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Efficient learning of continuous-variable quantum states
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The characterization of continuous-variable quantum states is crucial for applications in quantum commu-
nication, sensing, simulation, and computing. However, a full characterization of multimode quantum states
requires a number of experiments that grows exponentially with the number of modes. Here we propose an
alternative approach where the goal is not to reconstruct the full quantum state, but rather to estimate its
characteristic function at a given set of points. For multimode states with reflection symmetry, we show that the
characteristic function at M points can be estimated using only O(log M ) copies of the state, independently of the
number of modes. When the characteristic function is known to be positive, as in the case of squeezed vacuum
states, the estimation is achieved by an experimentally friendly setup using only beamsplitters and homodyne
measurements.
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I. INTRODUCTION

Continuous-variable (CV) quantum systems [1,2] are an
important platform for quantum computing, simulation, sens-
ing, and communication. In quantum computing, CV systems
play a significant role in quantum error correction and fault
tolerance [3–5], and have been shown to offer quantum ad-
vantages in sampling problems [6–8]. They also feature in
quantum machine learning, where they provide a platform for
realization of quantum neural networks [9,10].

A large body of work has been devoted to the char-
acterization of CV quantum states, exploring a variety of
techniques including quantum tomography [11,12], quantum
compressed sensing [13], quantum fidelity estimation [14],
detection of nonclassicality [15], and certification of quan-
tum states [16–19]. Classical shadow tomography has also
been generalized to CV states [20–22]; however, they require
truncation of infinite-dimensional Hilbert space and the anal-
ysis of their computational complexity is absent. Recently,
classical machine-learning techniques have been applied to
the characterization of CV states [23–29]. These approaches
have been shown to achieve high-quality performance on
specific CV states, although in general it is hard to provide
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rigorous a priori guarantees on their error scaling and sample
complexity.

The full characterization of a multimode quantum state
generally requires measurements on an exponential number
of copies of the state, and therefore becomes unfeasible when
the number of modes is large. Here, we explore an alternative
approach, where the goal is not to completely characterize
the state, but rather to estimate its characteristic function at
a finite number of points. The characteristic function is also
important in the study of quantum information scrambling
in phase space [30], and its estimation is often used as the
first step in experimental schemes of CV state tomography
[31–33]. Furthermore, estimates of the characteristic function
can also be used for learning nonlinear and global properties
of multimode quantum states, such as amount of nonclassical-
ity [15], non-Gaussianity [24,34], or the fidelity with a given
target state [14].

In this paper, we develop an efficient method for estimating
point values of the characteristic function of a multimode
quantum state. For CV states with reflection symmetry, we
show that the square of the characteristic function can be
estimated with homodyne measurements and balanced beam-
splitters using a finite number of copies of the state. Building
on this result, we then show that the characteristic function
at M points can be estimated using only O(log M ) copies of
the state, using suitable global measurements. Notably, the
sample complexity is independent of the number of modes,
and unlike in classical shadow tomography, our method does
not require a truncation of the Hilbert space, neither in the
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Fock basis nor in phase space. Furthermore, it turns out that
our approach has a lower computational complexity compared
to traditional quantum state tomography or its more recent
versions, and that the complexity scales as O(M log M ) with
the number of points.

II. BACKGROUND

To get around the exponential complexity of quantum
state tomography, Aaronson proposed the method of shadow
tomography, which predicts the expectation values of a set
of observables [35]. Building on this result, Huang et al.
proposed classical shadow tomography [36], which has been
recently extended to CV quantum states [20–22]. When used
to estimate the expectation values of any of all 4n Pauli
observables on an n-qubit state, however, classical shadow
tomography still requires an exponential number of mea-
surements. To provide an efficient estimate of all Pauli
observables, a quantum strategy using global measurements
on multiple copies was then shown [37]. In the following we
will establish an analog result for CV systems, with the crucial
difference that instead of estimating the expectation values of
an arbitrary set of observables, we will estimate the values of
the characteristic function at an arbitrary set of phase space
points.

Consider a k-mode quantum system, described by the
Hilbert space

⊗k
j=1 H j where each H j is an infinite-

dimensional Hilbert space, associated with the annihilation
and creation operators a j and a†

j , respectively. A mul-
timode displacement operator is a unitary operator of
the form D(α) = eαâ†−ᾱâ, where α = (α1, . . . , αk ) ∈ Ck, â =
(â1, . . . , âk )�, â† = (â†

1, . . . , â†
k )�, and the annihilation and

creation operators satisfy the canonical communication rela-
tions [â j, â†

l ] = δ jl for every j and l .
The characteristic function of a quantum state ρ is de-

fined as Cρ (α) := tr[D(−iα)ρ] [38]. It fully characterizes
the quantum state ρ, which can be reconstructed with
the tomographic formula ρ = 1/π k

∫
Ck d2kαCρ (α) D(iα). In

spin-boson systems, the characteristic function of a bosonic
mode at each phase space point can be directly sampled
by using a state-dependent displacement operation followed
by measuring the spin [31]. The characteristic function can
also be obtained from the Wigner function, which is often
used to represent CV states and can be reconstructed from
its marginals by homodyne measurements in optical sys-
tems [12], via an inverse Fourier transform in phase space
[38–40].

A simple way to estimate the characteristic function at a
specific point α is to subject each mode j to a homodyne
measurement, i.e., a projective measurement of the quadra-
ture operator Qα j := (α j â†

j + α j â j )/|
√

2α j |. From the value
of the measurement outcome q j , one can then evaluate the
empirical average of the exponential exp[−i

∑k
j=1 q j |

√
2α j |],

which provides an estimate of the characteristic function when
averaged over many repetitions of the measurement proce-
dure. However, this approach has the obvious limitation that
the sample complexity grows linearly with the number of
points where the characteristic function is evaluated. In the
following, we provide an exponentially more efficient method.

III. EFFICIENT ESTIMATION OF THE CHARACTERISTIC
FUNCTION

Our method applies to quantum states with reflection
symmetry, that is, quantum states ρ for which there exists
a k × k unitary matrix U such that Cρ (−α) = Cρ (αU ) for
every vector of displacements α. In the single-mode case,
quantum states with reflection symmetry include important
classes of states such as Gaussian states with zero mean val-
ues, Fock states, Gottesman-Kitaev-Preskill (GKP) states [3],
Schrödinger cat states [4], and binomial code states [5].

Our main result is the following theorem, which provides
a method for estimating the characteristic function of a multi-
mode state with reflection symmetry. The sample complexity
of our estimation strategy is independent of the number of
modes, and logarithmic in the number of evaluation points.

Theorem 1. For every k-mode state ρ with reflection
symmetry, the values of the characteristic function Cρ (α)
at M given points {αi}M

i=1 can be accurately estimated
using O(log M ) copies, independently of k. Specifically,
O(1/ε4 log(M/δ)) copies are sufficient to produce an esti-
mate ̂Cρ (α) that satisfies the condition Prob(maxi |̂Cρ (αi ) −
Cρ (αi )| > ε) < δ for any fixed ε > 0 and δ > 0.

Here δ denotes the failure probability that at least one
estimation is ε-far from the true value. The theorem is
based on two techniques, which are interesting in their own
right. The first technique allows one to estimate the prod-
uct Cρ (α)Cρ (−α) for an arbitrary CV state ρ, without any
assumption of reflection symmetry. The measurements used
in the estimation are experimentally friendly, requiring only
beamsplitters and homodyne detections. We note that our es-
timates are for the ideal experimental setup and we leave more
realistic estimates with photon losses and other experimental
efficiencies to future work.

The sample complexity of this strategy is constant in the
number of modes, and depends only on the chosen error
threshold:

Lemma 2. For every k-mode state ρ, O(log(1/δ)/ε2)
copies of ρ are sufficient to produce an estimate ̂Cρ (α)Cρ (−ᾱ)

that satisfies the condition Prob(| ̂Cρ (α)Cρ (−ᾱ) −
Cρ (α)Cρ (−ᾱ)| > ε) < δ ,∀α ∈ Ck . The protocol and its
sample complexity are independent of α.

The idea is that the product displacements D(−iα) ⊗ D(iα)
commute for all possible values of α, and therefore are jointly
measurable on the product state ρ ⊗ ρ at once. In the single-
mode case, the joint measurement is achieved by a simple
setup, illustrated in Fig. 1(a): The product state ρ ⊗ ρ goes
through a balanced beam splitter followed by two homodyne
detections on the two output modes, measuring on the spectral
resolutions of the the position operator x̂ := (â + â†)/

√
2 and

the momentum operator p̂ := (â − â†)/(
√

2i), respectively.
Denoting the two measurement outcomes by x and p respec-
tively, we have

〈D(−iα) ⊗ D(iᾱ)〉ρ⊗ρ = E[e−2i(Re(α)x+Im(α)p)], (1)

where E denotes the expectation value over all possible pairs
(x, p) of measurement outcomes obtained in the experiment.
Using Hoeffding’s inequality, one can then show that a con-
stant number of copies of ρ ⊗ ρ is sufficient to accurately
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FIG. 1. Schemes for estimating the characteristic function.
(a) Our protocol for the estimation of Cρ (α)Cρ (−α) using a bal-
anced beam splitter and two homodyne measurements. Estimation
of the characteristic function at M phase-space points using global
measurements (b) and conventional scenarios using single-copy mea-
surements (c).

estimate Cρ (α)Cρ (−ᾱ). The details of the proof and its ex-
tension to k > 1 modes are provided in the Appendix.

For states with reflection symmetry, the estimation of the
product Cρ (α)Cρ (−ᾱ) is equivalent to the estimation of the
square of the characteristic function Cρ (α)2. This fact is evi-
dent for states satisfying the condition Cρ (−ᾱ) = Cρ (α). The
more general case of states satisfying the condition Cρ (−α) =
Cρ (αU ) for some unitary matrix U is treated in the Appendix.
In turn, the estimation of Cρ (α)2 can be used to estimate the
purity tr(ρ2) = 1/π2k

∫
Ck d2kα|Cρ (α)2|.

A numerical experiment of estimation of Cρ (α)2 for the
Fock state |3〉 〈3| is shown in Fig. 2. There, the estima-
tion error corresponds to the minimum value of ε satisfying

| ̂Cρ (α)2 − Cρ (α)2| � ε for a fraction 1 − δ of the phase space
points on a grid. We consider grids of three different sizes:
61 × 61, 91 × 91, and 121 × 121 within the region [−3, 3] ×
[−3, 3] in phase space, where each intersection corresponds
one phase space point under consideration. Notice that, up to
statistical fluctuations, the estimation error is independent of
number of phase space points, in agreement with Lemma 2.
Figure 2 also shows the robustness of our method to deviations
from the condition of perfect copies. Specifically, we consid-
ered the scenario in which one of the two copies undergoes
photon loss, and observed that the estimation appears to be
robust to small losses [Fig. 2(c)].

FIG. 2. Estimation of Cρ (α)2 for the Fock state ρ := |3〉 〈3|.
Panel (a) [(b)] shows how the required sample complexity scales with
the estimation error (failure probability δ) when δ = 0.01 (estimation
error is 0.04). Panels (c) and (d) show the effect of loss error on one
copy of ρ on the estimation results. Panel (c) shows how the required
sample complexity scales with transmissivity rate T (together with
quantum fidelity between the noisy state and an ideal one) when
ε = 0.08 and δ = 0.02, and panel (d) shows how the estimation
errors changes with T when δ = 0.02.

Lemma 2 has an important implication: If we know that the
characteristic function of the state is has reflection symmetry,
and, in addition, is positive, then we can estimate its value at
M phase points with O(log M ) state copies in an experimen-
tally feasible approach.

Corollary 1. For every k-mode state ρ with reflection sym-
metry and positive characteristic function, the values of the
characteristic function at M given points can be estimated
from O(log(M/δ)/ε4) copies using only beamsplitters and
homodyne measurements.

This result can be used to estimate the characteristic func-
tion of squeezed vacuum states with known phase, both in
the single-mode and in the multimode scenario. A numerical
experiment of estimation of the characteristic function of a
three-mode CV one-dimensional cluster state is provided in
Fig. 3.

Let us consider now the general case where the characteris-
tic function can take arbitrary complex values. In this case, the
square Cρ (α)2 determines the value of the characteristic func-
tion up to a sign. The second technique used in the derivation
of Theorem 1 is a method for identifying the correct sign of
the characteristic function.

Lemma 3. Let ρ be a k-mode CV state and let {αi}L
i=1 be a

set of phase space points satisfying the condition |Cρ (αi )| > ε

for every i ∈ {1, . . . , L}. Then, the signs of all Cρ (αi ) can be
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FIG. 3. Box plots regarding estimation of Cρ (α) for a three-mode one-dimensional CV cluster state with squeezing parameter 0.9. Here

the estimation error is defined as the minimum value of ε satisfying |̂Cρ (α) − Cρ (α)| � ε for (1 − δ) × 100% of phase space points α on a
grid in the region [−3, 3]6 of the six-dimensional phase space. Panel (a) shows how the required sample complexity scales with the estimation
error when δ = 0.1 and panel (b) shows how the sample complexity scales with the failure probability δ when ε = 0.15 for two grids of sizes
66 = 46656 and 96 = 531441.

estimated from O(1/ε2 log(L/δ)) copies of ρ with probability
of error at most δ.

Lemma 3 utilizes joint measurements performed on many
copies of a CV state [Fig. 1(b)], the implementation of which
may require scalable universal quantum computers. Combin-
ing Lemma 2 and Lemma 3, we then obtain Theorem 1. To
estimate the characteristic function at each of M phase space
points up to error ε, we first estimate its square Cρ (α)2 up to
error O(ε2), using the technique provided by Lemma 2. This
step requires O( log(M/δ)/ε4) copies of the state ρ. We then
check whether the modulus of the estimate is close to zero
for the M values of interest. If | ̂Cρ (αi )2| is less than 4ε2/9,
we set the estimate of the characteristic function to zero,
namely ̂Cρ (αi ) = 0. Otherwise, we can estimate the sign of
the characteristic function. By Lemma 3, this step consumes
O(ε−2 log(M/δ)). The full details of the proof are provided in
the Appendix.

Now let us discuss the computational complexity of our
approach. For each phase space point α, the value of Cρ (α)2 is
estimated from the empirical average in Eq. (1), which can be
computed in O(log M ) time. On the other hand, the compu-
tational time for estimating the sign of Cρ (α) is a constant.
Hence, the computational complexity for estimating all the
values of Cρ (α) for M phase-space points is O(M log M ).

IV. COMPARISON WITH OTHER APPROACHES

Theorem 1 shows that the characteristic function at M
points can be accurately estimated using global measurements
on O(log M ) copies of the state, as illustrated in Fig. 1(b).
This setting is different from that of conventional scenarios in
which each copy of the state undergoes an individual measure-
ment [Fig. 1(c)]. Consider for example the naive conventional
scenario in which each copy is used to estimate the value
of the characteristic function value at one specific point. In-
tuitively, estimating M different values in this naive setting
will require a number of samples growing linearly in M, no
matter what kind of classical post-processing is done on the
experimental data. This intuition can be made rigorous using
the results of Ref. [37] on the complexity of learning point

functions. This result can be summarized in the following
proposition.

Proposition 4. For a reflection symmetric CV state, the
sample complexity of the estimation of the characteristic func-
tion at M points up to a constant error with high probability
is at least �(M ) using individual measurements in the naive
scenario.

Our method also exhibits advantages over classical shadow
tomography. When used for estimating a set of observables
over a k-mode CV state, existing methods of classical shadow
tomography using homodyne measurements [21,22] have a
sample complexity growing exponentially with k, in contrast
with the sample complexity of our method, which is indepen-
dent of k. Moreover, classical shadow tomography approaches
require a truncation, either in Fock space or the phase space,
which is not necessary in our method for estimation of point
values of a state characteristic function.

V. APPLICATION: ESTIMATION OF CV OBSERVABLES

Our method for estimating the characteristic function can
be used to estimate the expectation value of a variety
of CV observables. In general, the expectation value
of a k-mode observable O on a state ρ is given by the
tomographic formula tr[O ρ] = ∫

d2kαCρ (α)CO(−α)/π k ,
with CO(α) := tr[O D(−iα)] [40]. Now, suppose that the
observable has bounded trace norm ||O||1 � 1 and satisfies
the condition | ∫

α/∈A d2kαCρ (α)CO(−α)| < ε/2 for some
ε > 0 and some compact region A ⊂ Ck . For example, this
condition is satisfied if CO(α) decays exponentially with
|α|, as it happens, e.g., when O is the density operator of
a k-mode coherent quantum state and the region A is large
compared to the amplitude of such state. In this case, an
estimate of the expectation value of O can be obtained by
randomly sampling M points inside A and by estimating the
characteristic function of ρ at these points. In the Appendix,
we show that picking M = 16σ 2

M |A|2/ε2, where σ 2
M :=

1
M−1

∑M
i=1( ̂Cρ (αi )CO(−αi ) − 1

M

∑M
i=1

̂Cρ (αi )CO(−αi ))2, |A|
is the volume of A, and estimating the characteristic function
with error ε̃ = ε/(4|A|) guarantees an accurate estimate of
tr(Oρ).
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Corollary 2. The expectation value of a k-mode observ-
able O with ||O||1 � 1 on a state ρ can be estimated
using O(|A|4/ε4 log (|A|2/(ε2δ))) copies of ρ and the es-
timate o := |A|

π2M

∑M
i=1

̂Cρ (αi )CO(αi ) satisfies the condition
Prob(|o − tr(ρO)| � ε) < δ, where ∼ comes from the ap-
proximation of estimation error of Monte Carlo integration.

Note also that the same randomly sampled points can be
used for any number of observables O, provided that all ob-
servables have a small contribution outside the region A. This
means that we don’t need to resample and use more ρ states,
and the sample complexity only depends on the size of the
region |A|.

VI. DISCUSSION AND CONCLUSIONS

Recently, many efforts have been made to efficiently learn
continuous-variable quantum systems [20–22,41,42]. In this
context, we have demonstrated that the characteristic func-
tion of a multimode state with reflection symmetry can be
estimated at M points using O(log M ) copies of the state,
independently of the number of modes. This contrasts with
the naive conventional scenario, where �(M ) copies of ρ

are required. For states with positive characteristic function,
such as squeezed vacuum states, the estimation is achieved by
an experimentally friendly setup that uses only beamsplitters
and homodyne measurements. Our approach does not require
truncation of the Hilbert space and the sample complexity
is independent of the number of modes, thereby enabling
applications to the characterization of large-scale CV quantum
states. Finally, regarding the fact that Gaussian states [43] and
particular types of non-Gaussian states [44] can be efficiently
simulated on a classical computer, it is an interesting open
problem whether the CV quantum states with reflection sym-
metry considered in this paper are efficiently simulatable.
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APPENDIX: PRELIMINARY KNOWLEDGE OF CV STATES
AND CHARACTERISTIC FUNCTIONS

To make our paper complete, we present some use-
ful preliminary knowledge about CV quantum states and

characteristic functions here. However, for comprehensive un-
derstanding of CV quantum optics in phase space, we refer the
readers to Refs. [38–40]. For the definition of characteristic
functions, we follow the convention in Ref. [38]. Let us first
define displacement operators

D(α) := eαâ†−ᾱâ, (A1)

where α ∈ C, â and â† are the annihilation operator and cre-
ation operator respectively. It is a unitary operation D(α)−1 =
D(α)† = D(−α). Two displacement operators do not com-
mute with each other in general, satisfying

D(α)D(β ) = e[αâ†−ᾱâ,βâ†−β̄â]D(β )D(α) = eαβ̄−ᾱβD(β )D(α),

since [â, â†] = 1. The set of all displacement operators form
a Heisenberg-Weyl group [43], which is the generalization of
Pauli group in CV quantum systems.

For any Hermitian trace-class operator O on the Hilbert
space H ∼= L2(R), we have the Fourier-Weyl relation

O = 1

π

∫
C

d2 α tr(OD(α))D(−α). (A2)

For a density operator ρ on H, we immediately have

ρ = 1

π

∫
C

d2 α tr(ρD(α))D(−α). (A3)

We define the state characteristic function as

Cρ (α) := tr(ρD(−iα)) = tr(ρe−iαâ†−iᾱâ). (A4)

[In some literature, the characteristic function of ρ is defined
as tr(ρD(α)). Here we choose the convention in (A4) because
of the convenience when we consider measuring Cρ (α).] In
the following, sometimes we use Cρ (x, p) instead of Cρ (α)
to denote the characteristic function on the two-dimensional
coordinate system by changing the variable α = x+ip√

2
. In a

similar way, we can define the observable characteristic func-
tion as

CO(α) := tr(OD(−iα)). (A5)

Since displacement operators form an orthogonal basis on H,
we have

tr(ρO) = 1

π2

∫
d2αCρ (α)CO(−α). (A6)

It is easy to find the characteristic function of any
CV state ρ should satisfy the properties Cρ (0) = tr(ρ) =
1 and Cρ (−α) = tr(ρD(iα)) = tr(ρD(−iα)) = Cρ (α), where
the bar denotes complex conjugate. Another property a char-
acteristic function must satisfy owing to the semidefinite
positivity of ρ is given by quantum Bochner’s theorem [45],
which we will skip here.

Another important phase-space description of CV state ρ

is its Wigner quasi-probability function

Wρ (x, p) = 1

2π

∫
R

eipv
〈
x − v

2

∣∣∣ρ∣∣∣x + v

2

〉
dv, (A7)

for x, p ∈ R. Wigner function has an important operational
property that is its marginal distribution equals the outcome
probability distribution of a projected measurement on the
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associated quadrature basis, i.e.,

Pθ (x) =
∫
R

Wρ (x cos θ − p sin θ, x sin θ + p cos θ ) d p,

(A8)
where Pθ is the outcome probability distribution of the ho-
modyne measurement on quadrature cos θ x̂ + sin θ p̂. The
characteristic function of a state ρ can be obtained from its
Wigner function by the Fourier transformation

Cρ (x, p) =
∫
R2

dudve−i(ux+vp)Wρ (u, v). (A9)

Then for ζ ∈ R, we obtain∫
dxPθ (x) exp(−iζx)

=
∫

dxd pWρ (x cos θ − p sin θ, x sin θ + p cos θ )e−iζx

=
∫

dx′d p′Wρ (x′, p′)e−iζ (cos θx′+sin θ p′ )

= Cρ (ζ cos θ, ζ sin θ )

= Cρ (ζeiθ /
√

2),

where we have used Eq. (A8) in the first equality, transfor-
mations of variables x′ = cos θx − sin θ p and p′ = sin θx +
cos θ p in the second equality, and Eq. (A9) in the third equal-
ity. By choosing θ = arg(α) and ζ = √

2|α|, we have∫
dxParg(α)(x) exp(−i

√
2|α|x) = Cρ (α). (A10)

It implies that Cρ (α) can be directly estimated by performing
a homodyne detection in the quadrature basis with phase
arg(α).

1. Proof of Lemma 2

Since balanced beam splitter yields the transformation

BS

[
â1

â2

]
BS† =

[
1√
2
(â1 + â2)

1√
2
(−â1 + â2)

]
, (A11)

we have

tr(D(−iα) ⊗ D(iᾱ)ρ ⊗ ρ)

= tr(BSD(−iα) ⊗ D(iᾱ)BS†BSρ ⊗ ρBS†)

= tr(D( − i
√

2Re(α)) ⊗ D(
√

2Im(α))BSρ ⊗ ρBS†).

Note that the expectation value tr(D(−iα/
√

2)ρ) can be esti-
mated by performing a homodyne detection in the quadrature
basis with phase arg(α). That is

tr(D(−iα/
√

2)ρ) = Ex exp(−i|α|x), (A12)

where x denotes the homodyne measurement outcome.
To estimate 〈D( − i

√
2Re(α)) ⊗ D(

√
2Im(α))〉BSρ⊗ρBS† ,

we apply a balanced beam splitter to combine two copies
ρ ⊗ ρ, and then measure position at one mode and mea-
sure momentum at the other mode. When Re(α) is negative,
we must flip the sign of the position measurement out-
come when we plug the measurement outcome x into the

estimator Ex exp(−i
√

2|Re(α)|x) of the expectation value
〈D(i

√
2Re(α))〉, but we do not need to flip the sign when

Re(α) is positive. Similarly, when Im(α) is negative, we also
need to flip the sign of momentum measurement outcome p
when we use the estimator Ex exp(−i

√
2|Im(α)|p), but we

do not flip the sign when Im(α) is positive. By denoting
the measurement outcomes as x and p respectively (without
flipping the signs), we have

tr(D(−i
√

2Re(α)) ⊗ D(
√

2Im(α))BSρ ⊗ ρBS†)

= Ex,p(exp(−2iRe(α)x − 2iIm(α)p)).

Suppose the total number of repetitions is N , then
̂Cρ (α)Cρ (−ᾱ) = 1

N

∑N
i=1 exp ( − 2iRe(α)x(i) − 2iIm(α)p(i))

is an unbiased estimator of Cρ (α)Cρ (−ᾱ), where x(i) and p(i)

are the ith position measurement outcome and momentum
measurement outcome respectively.

Using Hoeffding’s inequality for both the real and imagi-
nary parts of the estimator, since both |Re( exp ( − 2iRe(α)x(i)

− 2iIm(α)p(i)))| � 1 and |Im( exp ( − 2iRe(α)x(i) − 2iIm
(α)p(i)))| � 1, we know that to make sure estimation error

| ̂Cρ (α)Cρ (−ᾱ) − Cρ (α)Cρ (−ᾱ)|
� |Re( ̂Cρ (α)Cρ (−ᾱ) − Cρ (α)Cρ (−ᾱ))|

+ |Im( ̂Cρ (α)Cρ (−ᾱ) − Cρ (α)Cρ (−ᾱ))|
� ε

with probability 1 − δ, N = O( log(1/δ)/ε2) is sufficient.
For k-mode state, a displacement operator on the 2k-

dimensional phase space is a tensor product of single-mode
displacement operators, i.e, D(α) = D(α1) ⊗ · · · ⊗ D(αk ) for
any α = (α1, . . . , αk ) ∈ Ck . Then following the above analy-
sis, we have

Cρ (α)Cρ (−ᾱ) = 〈⊗k
i=1(D( − i

√
2Re(αi ))

× ⊗D(
√

2Im(αi )))〉BS⊗kρ⊗ρBS†⊗k ,

where each beam splitter operation is applied pairwise on the
same modes of two copies ρ ⊗ ρ. By performing homodyne
measurements on each of the 2k modes obtaining outcomes
{xi}k

i=1 and {pi}k
i=1, we can estimate Cρ (α)Cρ (−ᾱ) by

Ex1,...,xk ,p1,...,pk �
k
i=1e−2iRe(αi )xi e−2iIm(αi )pi

= Ex1,...,xk ,p1,...,pk exp

(
k∑

i=1

−2i(Re(αi)xi + Im(αi )pi )

)
.

2. Proof of Corollary 1

There is a unitary operation U on Hilbert space H that
yields the transformation U âU† = U â and U â†U† = U †â†,
where U âU† denotes the application of U · U† entrywise on
vector â, and U ∈ Ck×k is a unitary matrix. Using the above
fact, we have

UD(iᾱU )U† = eiᾱUU â†U†−iαU †U âU†

= eiᾱâ†−iαα̂

= D(iᾱ).
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Hence

Cρ (−ᾱU ) = tr(UρU†UD(iᾱU )U†)

= tr(UρU†D(iᾱ))

= CUρU† (−ᾱ).

By using the condition of reflection symmetry that is Cρ (α) =
Cρ (−ᾱU ), we obtain Cρ (α)2 = Cρ (α)CUρU† (ᾱ). It implies
that given two copies ρ ⊗ ρ, after we perform a unitary oper-
ation U consisting of beam splitters and phase shifters on the
second copy, we can follow the previous procedure explained
in Lemma 1 to obtain an accurate estimation of Cρ (α)2 using
O(1/ε2 log 1/δ) copies of ρ for each arbitrary point α. To
make the estimations at all M phase space points accurate, the
union bound indicates that we need O(1/ε2 log M/δ) copies.

3. Proof of Lemma 3

First we suppose |Re(Cρ (αi ))| > ε for all αi ∈ S . Given
N copies of CV state ρ, that is ρ⊗N , for each α ∈ Ck , to
determine the sign of Re(Cρ (α)), we measure the following
two-outcome observable:∫

dq f (q) |q1〉 〈q1| ⊗ |q2〉 〈q2| ⊗ · · · ⊗ |qN 〉 〈qN | , (A13)

where q = (q1, . . . , qN ), each |qi〉 = |qi1〉 ⊗ · · · ⊗ |qik 〉 (1 �
i � N ) is a tensor product of the eigenstates of the quadrature
operators with phases arg(α1), . . . , arg(αk ) with eigenvalue
qi1 , . . . , qik ∈ R, and

f (q) =
{

1, 1
N

∑N
i=1 cos

(√
2

∑k
j=1 |α j |qi j

)
> 0

0, 1
N

∑N
i=1 cos

(√
2

∑k
j=1 |α j |qi j

)
� 0

. (A14)

Note that because
Cρ (α)

= Eq1,...,qk exp

(
k∑

i=1

−
√

2i|αi|qi

)

= Eq1,...,qk

(
cos

(√
2

k∑
i=1

|αi|qi

)
− i sin

(√
2

k∑
i=1

|αi|qi

))
,

we have

Re(Cρ (α)) = Eq1,...,qk cos

(√
2

k∑
i=1

|αi|qi

)
. (A15)

It implies that the measurement in (A13) is an estimation of
the sign of Re(Cρ (α)). When the measurement outcome is 1,
then we believe Re(Cρ (α)) is positive; otherwise, we believe
Re(Cρ (α)) is negative.

Without loss of generality, we assume that Re(Cρ (α)) is
positive and then calculate the probability to falsely deter-
mine Re(Cρ (α)) as negative. Using Hoeffding’s inequality,
we know that the probability to obtain outcome 0 in (A14)
is bounded by

Pr

⎛
⎝ 1

N

N∑
i=1

cos

⎛
⎝ k∑

j=1

|α j |qi j

⎞
⎠ � 0

⎞
⎠

� exp

(
−N · Re(Cρ (α))2

2

)
� e− Nε2

2 .

Hence, the error probability for determining the sign of
Re(Cρ (α)) by performing the above joint measurement on
ρ⊗N is bounded above by e−Nε2/2.

Measuring the observable in (A13) only yields the majority
vote of the sign. When N is sufficiently large, ρ⊗N , with a high
probability, falls inside either one of two eigenspaces of the
observable. It implies that measuring the observable in (A13)
does not disturb ρ⊗N with a high probability and suggests that
we can sequentially perform such quantum measurements for
different values of α on ρ⊗N . Next we use the quantum union
bound [46,47]: for any quantum state ρ and a set of M two-
outcome observables {Ki}M

i=1, each of which has eigenvalue 0
or 1. If tr(Kiρ) � 1 − ε, then when we measure K1, . . . , KM

sequentially on ρ, the probability that all of them yield the out-
come 1 is at least 1 − 4Mε. The quantum union bound implies
that if we perform M two-outcome measurements shown in
(A13) for M phase-space points {αi}M

i=1 sequentially on ρ⊗N ,
the error probability to obtain all the signs of {Re(Cρ (αi ))}M

i=1

is upper bounded by 4Me−Nε2/2. Hence, if we choose N =
O(1/ε2 log(M/δ)), then we can correctly determine all the
signs of {Re(Cρ (αi ))}M

i=1 with error probability less than δ.
Second, we suppose |Im(Cρ (αi ))| � ε for all αi ∈ S . For

each α, to determine the sign of Im(α), we perform the two-
outcome measurement in (A13) on ρ⊗N with f (q) redefined
as following:

f (q) =
{

1 1
N

∑N
i=1 sin

(∑k
j=1 |α j |qi j

)
< 0

0 1
N

∑N
i=1 sin

(∑k
j=1 |α j |qi j

)
� 0

. (A16)

When the outcome is 1, we believe Im(Cρ (α)) is positive,
and otherwise, we believe Im(Cρ (α)) is negative. This is
because Im(Cρ (α)) = −Eq1,...,qk ( sin(

∑k
i=1 |αi|qi )). Similar to

the above analysis, using Hoeffding’s inequality, we know
that the error probability to estimate the sign of Im(Cρ (α))
is bounded above by

exp

(
−N · Im(Cρ (α))2

2

)
� e− Nε2

2 . (A17)

Using the quantum union bound again, we know that if we
perform M such quantum measurements for M values of α on
ρ⊗N with N = O(1/ε2 log(M/δ)), then we can correctly de-
termine all the signs of {Im(Cρ (αi ))}M

i=1 with error probability
less than δ.

4. Proof of Theorem 1

For any given set S of M phase-space points, we first
apply Lemma 1, together with the union bound, to obtain

estimate ̂Cρ (α)2 := | ̂Cρ (α)2|eiθ with θ ∈ [−π, π ) of Cρ (α)2

using O(1/ε4 log(M/δ)) copies of ρ such that

Pr( max
α∈S

| ̂Cρ (α)2 − Cρ (α)2| > ε2/3) < δ/2. (A18)

For each α ∈ S , if | ̂Cρ (α)2| � 4ε2/9, then we choose our

estimation of Cρ (α) as ̂Cρ (α) = 0. Then with probability at
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FIG. 4. Comparison between true values of Cρ (α) and the corresponding estimations ̂Cρ (α) for a Fock state ρ = |3〉 〈3|. [(a)–(c)] The
calculated true values of Cρ (α) on grids of size 61 × 61, 91 × 91 and 121 × 121 in the region [−3, 3] × [−3, 3] of phase space. [(d)–(f)] The

corresponding estimations ̂Cρ (α) on three grids, respectively.

least 1 − δ/2 > 1 − δ, we have

|̂Cρ (α) − Cρ (α)| =
√

|Cρ (α)2|

�
√

| ̂Cρ (α)2| + | ̂Cρ (α)2 − Cρ (α)2|

�
√

4ε2

9
+ ε2

3
< ε,

where the first inequality is because of triangle inequality and
the second inequality comes from (A18).

Second, we consider the case | ̂Cρ (α)2| > 4ε2/9. By
Lemma 3, we can use at most O(1/ε2 log(M/δ)) copies of
ρ to correctly determine the sign of Cρ (α) for at most M
phase-space points α with probability at least 1 − δ/2. Denote

the square root of ̂Cρ (α)2 closer to Cρ (α) as
√

̂Cρ (α)2. Then

|
√

̂Cρ (α)2 + Cρ (α)| > |Cρ (α)| > 2ε/3, hence with probabil-
ity at least 1 − δ/2, we have

|
√

̂Cρ (α)2 − Cρ (α)| = | ̂Cρ (α)2 − Cρ (α)2|
|
√

̂Cρ (α)2 + Cρ (α)|
� ε2/3

2ε/3
< ε.

Then using the triangle inequality, with probability (1 −
δ/2)2 > 1 − δ, we have

|̂Cρ (α) − Cρ (α)| < ε. (A19)

Combining the above two cases, we have proved the main
result.

5. Example

The implementation of joint measurements employed in
Lemma 3 is beyond state-of-the-art quantum technology, and
may require scalable universal quantum computers. However,
in some particular cases, the measurement strategy for esti-
mating the signs of Cρ (α) can be significantly simplified. For
instance, when the CV state under consideration is invariant
under phase rotation, we can estimate the signs of Cρ (α) for
any α by using single one homodyne measurement setting and
the sample complexity can be reduced to O( log(1/δ)/ε2).

Here we consider a particular example of Fock state which
is invariant under phase rotation. Figure 4 shows the real
parts of estimations of Cρ (α), where ρ is a Fock state ρ =
|3〉 〈3| using 4100 copies of ρ, together with the correspond-
ing calculated truth. We use 4000 copies of ρ to obtain our
estimation of Cρ (α)2 for all α. Specifically, since Cρ (α)2 =
Cρ (α)Cρ (−ᾱ) for a Fock state, we can use the setup illus-
trated by Fig. 1(a) to produce our estimation. We then apply
a homodyne measurement on position over 100 copies of ρ

to estimate the signs of Cρ (α) for all α. That is, for each

α ∈ C, if Re( 1
100

∑100
i=1 e−i

√
2|α|xi ) > 0, where xi ∈ R denotes

a measurement outcome, then the estimate of sgn(Cρ (α)) is
positive; otherwise, it is negative.
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6. Proof of Proposition 4

Here we show that in restricted conventional scenario,
at least �(M ) copies of ρ is required to estimate the val-
ues of characteristic function {Cρ (αi )}M−1

i=0 for M phase-space
points, even when state ρ has knwon reflection symmetry.
Since we consider the worst case, to prove this proposi-
tion, we only need to provide an example requiring sample
complexity �(M ). Consider a set of single-mode squeezed-
vacuum states {ρi}2M−1

i=0 , where each ρi is squeezed in the
quadrature with phase θi = iπ

2M . The characteristic function
of each ρi is Cρi (x, p) = exp(−(x cos θi + p sin θi )2/(4r2) −
r2/4(x sin θi − p cos θi )2). Suppose the given set of phase
space points is S := {αi := |α|eiθi}M−1

i=0 for certain fixed value
of |α| > 0. When squeezing asymptotically goes to infinity,
we have Cρi (αi ) → 1 and for all j = i,Cρi (α j ) → 0.

Now we define a new set of prepared states {σi|σi =
1
2ρi + 1

2ρ2M−i}M−1
i=0 , each of which is a uniform mixture of two

single-mode squeezed-vacuum states. Due to the linearity of
characteristic functions, each σi satisfies the reflection sym-
metry Cρ (α) = Cρ (−ᾱ) ∀α. When squeezing asymptotically
goes to infinity, for any 0 � i, j � M − 1, we have

Cσi (α j )

{
>1/3 i = j
<1/6 i = j.

(A20)

Suppose we are provided with copies of a state σi randomly
chosen from the set of {σi}M−1

i=0 . Precisely estimating all the
values of {Cσi (α)} for all α ∈ S implies that we can correctly
distinguish between Cρ (α) > 1/3 and Cρ (α) < 1/6.

Then we can use the following lemma [37] on the com-
plexity of learning point functions to show that the sample
complexity to accurately estimate the values of {Cσi (α j )}M−1

j=0
in restricted conventional scenario is �(M ).

Lemma 5. Suppose we have a set of functions fa(x) (a =
0, 1, . . . , M − 1) on xb (b = 0, 1, . . . , M − 1) satisfying

fa(xb) =
{

1 a = b
0 a = b.

(A21)

If there exists a classical randomized algorithm with input
{xci , fa(xci )}0�ci�M−1,1�i�N and output f̃a such that ∀0 � a �
M − 1,

Pr( max
0�b�M−1

| fa(xb) − f̃a(xb)| > 1/2) < 1/3, (A22)

then N = �(M ).
From the above set of characteristic functions, we can

easily obtain a set of point functions: when Cσi (α j ) > 1/3(<
1/6), we set the point function fi(α j ) = 1(0). Hence, if we
have a classical randomized algorithm using the measurement
data in the restricted conventional scenario with sample com-
plexity o(M ) to accurately estimate all the values of {Cσi (α)}
for all α ∈ S , then we can correctly distinguish between the
two cases Cσi (α) > 1/3 and Cσi (α) < 1/6 for each α ∈ S with
input size o(M ). This of course contradicts with the above
lemma. Thus, we know that the sample complexity to estimate
values of {Cσi (α)} for all phase-space points α ∈ S is at least
�(M ) in this restricted classical scenario.

7. Proof of Corollary 2

Suppose k-mode quantum state ρ has finite energy in
phase space such that there exists a region A ⊆ Ck around
the origin such that | ∫

α/∈A d2kαCρ (α)CO(−α)| < ε/2. Denote
{αi}M

i=1 as the set of M phase-space points we randomly

sample in region A and ̂Cρ (αi ) as the estimation of the
state characteristic function value at phase-space point αi

up to error ε̃. Denote σ 2
M := 1

M−1

∑M
i=1( ̂Cρ (αi )CO(−αi ) −

1
M

∑M
i=1

̂Cρ (αi )CO(−αi ))2 and |A| as the volume of region A.
Then we have∣∣∣∣∣

∫
d2kαCρ (α)CO(−α) − |A|

M

M∑
i=1

̂Cρ (αi )CO(−αi )

∣∣∣∣∣
�

∣∣∣∣∣
∫

α∈A
d2kαCρ (α)CO(−α) − |A|

M

M∑
i=1

̂Cρ (αi )CO(−αi )

∣∣∣∣∣
+

∣∣∣∣
∫

α/∈A
d2kαCρ (α)CO(−α)

∣∣∣∣
�

∣∣∣∣∣
∫

α∈A
d2kαCρ (α)CO(−α) − |A|

M

M∑
i=1

Cρ (αi )CO(−αi )

∣∣∣∣∣
+

∣∣∣∣∣ |A|
M

M∑
i=1

(Cρ (αi ) − ̂Cρ (αi ))CO(−αi )

∣∣∣∣∣ + ε

2

where we have used the triangular inequality in the first and
the second inequalities.

The first term is the estimation error in Monte Carlo
integration, which can be approximated by σM |A|√

M
. To

bound the second term, by using Holder’s inequality and
the fact that ∀i, |Cρ (αi ) − ̂Cρ (αi )| � ε̃ and |CO(−αi )| �
||D(iαi )||∞||O||1 � ||O||1 � 1, we have∣∣∣∣∣

M∑
i=1

(Cρ (αi ) − ̂Cρ (αi ))CO(−αi )

∣∣∣∣∣
�

M∑
i=1

|Cρ (αi ) − ̂Cρ (αi )| max
i=1,...,M

|CO(−αi )|

� M ε̃

Thus, we obtain∣∣∣∣∣
∫

d2kαCρ (α)CO(−α) − |A|
M

M∑
i=1

̂Cρ (αi )CO(−αi )

∣∣∣∣∣
� σM |A|√

M
+ |A|ε̃ + ε

2
.

To make the above estimation error less than ε, we set M =
16σ 2

M |A|2
ε2 and ε̃ = ε

4|A| . Inserting into the sample complexity

in Theorem 3, we find that O( |A|4
ε4 log σ 2

M |A|2
ε2δ

) copies of ρ are
sufficient to estimate tr(ρO) up to error ε with probability at
least 1 − δ.

8. Discussion on preparing two copies of ρ

Here we briefly discuss how to achieve two identical copies
of a quantum state in experiments. Ideally, an experimenter
may control two individual quantum devices in a laboratory
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in the same way such that both these two devices produce
the same quantum state. In practice, an experimenter can
employ a quantum device to prepare the same quantum state
simultaneously in two spatial modes. For example, one can
prepare two spatial modes with the same two-mode squeezed
state using four-wave mixing. It is also possible to consider
that a quantum device keeps producing the same copy of a
quantum state in each pulse. An experimenter can delay the
transmission of one copy of the quantum state in one pulse

through a waveguide and recombine two copies of the state in
two different pulses later by a beam splitter. However, in this
approach, the extra propagation of one pulse can introduce
loss error in that corresponding copy of the quantum state.
In the main text, we have considered how this kind of loss
error can affect the efficiency of our approach as well as the
resulting estimation errors. Numerical results imply that our
approach is robust to low loss error occurred on one of two
quantum copies.
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