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Optimal control transport of neutral atoms in optical tweezers at finite temperature
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The transport of neutral atoms in Rydberg quantum computers is a crucial step for the initial arrangement of the
grid as well as the dynamic connectivity, recently successfully demonstrated. We study the application of optimal
control and the quantum speed limit for the transport of neutral atoms in optical tweezers at finite temperatures
and analyze how laser noise affects transport fidelity. Open-loop optimal control significantly enhances transport
fidelity, achieving an improvement up to 89% for the lowest analyzed temperature of 1 µK for a distance of
3 µm. Furthermore, we simulate how the transport fidelity behaves in release-and-capture measurements, which
are realizable in the experiment to estimate transport efficiency and implement closed-loop optimal control.
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I. INTRODUCTION

Neutral atom quantum processing units based on optical
tweezers [1–7] open the possibility to modify the connectivity
of qubits at runtime of the algorithm. In the pioneering ex-
periments in Refs. [8,9], coherent transport of atoms through
the movement of optical tweezers has been demonstrated.
Ensuring high-fidelity atom movement is crucial not only
for enabling nonlocal connectivity but also for the necessary
reshuffling of atoms in the initial array arrangement, after
the stochastic loading of atoms within the optical tweez-
ers [10–15]. Fast high-fidelity transport can be achieved via
quantum optimal control (QOC) [16–19]. Optimal control
has emerged as an essential tool for optimizing quantum
gates as well [9,20–22]. QOC allows for either open-loop
optimization using numerical simulations or closed-loop op-
timization directly integrated into the experimental setup. A
variety of optimal control methods is available via open-
source packages [23], such as the dressed chopped random
basis (dCRAB) algorithm [24–26].

We design an open-loop optimal transport of neutral atoms
via optical tweezers at finite temperature to closely repli-
cate experimental conditions: Indeed, in typical experiments,
atoms are trapped in a Gaussian-shaped potential formed by
optical tweezers, and each atom can be represented as a ther-
mal state at a temperature ∼10 µK [27]. After the stochastic
loading of the atoms, empty traps are switched off, as de-
picted in Fig. 1(a). We have control to move tweezers within
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a given row through acousto-optical deflectors (AODs). We
reshuffle the atoms to occupy the vacant positions, thereby
achieving the desired layout. The movement must be exe-
cuted at sufficient fidelity and speed to prevent loss and avoid
any temperature alterations [28]. We consider a variety of
experimental constraints for optical tweezers implemented
via AODs, e.g., a finite frequency bandwidth and piecewise
quadratic pulse shapes, both motivated by the experiments in
Refs. [27,29,30]. We also introduce noise into the modeling
of the tweezer trap, i.e., for its depth, waist, and position.
We find that, with our setup, the quantum speed limit for
moving a strontium-88 atom over a distance of 3 µm is ∼10 µs.
The quantum speed limit relates to the minimum time re-
quired to accomplish a physical process. For transport, we
extrapolate this as the time when it is no longer possible
to improve the figure of merit, in agreement with Ref. [31].
Furthermore, at the lowest analyzed temperature, a notable
enhancement in the figure of merit is observed, reaching a
factor of 89%. We examine the impact of laser noise on the
trap on the figure of merit. The release-and-capture protocol
is the standard approach to verify the quality of the atom
cooling [27], which also applies to the evaluation of the
heating during transport. We predict which level of precision
of the figure of merit can be observed experimentally by
running the release-and-capture simulations after the optimal
pulses. The proposed analysis applies only to the initialization
of the array. Extending it to midcircuit movement of atoms
would require encoding the internal degrees of freedom of the
atoms and decoherence effects, which is beyond the scope of
this paper.

We first describe the open-loop optimal control setup in
Sec. II. Then we turn to the analysis of the quantum speed
limit in Sec. III, followed by simulations with noise and an
explanation of the results in release-and-capture measure-
ments based on these simulations. We conclude the results
in Sec. IV.
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FIG. 1. Setup for atom transport. (a) An array of neutral atoms
after the initial stochastic loading. Empty traps are switched off, and
atom transport along one row of the array is possible via optical
tweezers generated by acousto-optical deflectors (AODs). (b) and
(c) We aim to move the atom at position r0 = 0 µm to the po-
sition rf = 3 µm, a vacant spot in the example. (d) We perform
open-loop optimal control via the time-averaged figure of merit Javg;
closed-loop optimal control is anticipated by considering additional
experimental constraints in our simulation, especially on the pulse
shape r(t ) that controls the position of the trap.

II. OPTIMAL CONTROL SETUP

We focus on the general problem of moving one atom
from position r0 to rf , e.g., from the configuration shown in
Fig. 1(b) to that in Fig. 1(c). Each atom is in a thermal state:

ρ(T ) =
Ns∑

i=1

pi|ψi〉〈ψi|, (1)

where pi = pi(T ) = exp(−Ei/kbT ) are the Boltzmann
weights at temperature T , with Ei the energy of the i state.
We introduce a cutoff in the number of states Ns to represent
the finite temperature density matrix. The convergence of the
results with the cutoff Ns is discussed in Appendix A. We
model the optical tweezer traps as Gaussian potentials of the
following form:

V (t ) = U0 exp

{−2[x − r(t )]2

w2
0

}
, (2)

where U0 is the trap depth, w0 the beam waist, and r the
time-dependent center of the trap [5,12,29]. In the experiment,
the pulse r(t ) tuned to move the atom is generated via arbitrary
waveform generators (AWGs), which imposes constraints on
the available pulse shapes, such as the piecewise quadratic
shape.1 Additionally, we consider laser noise effects and finite
bandwidth during the optimization process. We describe the
numerical simulation for computing the time evolution of the
thermal state under time-dependent pulses in Appendix A and
integrate QOC using the open-source suite QuOCS [23]. We
employ the dCRAB algorithm [25,26]: The key idea is to
construct a pulse r(t ) as a sum of randomly assembled basis

1For example, FPGAs by Spectrum Instrumentation allow us to
generate piecewise quadratic pulses for a setup in the experiment.

elements ri(t ) to minimize a given figure of merit J . The
optimization involves different superiterations, each simulta-
neously optimizing Nc coefficients of the basis. The full pulse
at the superiteration j can be written as

r j (t ) = c j
0r j−1(t ) +

Nc∑
i=1

c j
i r j

i (t ), (3)

where r j−1 is the converged solution of the previous su-
periteration, and {ci}Nc

i=0 is the set of coefficients to optimize.
A common selection for basis decomposition is the use of
trigonometric functions, specifically the Fourier basis; how-
ever, the choice of bases can vary depending on the nature of
the control problem, with certain bases proving more effective
than others [32]. Specifically, we employed the sinc basis for
optimizing the pulse r(t ). The figure of merit is the infidelity
between the density matrices at the end of the pulse ρf (r) and
the density matrix of the initial finite-temperature state shifted
to the final position ρ0(rf ), i.e.,

J (r) = 1 − Tr
[√√

ρf (r)ρ0(rf )
√

ρf (r)
]2

. (4)

This metric is a reliable distance measure between any two
states [33,34]. A worse figure of merit indicates that, at the end
of the transport, the atom has some residual kinetic energy,
which directly relates to an increase in the temperature of the
atom. This statement holds, as the atom starts in a thermal
state, and its temperature can only increase during a unitary
evolution.

In the following analysis, we target strontium-88 atoms,
which have a mass of m = 1.46 × 10−25 kg, and we fix a dis-
tance between the traps in the array of d = 3 µm. The analysis
for different distances is discussed in Appendix B. For the
Gaussian-shaped trap, we assume a trap depth of U0 = −1 mK
with a beam waist w0 = 0.5 µm. The coordinate in position
space is set via the frequency of the AOD, where the con-
version is 3 µm = 1 MHz. The noise for the position, waist,
and depth of the Gaussian potential is modeled as follows:
The amplitude of the laser controlling the trap depth exhibits
a noise δS with a spectrum following a power-law distribution
given by S( f ) = AL/ f 1/2, i.e., the relative intensity noise.
We know from measurement [35] that the amplitude is about
AL = 10−11. The noise of the laser itself is not significant
for the transport, but the beam is typically modified by fiber
couplings, the optical system, and especially the AOD; the
AOD with its raise time of 6 µs modifies the beam. This is con-
sidered as additional noise δU0 in the trap depth, introduced by
random sinusoidal fluctuations with an amplitude of 1% and
random frequencies <100 kHz, as well as random sinusoidal
fluctuations with an amplitude of 5% and random frequencies
>100 kHz. For the trap waist, we assume sinusoidal noise δω0

with a frequency of 1
6 µs motivated by the raise time of the

AOD and an amplitude of 1%. Regarding the trap position,
we assume sinusoidal noise δr with an amplitude of 0.01 µm
and random frequencies ranging between 50 and 150 MHz.

III. TIME-OPTIMAL PULSE FOR ATOM TRANSPORT

First, we assess the performance of a pulse rpq(t ) matching
the constraint of the AWG, specifically a piecewise quadratic
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pulse of the form:

rpq(t ) =
{

r0 + 2 rf −r0
t2
p

t2, t � tp/2,

rf − 2 rf −r0
t2
p

(t − tp)2, t > tp/2,
(5)

where tp is the duration of the pulse. Since the figure of
merit defined in Eq. (4) oscillates at the end of the trans-
port, we evolve the system for an additional fixed tc = 10 µs
to compute the time average Javg. Thus, the evolution time
is tt = tp + tc. The optimization workflow is summarized in
Fig. 1(d), with an example of a piecewise quadratic pulse
represented by the black line. We examine the time average
of the figure of merit Javg as a function of the pulse dura-
tion tp for the piecewise quadratic pulse, considering various
temperatures for the thermal state in Eq. (1), specifically for
T = 1, 10, and 30 µK. The results are shown in Fig. 2(a). The
eigenstates of the Gaussian potential lead to typical frequen-
cies and time scales in the system, which is shown as periodic
minima in the figure of merit; this result agrees with the
observation for transport in optical lattices, see Ref. [31]. For
the strontium-88 atom and for the selected trap parameters,
the periodicity is given by 2τ ≈ 10 µs with

τ = 2π

(E1 − E0)
, (6)

where E1 and E0 are the eigenenergies of the first excited
and ground state of the Gaussian trap, respectively. Using
the piecewise quadratic pulse, we achieve a figure of merit
Javg < 10−2 for tp � 20 µs, for the considered temperatures,
as shown at the top of Fig. 2(a). We define the first transport
time that satisfies this condition on Javg as tmin. For T = 1 µK,
we have tpq

min = 20 µs.
At the bottom of Fig. 2(a), we show the results of the

optimization of the pulse shape via QOC: We analyze Javg as
a function of the optimal pulse with duration tp. The initial
guess for the optimization is the piecewise quadratic pulse
rpq. These data show the typical feature of the quantum speed
limit in an optimal control problem [31,36]: We extract the
quantum speed limit from the bottom plot of Fig. 2(a) as 2τ ,
where the figure of merit does not improve anymore. This
estimate is in good agreement with the time scale of the gap in
Eq. (6). From now on, we interchangeably refer to the quan-
tum speed limit or tmin, the minimum time where the condition
Javg < 10−2 holds. With optimal control and for T = 1 µK,
we have toc

min = 11 µs. We note that this estimate is almost half
the one with the piecewise pulse. In Fig. 2(b), we show the
difference of an optimized pulse roc with tp = 11 µs with its
initial guess. In this case, the optimal control solution adds a
small correction to the piecewise quadratic shape to match the
periodicity of the wave function. Another example is shown
in Fig. 2(c). In general, the optimal control optimization elim-
inates the figure-of-merit oscillations that were present in the
piecewise quadratic case and results in Javg = 10−2 at around
tp = 10–12 µs depending on the temperature T . We observe
that the temperature significantly influences the figure of merit
for atom transport. Higher temperatures of the initial state
lead to a worse figure of merit for the optimal pulse, with
no room for further optimization. Moreover, we emphasize
that the quantum speed limit depends on the fixed trapping
parameters, and we verify that it increases for a shallow trap.

(a)

(b)

(c)

FIG. 2. Figure of merit as a function of transport time for differ-
ent temperatures. (a) On top, for a fixed pulse duration tp, the center
of the Gaussian-shaped trap is moved via a piecewise quadratic pulse
rpq for the distance of 3 µm. We observe periodic minima with a
frequency of 2τ = 10 µs. When these minima occur, the pulse length
tp is precisely tuned to enable the wave function to complete its
oscillation period. At the bottom, the pulse roc is obtained with
optimal control with rpq as initial guess. The optimal control removes
the dependency on the wave function oscillations and reaches a
figure of merit Javg which monotonically decreases with the pulse
time tp. We observe the quantum speed limit around 2τ . The figure of
merit depends on the temperature T , i.e., higher temperatures result
in a worse Javg for the optimal pulse. (b) Difference between the
optimized pulse roc(t ) and the initial guess rpq(t ) for tp = 11 µs at
T = 1 µK. (c) The difference is bigger for tp = 9 µs at the same
temperature.

For instance, if we fix as the trap depth U0 = −0.5 mK, the
quantum speed limit is toc

min = 14 µs. Surprisingly, for deeper
traps, the minimum time does not decrease, but it converges
to toc

min = 11 µs. The relative improvement of the optimal con-
trol solution for the piecewise quadratic pulse is illustrated
in Fig. 3 as a function of the pulse duration. The improve-
ment holds particular significance at pulse duration tp, where
minima were evident for rpq and as close as possible to the
quantum speed limit. Specifically at toc

min = 11 µs, the figure of
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×

FIG. 3. Relative improvement of optimal control solution com-
pared with piecewise quadratic pulse. We observe a substantial
improvement with optimal control. This enhancement is particularly
significant for pulses roc with a duration tp aligning with minima
observed in the piecewise quadratic solution rpq. Within the min-
ima, we are interested in the region around the quantum speed
limit. For example, we observe a significant advantage at tp = 11 µs,
where the figure of merit improves by 89, 58, and 66% for T =
1, 10, and 30 µK, respectively.

merit can be improved by a factor of 89, 58, and 66% for
T = 1, 10, and 30 µK, respectively. Furthermore, we verify
that a comparable improvement is observed when we impose
the experimental constraint on the pulse shape fitting it with
piecewise quadratic segments, each spanning 10 µs.

We then incorporate laser noise into our numerical simula-
tion according to the description of Sec. II. We summarize the
setup in Fig. 4(a) and show example pulses in panel (b). We
calculate the figure of merit for the piecewise quadratic pulse
rpq with a fixed pulse duration of tp = 21 µs at T = 1 µK.
Remember that this point corresponds to a minimum with
Javg = 10−3 for rpq, as depicted in Fig. 2(a). Upon the intro-
duction of noise, the infidelity is Jnoise (pq)

avg = 0.015 ± 0.018.
This result is obtained by averaging over 100 simulations
with different random noise instances. The substantial stan-
dard deviation suggests that outcomes heavily rely on the
specific noise instance. Consequently, scenarios may vary,
ranging from instances where noise is insufficient to affect
results to those where the infidelity increases by one order of
magnitude. We perform optimal control under noise and can
improve the infidelity by 20%, i.e., Jnoise (oc)

avg = 0.012 ± 0.013.
In the experiment, release-and-capture measurements offer

a method to estimate the temperature of the trapped atom
[27]. This provides an opportunity to integrate closed-loop
optimal control into the experiment by using the measure-
ment from release and capture as a figure of merit for the
optimal control instead of Javg. To test the sensitivity of
the release and capture as a potential figure of merit, we
simulate a release-and-capture measurements after applying
the pulse r(t ). Here, we examine our final density matrices
obtained after applying the piecewise quadratic pulse rpq(t )
or the optimal pulse roc(t ). The sequence consists of turning
off the trapping potential, allowing the wave function to freely
evolve, turning on the potential again after time τrc, and mea-
suring the probability of having the atom still in the optical
tweezers. While in the experiment there is a clear path toward
detecting the remaining population of atoms via fluores-
cence, we must define a corresponding figure of merit for the

(b)

(a)

FIG. 4. Transport of neutral atoms under noisy optical tweezers.
(a) The amplitude of the laser controlling the trap depth follows the
noise δS with a spectrum following the power law S( f ) = AL/ f 1/2,
with AL = 10−11. The measured noise of the laser itself is not strong
enough to affect the transport, but the beam is modified by the optical
fibers, the acousto-optical deflector (AOD), and the optical elements.
Thus, we additionally consider the sinusoidal noise δU0 for the trap
depth. Moreover, we consider sinusoidal noise denoted by δω0 for the
trap waist and δr for the position, respectively. (b) Time-dependent
pulses for trap depth U0 and waist ω0 are shown in the presence of
noise. The sinusoidal noise δr for the position r is depicted in the
bottom plot.

numerical simulations. Therefore, we calculate the probability
of the wave function being inside the trap as the accumulated
probability to be within the 35th and 65th percentiles of the
integrated Gaussian potential. To amplify the information in
the release-and-capture measurement, we move the atom Nt

times back and forth in the simulation and then measure;
the backward movement is achieved by reversing the forward
pulse. For example, the atom is moved 10 times back and
forth between the positions of 0 and 3 µm; with the last
movement, it again reaches its final position of 3 µm with
Nt = 21. Looking at Fig. 5 with Nt = 1, we observe that the
measurements after applying the pulses rpq(t ) and roc(t ) are
indistinguishable; the release and capture is not as sensitive to
errors as the numerical approach. The center panel of Fig. 5
shows that, with Nt = 21, we can now resolve the optimal
control solution from the piecewise quadratic pulse. Going to
Nt = 41, the trend is preserved. Therefore, we propose, for a
closed-loop optimal control, to apply the guess pulse multiple
times before running release-and-capture measurements.

IV. CONCLUSIONS

We applied open-loop optimal control to transport atoms
trapped in optical tweezers over a distance of one lattice site.
The wave function is modeled as a thermal state, and an anal-
ysis is conducted for various temperatures. While we chose
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FIG. 5. Release and capture postpulse measurements. For a
temperature of T = 1 µK in the thermal state, we conduct release-
and-capture measurements, i.e., the final density matrix, obtained
after applying the piecewise quadratic pulse Nt times, is evolved for
a time τrc with the trap turned off. The probability is computed as
the accumulated probability for the wave function to be inside the
35th and 65th percentiles of the integrated Gaussian potential. We
focus on the pulse with tp = 11 µs and compare the measurements
for the piecewise quadratic pulse with the one optimized via optimal
control. We do not observe any substantial difference between the
measurements when we transport the atom only one time, i.e., for
Nt = 1. This absence of noticeable differences suggests that release-
and-capture measurements are not sensitive to our figure of merit.
However, when we transport the state many times, e.g., with Nt = 41,
we can observe a difference.

the parameters for strontium-88 atoms, the entire analysis is
adaptable for other species of atoms. The optimal control
is implemented using the open-source library QuOCS [23],
and the dCRAB algorithm is utilized for pulse optimiza-
tion [26]. We quantified the quality of the transport using
the time-averaged overlap between density matrices. First,
we simulated the transport with piecewise quadratic pulses,
which then served as a benchmark for optimal control. For the
piecewise quadratic pulse, we observed the expected behavior,
i.e., local minima of the transport infidelity matching in their
periodicity the eigenfrequencies of the Gaussian potential.
Subsequently, we executed the optimal control optimization
and achieved improvements of up to 89% for the lowest
chosen temperature of 1 µK. We confirm that the results do
not significantly change when we impose the constraint of
having only piecewise quadratic pulse shapes in the optimal
control. When we include noise on the trap depth, waist,
and position for one data point, the infidelity increases on
average by two orders of magnitude. With optimal control,
we can get an improvement of 10%. Finally, we conducted
release-and-capture measurements, potentially suitable for
implementation in the experiment for closed-loop optimal
control optimization. These measurements are sensitive to our
figure of merit if the transport is performed several times.

The optimal control analysis can be extended to the si-
multaneous optimization of trap position, width, and depth.
As a first future point, the assumptions on the noise can be
further refined with experimental data toward an even more

refined open-loop optimal control. The closed-loop optimal
control also has now an input in terms of speed-limit potential
expectation of how to use release-and-capture measurements
as a figure of merit.

The simulations are based on the open-source software
available in Ref. [37]. The data to reproduce the plots and all
the figures are available in Refs. [38,39].
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APPENDIX A: SIMULATION APPROACH
FOR TRANSPORT

The numerical simulation for the atom transport consists
of computing the dynamics of the density matrix ρ(t ) un-
der the application of the time-dependent potential V (t ). The
time evolution of ρ is performed by evolving each state |ψi〉
from Eq. (1) independently and recombining them with their
Boltzmann weights pi. The state vector evolution uses a split-
operator method like the proposal in Ref. [19]. The main idea
of the method is to consider the Hamiltonian of the system as
a sum of the kinetic and potential parts, i.e.,

H = K + V (x, t ), K = − h2

2m

∂2

∂x2
. (A1)

The time-dependent Schrödinger equation ih̄ ∂
∂t |ψ〉 = H |ψ〉

can then be approximated via a Trotter decomposition of K
and V for the unitary propagator of a small time step dt as

exp

[−i(K + V )dt

h̄

]

≈
(−iV dt

2h̄

)
exp

(−iKdt

h̄

)
exp

(−iV dt

2h̄

)
. (A2)

The error in the approximation depends on the commutator
[K,V ] and, with this decomposition, scales with the time step
as O(dt3). The key mechanisms are Fourier transformations
implemented via the FFT library to have both components
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TABLE I. Settings for convergence study. The default settings in
terms of the size n for simulation properties to be converged.

Property Default size n

Time discretization dt 0.5 µs
Space discretization dx 0.005 µm
Grid extension xmax − xmin 5 µm
State cutoff Ns 2

K and V in their diagonal eigenbasis. The exponential, now
a diagonal matrix, becomes cheap, and the FFT carries the
major part of the workload [40]. The spatial grid is static over
the evolution; no moving grid is required for the distances
considered here [19].

The convergence study targets the main parameters of the
simulations, which are the discretization in time, in space,
the range in space, and the cutoff for the finite temperature
states. For each parameter, we specify the base size of a sim-
ulation as n; then we compare the convergence with respect
to simulations of a problem size of 2n, 4n, and 8n, where
the latter serves as a reference point. For the convergence
in discretization in time and space, we take the piecewise
quadratic scheme for a distance of 3 µm as a simulation in the
case of the ground state, and the infidelity is calculated based
on the overlap of the wave function:

F (n) = |〈ψ (8n)|ψ (sn)〉|2, s ∈ {1, 2, 4}. (A3)

The convergence study for the extent of the grid uses the same
Eq. (A3) but running a release-and-capture time evolution
instead of a piecewise-quadratic transport of the atoms; the
release and capture is more vulnerable to the extent of the
system, as there is no trapping potential during the evolution.
For the cutoff in the excited states, we use the relation:

F (n) = F[Uρ(sn)U †,Uσ (8n)U †]

=
(

sn∑
i=1

√
piqi

)2

, (A4)

where pi and qi are the probabilities of the eigenstates of ρ and
σ , respectively. Herein, we assume that we execute the same
dynamics U , i.e., scenarios of optimal control finding two
pulses U and V for different cutoffs are beyond this analysis
and beyond our interest.

For the convergence study, we take the setup from Table I
to define the default size n of the property to be converged.
The specific simulations for each parameter lead to the con-
vergence according to Fig. 6, and the infidelity I is defined
as I = 1 − F . The cutoff Ns is shown for T = 10 µK. We
observe convergence with dx following a scaling of O(dx3).
For the time discretization, the scaling is O(dt4). Neither the
simulations concerning the grid extension nor in the cutoff
shows a polynomial convergence. For the latter, the behavior
was expected, as the exponential of the thermal state goes into
the convergence. According to the results of the convergence
study, we adopt the following parameters for the simulation:
a time discretization of dt = 0.1 µs, a spatial discretization of
dx = 0.002 µm, a grid extension of xmax − xmin = 10 µm, and
a state cutoff of Ns = 8. Regarding the optimization, we fix a
maximum number of 5000 iterations and 30 superiterations.

FIG. 6. Convergence plots for various parameters. For every pa-
rameter, we show the convergence by comparing simulations at
size n, 2n, and 4n, where n is the default value of the parameter.
The discretization of the spatial grid dx shows a scaling of O(dx3),
the one of the time grid scales as O(dt4). For the range, we increase
the limits in the space xmax − xmin at constant discretization dx. The
cutoff Ns is shown for T = 10 µK; we do not expect a linear scaling
in log-log as the exponential distribution enters via the thermal state.

Moreover, the number of parameters optimized at each su-
periteration is fixed as Nc = tp/10 if tp � 20 and Nc = 4 for
lower times. In the end, the total number of optimized pa-
rameters depends on how many superiterations are converged.
On average, the optimization converges already at the first
superiteration ∼1000, as shown in Fig. 7.

For each state vector evolution, we store the wave function
at each time step t both in position and momentum space.
We use this information to validate our results. For each
initial state |ψi〉, we analyze plots as the ones summarized
in Fig. 8. Here, we report the example of an atom moved
for tp = 9 µs and at T = 1 µK via the optimal pulse roc. The
figure of merit for this shuffling is Javg ∼ 10−2. Specifically,
Fig. 8(a) shows the probability density for the ground state
|ψ0|2 before and after the evolution. We observe that the
wave function remains localized in the trap. Moreover, since
the transport is performed with a quite high fidelity, the

FIG. 7. Figure of merit iterations. Optimal control iterations for
tp = 9 µs and T = 1 µK. The peaks represent the beginning of a new
superiteration.
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(a) (b)

(c) (d)

FIG. 8. Evolution for different initial states with optimal control. (a) Ground state wave function before and after the evolution of duration
tp = 9 µs at T = 1 µK. (b) Expectation value of position 〈x〉 and momentum 〈k〉 for the ground state during the evolution. The inset contains the
difference with the applied pulse r(t ) and shows the wave function oscillations. σx and σk represent the variance of position and momentum,
respectively. (c) Evolution of the second excited state. (d) The infidelity of the transport of Javg ∼ 10−2 is not low enough to ensure the second
excited state is not corrupted by the evolution.
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(b)

(a)

FIG. 9. Quantum speed limit for different transport distances.
(a) We report the minimum transport time with Javg < 10−2 for the
piecewise quadratic pulse rpq at T = 1 µK. (b) With optimal control,
the dependence of the quantum speed limit on the distance is almost
linear.

expectation value of the position 〈x〉 has a small variance σx,
and the momentum reaches zero again at the end of the evolu-
tion, without considerable oscillations, as shown in Fig. 8(b).
However, the evolution of the second excited state |ψ2〉 has a
significantly larger standard deviation of the momentum. In
Figs. 8(c) and 8(d), we see that the wave function |ψ2〉 at
the end is distorted and delocalized. With this argument, we
can qualitatively verify the chosen figure of merit, and we
can understand why a figure of merit Javg < 10−2 is needed
if we want to perform high-fidelity transport even for the
excited states.

APPENDIX B: TRANSPORT DISTANCES ANALYSIS

In the main text, we show the transport analysis for a fixed
distance d = 3 µm. Here, we report the dependence of the
quantum speed limit on the transport distance. We remember
that the quantity tmin is defined as the first minimum of the
figure of merit which exhibits Javg < 10−2. First, we transport
the atom via the piecewise quadratic pulse, and in Fig. 9(a),
we observe that the behavior shows the same periodicity
of 10 µs already highlighted in Fig. 2(a). For instance, with
rpq, we need the same time to transport the atom for 4 or
7 µm with high fidelity. Instead, for the optimal control so-
lution, the dependence becomes almost linear, as shown in
Fig. 9(b). Fluctuation of the linearity behavior may depend
on the stochasticity of the optimization.
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Parallel implementation of high-fidelity multiqubit gates with
neutral atoms, Phys. Rev. Lett. 123, 170503 (2019).

[21] S. Jandura and G. Pupillo, Time-optimal two- and three-qubit
gates for Rydberg atoms, Quantum 6, 712 (2022).

[22] A. Pagano, S. Weber, D. Jaschke, T. Pfau, F. Meinert,
S. Montangero, and H. P. Büchler, Error budgeting for a
controlled-phase gate with strontium-88 Rydberg atoms, Phys.
Rev. Res. 4, 033019 (2022).

[23] M. Rossignolo, T. Reisser, A. Marshall, P. Rembold, A. Pagano,
P. J. Vetter, R. S. Said, M. M. Müller, F. Motzoi, T. Calarco
et al., QuOCS: The quantum optimal control suite, Comput.
Phys. Commun. 291, 108782 (2023).

[24] T. Caneva, T. Calarco, and S. Montangero, Chopped random-
basis quantum optimization, Phys. Rev. A 84, 022326
(2011).

[25] N. Rach, M. M. Müller, T. Calarco, and S. Montangero, Dress-
ing the chopped-random-basis optimization: A bandwidth-
limited access to the trap-free landscape, Phys. Rev. A 92,
062343 (2015).

[26] M. M. Müller, R. S. Said, F. Jelezko, T. Calarco, and S.
Montangero, One decade of quantum optimal control in the
chopped random basis, Rep. Prog. Phys. 85, 076001 (2022).

[27] C. Hölzl, A. Götzelmann, M. Wirth, M. S. Safronova, S. Weber,
and F. Meinert, Motional ground-state cooling of single atoms
in state-dependent optical tweezers, Phys. Rev. Res. 5, 033093
(2023).

[28] E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D.
Guéry-Odelin, and J. G. Muga, Fast atomic transport without
vibrational heating, Phys. Rev. A 83, 013415 (2011).

[29] G. Unnikrishnan, P. Ilzhöfer, A. Scholz, C. Hölzl, A.
Götzelmann, R. K. Gupta, J. Zhao, J. Krauter, S. Weber,
N. Makki et al., Coherent control of the fine-structure qubit in a
single alkaline-earth atom Phys. Rev. Lett. 132, 150606 (2024).

[30] F. Meinert, T. Pfau, and C. Hölzl, Quantum computing de-
vice, use, and method (2021), EU Patent Application No.
EP20214187.5.

[31] M. R. Lam, N. Peter, T. Groh, W. Alt, C. Robens, D. Meschede,
A. Negretti, S. Montangero, T. Calarco, and A. Alberti, Demon-
stration of quantum brachistochrones between distant states of
an atom, Phys. Rev. X 11, 011035 (2021).

[32] A. Pagano, M. M. Müller, T. Calarco, S. Montangero, and
P. Rembold, The role of bases in quantum optimal control,
arXiv:2405.20889.

[33] R. Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41,
2315 (1994).

[34] D. Basilewitsch, Optimal control of quantum information tasks
in open quantum systems, Ph.D. thesis, Kassel, Universität Kas-
sel, Fachbereich Mathematik und Naturwissenschaften, Institut
für Physik (2020).

[35] Private communication on the experimental data for RIN laser
noise with C. Tresp (Toptica) (2024).

[36] J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y.
Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A. Jones,
G. Messin, A. Browaeys et al., Two-dimensional transport and
transfer of a single atomic qubit in optical tweezers, Nat. Phys.
3, 696 (2007).

[37] A. Pagano, D. Jaschke, W. Weiss, and S. Montangero, Quantum
transport simulation software (2024), https://baltig.infn.it/qpd/
quantum_transport_simulation.

[38] A. Pagano, D. Jaschke, W. Weiss, and S. Montangero, Sim-
ulation data for “Optimal control transport of neutral atoms
in optical tweezers at finite temperature”, version 1.0, Zenodo
(2024), doi: 10.5281/zenodo.12526758.

[39] A. Pagano, D. Jaschke, W. Weiss, and S. Montangero,
Figures and supplementary material for “Optimal
control transport of neutral atoms in optical tweezers
at finite temperature”, figshare, Collection (2024), doi:
10.6084/m9.figshare.c.7093837.

[40] M. Frigo and S. G. Johnson, The design and implementation of
FFTW3, Proc. IEEE 93, 216 (2005).

033282-9

https://doi.org/10.1140/epjqt/s40507-022-00138-x
https://doi.org/10.1088/1367-2630/16/7/075007
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.22331/q-2022-05-13-712
https://doi.org/10.1103/PhysRevResearch.4.033019
https://doi.org/10.1016/j.cpc.2023.108782
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.92.062343
https://doi.org/10.1088/1361-6633/ac723c
https://doi.org/10.1103/PhysRevResearch.5.033093
https://doi.org/10.1103/PhysRevA.83.013415
https://doi.org/10.1103/PhysRevLett.132.150606
https://doi.org/10.1103/PhysRevX.11.011035
https://arxiv.org/abs/2405.20889
https://doi.org/10.1080/09500349414552171
https://doi.org/10.1038/nphys698
https://baltig.infn.it/qpd/quantum_transport_simulation
https://doi.org/10.5281/zenodo.12526758
https://doi.org/10.6084/m9.figshare.c.7093837
https://doi.org/10.1109/JPROC.2004.840301

