j )2|ψ (t j )〉 neglecting higher-order cor-
rections. By doing so and completing squares, we obtain

δFN ≈ N
N∑

i=1

[〈ψ (ti )|
m+1(δti )
2|ψ (ti )〉 − 〈ψ (ti )|
m+1(δti )|ψ (ti )〉2]

+
∑

1�i< j�N

[〈ψ (ti )|
m+1(δti )|ψ (ti )〉 − 〈ψ (t j )|
m+1(δt j )|ψ (t j )〉]2. (B11)

We notice again that the second term on the right-hand side
of Eq. (B11) is negligible in the leading-order calculation.
Recalling Eq. (7), we notice that the first term consists of
the leading-order fidelity error in each time step, which is
guaranteed to be less than ε2 in the algorithm. Therefore, we
finally obtain

δFN � N2ε2, (B12)

ηF,N � Nε. (B13)

APPENDIX C: ERROR-BOUND APPROACH

Here we apply the exact error bound [31] for our example
model, obtaining δt guaranteeing the error is less than our
tolerance ε. According to Ref. [31], we have the following
inequality:

‖U (δt ) − e−iAδt/2e−iBδt e−iAδt/2‖ � WA,Bδt3, (C1)

where

WA,B ≡ ‖[B, [B, A]]‖ + 1
2‖[A, [B, A]]‖. (C2)

Note that interchanging A and B also leads to

‖U (δt ) − e−iBδt/2e−iAδt e−iBδt/2‖ � WB,Aδt3. (C3)

If WA,B < WB,A, inequality (C1) gives a tighter bound, and one
may use the second-order formula e−iAδt/2e−iBδt e−iAδt/2 in this
order of A and B. Otherwise, one may use e−iBδt/2e−iAδt e−iBδt/2

whose error is bounded by inequality (C3).

FIG. 7. System-size dependence of the W norms for the example
model (27).

The W norms WA,B and WB,A for our example model (27)
discussed in the main text are plotted in Fig. 7. Recall that we
focused on e−iAδt/2e−iBδt e−iAδt/2 in the main text, and this is
consistent with the tighter bound (C1) since WA,B < WB,A.

The error-bound approach based on the bound (C1) deter-
mines δt from

WA,Bδt3 � ε. (C4)

The possible maximum for δt satisfying this inequality is
denoted by δtbound and given in Eq. (29).

FIG. 8. Comparison between Trotter24 and Richardson’s extrap-
olation at t10 = 1.68 (a) and t40 = 10.3 (b). Filled symbols show the
magnetization expectation values obtained by the exact calculation
(star) and by the observable-based Trotter24 with ε = 10−2. Open
black circles show those obtained by the second-order Trotterization,
m of which are polynomially extrapolated to estimate the ideal limit
εM → 0 (colored circles shown in the legends).
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APPENDIX D: COMPARISON WITH RICHARDSON’S
EXTRAPOLATION

In this Appendix, we compare Trotter24 and Richardson’s
extrapolation as follows. We first implement the Trotter24 like
in Sec. V to obtain the magnetization expectation values at
times tN (N = 1, 2, . . . ). On the other hand, for each time
tN , we aim to obtain a good estimate for the exact expecta-
tion value using Richardson’s extrapolation. Namely, for each
integer M taken out of m + 1 integers, we implement the
usual second-order Trotterization with step size tN/M, having
expectation values at tN . To equate the maximum required gate
complexity in both methods, we impose M � N .

Figure 8 shows the comparison at t = t10 and t40, where
Trotter24 is observable based with ε = 10−2. Figure 8(a)
shows results for the shorter t10 = 1.68. While the accuracy
for m = 1 is comparable to Trotter24, the extrapolation gives
a better estimation as m increases to outperform Trotter24.
In contrast, Fig. 8(b) shows the results for the longer t40 =
10.3, where the extrapolation gives a worse estimation as m
increases.

This breakdown of extrapolations for longer times is ex-
plained by Runge’s phenomenon. The expectation values of
O obtained by the second-order Trotterization read as

O(t, εM ) = 〈ψ (0) | T †
2 (εMt )MOT2(εMt )M | ψ (0)〉, (D1)

where εM ≡ 1/M, and we assume that O(t, εM )
is (m + 1)-times differentiable with respect to εM .
Note that the exact value is given by O(t, 0) =
〈ψ (0) |U (t )† OU (t ) | ψ (0) 〉 = limM→ ∞ O (t, εM ). The

extrapolation method estimates this by extrapolating an
mth-order polynomial curve going through the (m + 1) points
(εM0 , O(t, εM0 )), . . . , (εMm , O(t, εMm )), where we assume
M0 > · · · > Mm. Thus, utilizing the coefficients ci obtained
through Neville’s algorithm, we can write the estimate as
Õm(t, 0) = ∑m

i=0 ciO(t, εMi ). Then, the error of the estimate
is bounded as

|O(t, 0) − Õm(t, 0)|

� max
0�ξ�εMm

1

(m + 1)!

∣∣∣∣∣∂ (m+1)O(t, ξ )

∂ε
(m+1)
M

∣∣∣∣∣
m∏

i=0

εMi . (D2)

Notice that max0�ξ�εMm
| ∂ (m+1)

∂ε
(m+1)
M

O(t, ξ )| can increase when m

increases. Consequently, the extrapolation estimates can be
worse even though we increase m, and this is known as
Runge’s phenomenon. This phenomenon can occur when m
is too large even if t is short. Generally speaking, O(t, εM )
tends to become a more complex function of εM as t increases,
leading to instability.

Runge’s phenomenon is circumvented, in classical numer-
ics, by optimizing the sequence ε0, ε1, . . . , εm such as the
Chebyshev notes. However, this type of optimization is non-
trivial in NISQ devices because of the limitation of circuit
depth and the constraint that Mi’s are integers. In fact, a recent
study [43] resorts to a beyond-NISQ quantum computation
for solving the optimization. Trotter24 is free from Runge’s
phenomenon and more stable especially in longer times.
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