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Music, enchanting and poetic, permeates every corner of human civilization. Although music is not unfamiliar
to people, our understanding of its essence remains limited, and there is still no universally accepted scientific
description. This is primarily due to music being regarded as a product of reason and emotion, making it difficult
to define. This article treats musical texts as a complex system. This view echoes linguist John Rupert Firth’s
insight that understanding a word involves defining it through its surrounding relationships. To construct the
network we first build a linear regression model with threshold values to assign conditions to the links among
note, time, and volume. Then a clustering coefficient representing regional characteristics is utilized to define the
word. Finally, the statistical distribution of the text is strictly required to adhere to the grammatical properties
of statistical linguistics, such as Zipf’s law, to adjust the weights of the linear regression model and achieve
optimal results. These processes enable us to comprehend the structural differences in music across different
periods with scientific rigor. Relying on the advantages of structuralism, we concentrate on the relationships
and order between the physical elements of music, rather than getting entangled in the blurred boundaries of
science and philosophy. Aside from serving as a bridge connecting music to natural language processing and
knowledge graphs, the technical methods developed in this work offer a more intuitive approach to elucidate the
relationships among elements of a complex network.
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I. INTRODUCTION

Music is often considered a form of natural language [1,2]
because it exhibits the ability to adapt [3] and coevolve with
human civilization. According to Soviet musicologist Genrikh
“Henry” Orlov, music can participate in communication and
unite people through a single emotion. The characteristics
that make each language unique may be adaptations to the
acoustics of different environments [4]. In addition, the de-
velopment of languages and music can be categorized into
distinct stages that reflect the historical events of each period,
and both originate from the imitation of sounds from the en-
vironment; the influence of the environment on the variations
in vocalization among organisms has also been confirmed [5].

Music, like language, has developed its own notation and
system of reading and writing. The meaning conveyed by
music is less precise than spoken language due to its lack of
tenor and vehicle [6,7]. Despite this weakness, music is no
less capable of evoking our memories of specific experiences
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[8]. By using magnetoencephalography (MEG), it has been
confirmed that music and language are governed by the same
mechanism in the cerebral cortices. This implies the similarity
in their process of data that are transmitted through the sounds
associated with spoken language and music harmony [9]. The
research on the joint precursor of language and music, con-
cerning how they are constructed by sound, is related to their
evolution from a common origin and later divergence [10].

Let us proceed to compare their structure. Both involve
minimal units, such as words and chunking, that serve as the
building blocks to construct the corpus and scores through
ever larger hierarchical units, i.e., phrases/sentences and the
deep structure [11,12]. However, exploring music subsystems
such as melody, harmony, and counterpoint may pose chal-
lenges due to their complex interrelations in the music syntax.
Similarly, the varying ratios of morphemes to each word in
morphological typology result in distinctions between isolat-
ing and polysynthetic languages. How this difference impacts
the definition and boundaries of words is an ongoing issue
in linguistics. For example, fusional languages [13] employ
irregular methods of word formation or combine morphemes
from multiple concepts, thus making it challenging at times to
discern the original morphological relationships, while agglu-
tinative languages like Turkish construct words by cohesively
affixing multiple morphemes [14].

With the development of statistical linguistics, Zipf [15,16]
empirically found that the frequency-rank distribution of
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FIG. 1. This illustration depicts the three main periods we pri-
marily discuss in the article: the Baroque, Classical, and Romantic
periods, each represented by a representative composer. Additionally,
we visually present the overall processes of the textualization of
music in essential elements (EEs).

corpus and natural language utterances follows the power law
y = a/xb where a, b are constants. This distribution was later
established to be prevalent in the ranking of many natural and
manmade systems, such as web links [17] and brain functional
networks [18,19]. Although Zipf’s law has been confirmed
to exist in musical composition, there is no consensus on
what unit plays the role of a word. For example, it has been
proposed via segmentation aided by the application of equal
temperament to pitch, timbre, and loudness or through bi-
nary coding on the power spectrum [20,21]. The numerous
attempts above, regardless of the way word definitions are
approached, all revolve around definitions based on physical
categories.

In this article, we deconstruct fundamental musical ele-
ments like rhythm, timbre, pitch, melody, articulation, meter,
and tempo, and then transform them into concepts derived
from physics—specifically, space, time, and volume. These
three elements are herein referred to as essential elements
(EEs). Notes (C1, D1, E �1, E1, F 2,, G2, etc.) and time, along
with its corresponding beat, are important representations of
the universal features of music [22]. Employing a reference
coordinate system based on 0.1-sec intervals and notes on
a piano, we establish linking conditions between each pixel
(node) to form an evolutionary network. Additionally, we
define words by clustering coefficients (CC)

CC(i) ≡ 2 × E (i)

D(i) × (D(i) − 1)
, (1)

where E (i) denotes the number of actual edges between the
neighbors of node i, and D(i) is the degree of node i. The
processes involved in generating the word out of a musical
audio file are described schematically in Fig. 1. The main
reason for choosing CC instead of the degree is the former’s
ability to reflect the relationships among the nodes within each
region, in addition to describing those between each node and
the neighboring nodes connected to it.

Similar to contemporary large language models (LLMs),
our text generation process relies on hierarchical relation-
ships. LLMs utilize an extensive vocabulary table encompass-
ing various lexical items and tags, including verbs, nouns,
adjectives, and others—all seamlessly integrated into the

model. Each word is associated with an embedding vector
learned during the training. Contextual clues interact with
this table, determining the similarity between the contextual
encoding vector and each embedding vector. This similarity
also reflects the likelihood of each word within the given
context [23].

Here we will answer five questions: (1) How does one
generate text from music using all of the essential elements
in music? (2) What are the linking conditions of music across
different periods in an evolutionary network and the variations
under Zipf’s law distribution? (3) How does the diversity in
the choice and frequency of words within an evolutionary
network across different periods reflect the versatility in song
structures? (4) How robust and how free is the network that re-
flects the characteristic features of each music periods against
random removal of words? (5) How do we use an audio
structure to discern music from nonmusic? Finally, how can
we observe the evolution and extinction of musical words akin
to the evolution of natural language by tracking the magnitude
of CC?

II. NETWORK MODELING

To answer the first question, which is inspired by previous
methodologies in network science for generating specific net-
work structures [24], we establish linking conditions based on
interactions among EEs. Subsequently, these conditions can
be used to determine the network structure. We quantify the
variations between these EEs and establish a threshold for
the validation of links to form a structure. The music signals
can then be analyzed in the frequency and time-frequency
domains, with a frequency range of 1–8192 Hz and a time
increment of 0.1 sec. Additionally, we will transform these
domains into the note-time domain. The note domain consists
of 84 tones or pitches, which correspond to those of a piano
in equal temperament and cover a frequency range of 1–
8192 Hz. Expressing the volume in normalized decibels from
0 to 10, we eliminate the volume that is less than 0.1, based
on the power-time spectrum in order to reduce the difference
in volume that was derived from the recording process.

We then define the amount of information (I) via compar-
ing the change of note position (N), time position (T), and
volume (V) of pixels 1 and 2 in note vs time coordinate:

I ≡ w1|N(1) − N(2)| + w2|T(1) − T(2)|
+ w3|V(1) − V(2)| + w4|V(1) + V(2)|. (2)

How these weights w1,2,3,4 are chosen will be explained
shortly. Via the simple linear regression in Eq. (2), the
weights can be determined and shown to offer a high level of
interpretability of the musical form across these four aspects
when composing. The first three terms in Eq. (2) reflect the
musical form of the composition, while the fourth is an addi-
tional term that represents the energy carried by the intentions
and emotions that the composer tried to convey [25]. The
amount of information carried by any music is limited and
determined by both the composer’s style and intentions [26].
We rarely see dramatic changes in all elements in musical
pieces, and, therefore, it is expected that there exists an up-
per threshold Im for the amount of information that can be
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FIG. 2. Volumes are stated in the note vs time plot for the music
score by Ryuichi Sakamoto. The exchange of information between
two pixels is determined by their elements and weights. Using
Eq. (2), we can calculate the linking condition for the text network of
the music and define the link between dots. The CCs in the network
are then treated as words. Take the exemplary network in this figure,
for instance. The D = 5 and E = 3 so that CC = (2×3)/(5×4) = 0.3,
according to Eq. (1).

conveyed between pixels in the local interaction:

Link =
{

1 if I < Im,

0 if I > Im.

This also implies that, within limited variations, the pri-
orities considered by the composer determine the style of
composition.

Using the total number of links, we can calculate CC =
2N/[K (K − 1)] of each pixel, where the degree N counts the
number of neighbors and K the number of links among them.
In order for CC to be interpreted as a word, it has to be signif-
icant enough at supplying the semantic meaning of the cluster
based on the quantities N and K . A sample result of the above
procedures can be found in Fig. 2. This definition of word not
only is consistent with the structuralism of musical material
[27], but also follows the spirit of natural language modeling
[28,29], such as linguist John Rupert’s interpretation of “You
shall know a word by the company it keeps” [30]. This spirit
expresses the role of endowing meaning to a word via its
interaction with neighbors.

Having defined the equivalent of words in music is not
enough. We still need to make sure that the structure derived
from them obeys the statistical properties in linguistics, no-
tably the empirical Zipf’s law. This imposes a constraint that
can be utilized to select the most suitable weights w and
Im and threshold that give the best fitting by a power-law
distribution for word frequency vs ranking. Finally, the w and
Im function like a fingerprint that is unique to the structure and
helpful for us to distinguish the music from different periods.
We can also use them to compare the properties of musical and
nonmusical structures; for example, as the composer Edgar
Varése said, “Music is organized sound” [31].

We need to select the optimal weight combination from
4032 configurations to accurately represent the text represen-
tation of the music. Weights set the range for note and time
weights to be 0.05–0.3 with an interval of 0.05 and the range
for volume to be 0.1–0.4 with an interval of 0.1. We also
normalized the decibel values between 0 and 10 for all data
points. The threshold range was set to be 0.5–1.8 with an
interval of 0.2. In order to reduce the computing time, we will
focus only on the neighboring nodes that are separated within
seven notes and 0.7 sec.

The optimal values for the weights in Eq. (2) were de-
termined by two criteria: first, the distribution of Zipf’s law
for CC in the music score must exhibit an R-square value
exceeding 0.8 after deleting the first rank and plotting the
frequency vs rank in full logarithm. Second, the largest type of
CC should be selected as the optimization condition in order
to extract the maximum number of word types to maintain
diversity.

From now on, we shall name our evolutionary network the
Essential Element Network (EEN) to emphasize its inclusion
of essential EEs in music. Our analyses focus on piano pieces
from the Common Practice Period (CPP), which spans from
1650 to 1900 [32]. The CPP marks the establishment of the
Western musical system and the definition of the harmonic
system, which is essential for the interaction between musical
elements [33,34] in that period. Within the CPP, the Baroque
period (B) is the earliest, followed by the period of Classical
music as exemplified by Beethoven (BN), and the Romantic
period (R) is the most recent in this time frame.

III. DISTINGUISHING DIFFERENT MUSICAL PERIODS

A. Criterion: Weights

To answer question 2, we can examine the weights of music
from different periods to understand the variations in net-
work structure. We used the t-distributed stochastic neighbor
embedding (t-SNE) as a dimension reduction method to visu-
alize the distribution of weights in the three different musical
periods [35]. The clustering of data points for music from
the Classical and Baroque periods in Fig. 3(a) implies their
weights are more similar to each other than to the Romantic.
In Fig. 3(b) it can be seen that during the Baroque period,
w3 is the most prominent weight, which is related to the
performance of clear gaps between notes, with the aim of
maintaining clear voices.

The w1 and w2 are chosen with similar weights, rep-
resenting the characteristics of Baroque polyphonic music,
emphasizing rigorous counterpoint [36]. However, the priority
of weights shifts in the Romantic period when people tried to
break free from the constraints of composition, leading to a
greater freedom and evolution of more diverse composition
styles [37,38]. A t-test analysis of the weights shows that
there exists a significant distinction between w1 and w3 if
the P value is less than 0.001. The combination of weights
behind the EEN reflects the characteristic style of composition
in each period by use of Zipf’s law, as shown in Fig. 3(c).
In Fig. 3(d) we also compare different types of audio to test
the applicability in 4032 combinations of weights. It turns
out that Morse code did not follow the expected power-law
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FIG. 3. (a) A t-SNE mapping of the four weights and thresh-
old value onto the eigenspace. The dashed line is to highlight the
existence of two clusters, as indicated by the statistical population
in parentheses. (b) A t test is conducted to assess the statistical
significance of the weight selection where the orange dotted line is
for the P value on the right y axis. (c) This full logarithmic plot for
the Zipf distribution in different periods. (d) The Zipf distribution of
different types of sounds under the range of weight selection, We use
the initial letter to represent a line, in which ambient sound includes
bird, river, and city traffic.

distribution, which suggests that the chosen weights are not
suitable.

B. Criterion: Trend and histogram of words

Here we will answer question 3. After CC is calculated by
scanning from the first to last notes, the resulting sequence
is found to be periodic in Figs. 4(a) and 4(b). Based on
the sequence, we can analyze the representation of words.
Figure 4(c) shows that the Baroque period, which emphasized
musical formalism, has a uniform development in perfor-
mance. In contrast, the Romantic period adopted a strategy
of destroying or escaping the previous musical forms. Am-
bient sound is shown to share a similar distribution to the
Baroque period, but with more fluctuations and different CC
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FIG. 5. Histogram of the Romantic, Classical, and Baroque peri-
ods and the ambient sounds is shown respectively in (a), (b), (c), and
(d). The Romantic period is the only one that defies the normal or
Gaussian distribution at exhibiting multiple peaks.

intervals. In Fig. 4(d) we see that the distribution of CC for
music resembles that of white and pink noises, in contrast to
that of Morse code. This is reasonable because music often
contains elements that are abstract and hard to assigned any
meaning, whereas the tenor and vehicle of Morse code are
always precise.

Having shown the trend of CC, let us now analyze their
histogram in Fig. 5. The normal distribution is obtained for
the ambient sound as well as all musical periods, except the
Romantic one, which exhibits multiple peaks which reflect
more diversity in its selection of words.

IV. DEEP LEARNING ANALYSES

A. Training information

To identify the unique characteristics of CPP, we use word
mapping to represent CPP by a 2D EEN. This is done by
filling the CCs to their corresponding pixel in the note vs time
plot of Fig. 2, and applying a convolutional neural network
(CNN) [39] to classify musical periods. CNN is a powerful
image classification model that can predict the label of an
image, relying on its ability to extract local spatial features
and keep translation invariant.

To test the robustness and minimum discernible informa-
tion carried by a text, we design the following two tasks:
(1) determine the minimum size of text to represent each of
the three CPP periods and (2) test the rigor of conventional
definition for these periods. Treating the text as a network,
we follow the conventional approach of random node removal
to explore the robustness of network features. Instead of ran-
domly deleting network nodes [40], we remove words from
2D EEN to understand the maximum amount of disruption
each CPP can withstand and be effectively recognized by a
CNN. We expect this knowledge can be used to infer the
relative amount of rules in musical form. Strictness implies
more rules that will likely render the network more vulnerable
to disruptions. More details of the procedure and results of
training shown, respectively, in Figs. 5 and 6 will be discussed
in Secs. IV B and IV C.

Due to the numerous CNNs used in Fig. 7(a), we provide
only the minimum and maximum amount of 2D EEN for
the learning curves in Figs. 6(a) and 6(b) for task 1 with
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FIG. 6. Panels (a), (b), and (c) represent the learning curves for
minimum text size to classify three CPP periods for texts with 2
notes, 0.3 sec, 72 notes, 3.5 sec, and 84 notes, 10.1 sec where the
blue/red line denotes the training/validation curve. Panel (d) shows
similar curves for classifying music or nonmusic with 84 notes,
10.1 sec.

2 notes/0.3 sec and 72 notes/3.5 sec from 34 000 and 32 456
samples. Similarly, we need to train the CNN to obtain a
test accuracy exceeding 93% for the prediction of the 2D
EEN’s period in preparation for task 2. The result is shown in
Fig. 5(c). Figure 6(d) is dedicated to distinguishing music and
nonmusic with a test accuracy equaling 100%. Both Figs. 6(c)
and 6(d) adopt 84 notes/10.1 sec and are trained from 12 000
samples. So far, the CNN adopts four convolutional layers of
2×2 kernel size and three fully connected layers with 128, 64,
and 3 nodes. The hyperparameters are a training-validation-
test ratio of 6:2:2, batch size of 64, epoch of 6, and a learning
rate of 10−4.
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FIG. 7. (a) The accuracy of distinguishing the Baroque, Clas-
sical, and Romantic periods is shown with different sizes of 2D
EEN information, as defined in the text. (b) Following the label
in Fig. 3(a), the dotted and solid lines represent Shannon entropy
(S) and accuracy (ACC). The features of the Romantic period are
enhanced by discarding information. (c) The 2D EEN represents the
features considered by Grad-CAM when back-propagating through
the CNN to evaluate the period. The color indicates the scoring
results of different regions, which also reflect the characteristics ex-
hibited by groups of words. (d) Based on the magnitude of skewness,
we can observe that the change in feature distribution due to the
degradation of structure in the Romantic period is smaller than in
the other two periods.

B. Minimum features and robustness of text networks

In addition to answering how many words are required to
distinguish musical periods, we are ready to address question
4. Figure 6(a) summarizes the accuracy for different sizes of
2D EEN, which shows that, to obtain a test accuracy exceed-
ing 80%, a minimum requirement is 42 notes/1.9 sec for task
1. As for task 2, we systematically increase the percentage of
words removed from a text until a trained CNN changes its
prediction. The Softmax layer in a CNN can convert features
into probabilities for predicting labels [41], which allow us to
compute Shannon entropy for these three periods. By analyz-
ing 1000 samples from each period, we find in Fig. 7(b) that
the accuracy of the Baroque and Classical samples decrease
with more deletions. Surprisingly, the accuracy of the Roman-
tic samples improves. This can be interpreted from hindsight
as that the CPP music before the Romantic period emphasized
a more rigorous pursuit of musical form and, therefore, allows
less tolerance for arbitrary disruptions [37] in the coordination
between different musical elements. In order to understand
the characteristics of word distribution in a 2D EEN, we use
grad CAM to extract the significant locations from the CNN
[42]. Grad CAM, through the concept of back propagation,
allows us to explore the scoring criteria for labeling [43].
Exemplifying a sample of 2D EEN, the color distribution in
Fig. 7(c) ranging from green to yellow represents the scores
of each word as calculated by Grad-CAM that functions as
an indicator for the importance of each word when the CNN
identifies the period label of the 2D EEN.

In Fig. 7(d) we use skewness, a good measure of distribu-
tional asymmetry, to calculate and plot the score histogram
by averaging over the samples after Grad-CAM. We can ob-
serve that using skewness as a feature allows us to achieve
temporal ordering between three periods based on the Grad-
CAM scoring criteria. It is also evident that, in the context
of random word disruption, Beethoven’s representation of
the Classical period tends to exhibit skewness closer to the
Romantic period, while the decay trend in the Baroque period
is comparatively gradual. The fact that the skewness is larger
for the two periods before the Romantic implies the former
did not have as many prominent features. This also means
that the features were considered in a more holistic manner.
Additionally, the score distribution during the Romantic pe-
riod is closer to Gaussian. We can observe that, as the text
structure gradually breaks down, indicating a departure from
strict structural conventions, the less disrupted and more intact
conditions closely resemble the Baroque period. Conversely,
as the degree of disruption increases, the features tend to
approach those of the Romantic period. The fact that this
conclusion is reproduced in Fig. 7 vindicates the strength and
accuracy of our approach.

C. Difference between music and nonmusic
and the evolution of words

We attempt to address the difference between music and
nonmusic through the fifth question. It is widely believed that
the origin of music can be traced back to ancient humans
imitating natural and ambient sounds [44,45]. To investigate
this idea, we trained a network to distinguish between music
and nonmusic including ambient sound and noises by 64
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FIG. 8. In (a) and (b) the blue circle and red cross denote nonmusic and music, respectively. In (a) the solid and dashed lines represent
accuracy (Acc) and Shannon entropy (S). (b) The dashed/solid line follows the note of the right/left y axes. Panels (c)–(f) show the term changes
of Baroque, Classical, and Romantic periods and modern Japanese composers’ music, such as those by Ryuichi Sakamoto, respectively. The
destruction of terms is demonstrated by the termination of arrows, and new words can be seen to emerge.

notes and 10.1 sec. By the same process in Fig. 7(b), we
detected the characteristics of 2D EEN in Fig. 8(a) and found
that random destruction of the structure actually preserved its
characteristics. We know that ambient sound and noise lack
clear rhythm, melody, and harmony. However, their Shannon
entropy reaches maximum when the loss rate exceeds 0.8.
This implies that the word loss renders the ambient sound
more music-like. We suspect that the deletion causes the orig-
inally continuous noise to become a combination of discrete
segments, which is a feature of music. When the loss rate
approaches 0.9, all nonmusic is transformed into music.

In Fig. 8(b) we normalized the Grad-CAM score into 10
equal parts, not only to calculate the proportion of 2D EEN but
also to understand the grouping structure of Fig. 7(c). We used
graph theory to calculate the density, 2L/[N (N − 1)] where
L, N denotes the link and node numbers. A link is defined
if the distance is less than the average separation between
each score point and all its neighbors. We found that although
nonmusic has a higher proportion than music in each scoring
part, its density is lower than that of music. This suggests that
nonmusic characteristics have more scattered features than
music. We also analyzed the word frequency of texts from
the three periods of CPP and Japanese modern music using
word cloud technology [46]. Since CC = 1 remains the most
frequent word in all periods, we removed it to concentrate
on the rest of the words in Figs. 8(c)–8(f). They show that
words in EEN evolve throughout each period, while some are
eventually terminated, just like words in natural language.

V. CONCLUSION AND DISCUSSIONS

By mapping the words of musical texts into one and two
dimensions in EEN, we discovered different regularities in the
composition structures of Baroque, Classical, and Romantic
period music. Our approach from a more scientific view al-

lows us to not only (1) obtain several results that are in line
with current musical understandings, but also (2) differentiate
nonmusic through its higher graph density from music, and
offer insights into the evolution of musical texts. Among the
conclusion for (1), we found that (i) the Baroque period is
characterized by a more rigorous and ordered structure that
emphasizes repeating the same form, as exemplified by the
repetition of a particular pattern in works like fugues and
Johann Pachelbel’s Canon [47,48], (ii) although Beethoven in
his position in the Classical period falls between the Baroque
and Romantic periods, the characteristics of his music are
closer to the structure of the Baroque period, and (iii) the
arrangement of words for Romantic music distinctly differs
from the two preceding periods, which supports the emphasis
on individualism by Romantic composers.

Preliminary results for (2) suggest that it is promising to
promote EEN to music with non-equal temperament laws. For
instance, we may use the weights of Austronesian music as an
indicator for the evolution and migration of Austronesian peo-
ples [49,50], much like the role of genes [16]. Consequently,
our approach has good potential to substantially advance the
field of anthropology [51]. Another potential application is the
study of animal languages. This is because EEN’s ability to
organize sound into textual systems can be extended to the
ambient sound and Morse code as well. This means that it is
plausible to analyze the sounds uttered by animals in various
circumstances, especially in light of recent discoveries such
as the apparent change in song patterns observed in white-
throated sparrows across Canada [52]. The same concept can
also offer some assistance to phonology. Our method ex-
plores how different phonetic elements are concatenated and
combined to form a specific language. Within the framework
of EEN, the weighted properties can offer discussions and
classifications on the ways of linking and organizing these
elements.
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Comparing with previous methods that have claimed to
find Zipf’s law in music, our EEN focuses on the correlations
within EEs, with an additional reference to the volume ele-
ments and weighting of EE contributions. One previous study
used chords in musical notation to represent words without
elaborating on the interword relationships [21]. In the mean-
time, another earlier work that emphasized psychoacoustics
and encoded the usage of specific frequencies that are sensi-
tive to the human auditory system also failed to consider the
comprehensive adoption of all fundamental musical elements
[20] in our view.

If the 2D EEN is the result of converting music into dig-
itized musical text, it implies that if we can automatically
generate a 2D EEN generator trained on a specific period,
we could potentially use such a text-based network approach
for music generation, for example, by utilizing the generated
antagonism network (GAN) [53], which is different from
directly manipulating music by audio format [54]. In the
meantime, it is recommended to incorporate cycle-GAN [55]
between 2D EEN and the Mel spectrum [56,57] to explore
how words are presented in music information. In addition to
the aforementioned sophisticated generative algorithms, one
simpler numerical calculation can perhaps achieve the similar
effects. It only requires the provision of (1) the distribution
for Zipf’s law containing CCs, (2) an adjacent matrix, (3) 2D
EEN data, and (4) weights and thresholds. This information
can then be utilized to adjust the volumes using Eq. (2).
Based on the positive preliminary efforts, we are hopeful that
the above processes can offer a straightforward approach to
reconstruct volumes and achieve the music generator.

Due to the existence of 2D EEN, we can derive the
probability distribution by statistically analyzing the rela-

tionships among various CC neighbors. The information
contained in this distribution is then equivalent to defining
the grammars. The above approach is akin to the method
of random fields [58], which may help identify higher-
level semantics beyond individual words and their treelike
topology [59].

A knowledge graph, through processes such as numeri-
cal and vector representation, i.e., Word2VEC and Harmonic
mean [60,61], aims to deduce the semantic relationships
between textual concepts and their interconnections. By lever-
aging entity semantics, it forms a network of knowledge. Our
text network EEN, denoted as CC, can serve as a scalar for
textual information. Furthermore, the text network inherently
organizes contextual relationships to help us understand the
semantic meaning behind music. For the increasingly active
field of natural language processing in deep learning, there is
a widespread lack of interpretability. Remedying this problem,
our definition of words can directly correspond to the actual
power spectrum.

Schopenhauer thinks that music is an embodiment of will
[62], and how exactly emotions are expressed through music
has always been a topic of debate [63]. By offering a basis to
extract the meaning behind music in a systematic and quanti-
tative way, we show that there may indeed be a “language of
the emotions” [63] that musicians have cultivated throughout
history.
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