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Machine-learning classification with additivity and diverse multifractal pathways in multiplicativity
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Evidence of multifractal structures has spread to a wider set of physiological time series supporting the intri-
cate interplay of biological and psychological functioning. These dynamics manifest as random multiplicative
cascades, embodying nonlinear relationships characterized by recurring division, branching, and aggregation
processes implicating noise across successive generations. This investigation focuses on how well the diversity
of multifractal properties can be specific to the type of cascade relationship between generation (i.e., multi-
plicative, additive, or a mixture) as well as to the type of noise (i.e., including additive white Gaussian noise,
fractional Gaussian noise, and various amalgamations) among 15 distinct types of binomial cascade processes.
Cross-correlation analysis of multifractal spectral features confirms that these features capture nuanced aspects
of cascading processes with minimal redundancy. Principal component analysis using 13 distinct multifractal
spectral features shows that different cascade processes can manifest multifractal evidence of nonlinearity for
distinct reasons. This transparency of multifractal spectral features to underlying cascade dynamics becomes
less amenable to machine-learning strategies. Fully connected neural networks struggled to classify the 15
distinct types of cascade processes based on the respective multifractal spectral features (45.5% accuracy) yet
demonstrated improved accuracy when addressing single categories of cross-generation relationships, that is,
additive (91.6%), multiplicative (75.4%), or additomultiplicative (70.6%). While traditional principal component
analysis reveals distinct loadings attributed to individual noise processes, multiplicative relationships between
generations effectively make the constituent noise processes less discernible to neural networks. Neural networks
may lack sufficient hierarchical depth required to effectively distinguish among nonadditive cascading processes,
recommending either elaborating multifractal geometry or using alternate architectures for machine-learning
classification of cascades with multiplicative relationships.
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I. INTRODUCTION

Machine-learning models have become increasingly preva-
lent across applications, tackling complex problems and
optimization processes in domains ranging from healthcare
and finance to manufacturing and beyond [1–5]. This trend
is driven by results that may elude traditional analytical
approaches. Researchers across disciplines have increasingly
begun to leverage machine learning’s capacity to uncover
patterns, correlations, and insights from vast datasets towards
analyzing experimental data, predict outcomes, and gain
deeper insights into the underlying mechanisms governing
natural phenomena [6–9]. Integrating machine-learning algo-
rithms with physics-based modeling holds immense promise
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in elucidating the generative mechanisms that govern the
observed behavior of study processes within various sci-
entific domains. Incorporating machine-learning algorithms
with physics-based modeling promises to help identify, char-
acterize, and understand complex systems and processes
[10–15], allowing extraction of data-driven insights that can
refine theoretical models and advance our understanding of
the complexity of the natural world [16].

While machine-learning methodologies aim to advance our
understanding of complex systems generating health and dis-
ease [17–19], they are not without limitations. The reliance
on large datasets for training machine-learning models can
be prohibitive, especially in fields where data collection is
costly or time consuming. Then again, even with an extensive
training data set, the impeccable performance of machine-
learning models within a single dataset is no guarantee that
the same model’s performance on independent data sets will
not regress to chance levels [20,21]. Successful classification
is then only half of the scientific battle. The subsequent hurdle
is the interpretability of machine-learning models, particularly
in complex biological and psychological systems where the
underlying processes may be poorly understood. Machine-
learning models often operate as “black boxes,” making it
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difficult to discern how they arrive at their predictions or
classifications [22–24]. Biological and psychological sys-
tems constitute thickets of interacting variables and processes
across multiple scales, and the solution of a “black box”
may serve well for prediction but offer little new explanatory
clarity.

Therefore, the promise of machine learning for advanc-
ing basic scientific research in these areas will depend on
the strategic choice of features that address the known
theoretical roots of observed complexity in the measured
record. Biology and psychology have begun to view adaptive
functioning through the theoretical formalism of “cascades”
embodying nonlinear interactions across nested spatial and
temporal scales [25–27]. While linear modeling with nor-
mal (Gaussian) patterns of residual variability suits systems
with numerous modular components exhibiting ergodicity,
biological and psychological functions break ergodicity and
display nonlinear temporal correlations across multiple scales,
consistent with cascading dynamics generating non-normal
(non-Gaussian) distributions, such as power laws with scale-
invariant tails [28–39]. The scale-invariant patterns render a
linear model’s traditional first and second moments inade-
quate or unstable for characterizing the cascade processes.
Instead, characterizing cascades requires multifractal geom-
etry. Although a single power law tail entails “fractal”
or “monofractal” systems, cascade-like interactions across
multiple scales give rise to ergodicity-breaking processes
exhibiting by multiple power laws, warranting the term “mul-
tifractal” [40,41]. Multifractal analysis allows addressing
differently sized events in heterogeneous time series using
a q parameter emphasizing progressively smaller or larger
events for q < 0 and q > 0, respectively. Each value of q
allows estimating power laws describing the growth of the
“proportion” of magnitude and “Shannon entropy” over pro-
gressively larger timescales, yielding power-law exponents
α(q) and f (q), respectively [42]. The set of α(q) and f (q)
definable for the measurement time series over many values
of q follow an asymmetric, inverted-“U” called the multi-
fractal spectrum [43]. Positive, zero, and negative q values
allow the definition of the left side, peak, and right side of
the multifractal spectrum. Whereas the observed cascade-like
behavior in raw form is ergodicity breaking, simulation work
has shown that features of the multifractal spectrum can differ
according to the type of the constituent stochastic process
[44–46], and multifractal descriptors are themselves ergodic
and amenable to linear cause-and-effect models [47–51]. Mul-
tifractal descriptors are, therefore, apt operationalizations of
how cascades may underpin adaptive biological and psycho-
logical functioning, and they offer a good first step towards
classifying noncascade diffusion models [52].

Should cascades facilitate adaptive organismal function-
ing, science stands to gain from the characterization of
underlying cascade structures through the multifractal prop-
erties of measured functioning. The multifractal evidence of
cascade-like nonlinear interactions across scales consistently
supports statistical predictions of adaptive behaviors across
various domains: postural control [53–56], brain function
[57,58], cognition [59–61], and perceptuomotor responses
[62–68]. Multifractal geometry also helps explain ergodicity-
breaking and adaptive aspects of measured biological and

psychological behavior [47–51]. Multifractal structure of
bodywide movement fluctuations and linear causal mod-
els confirm that perceptuomotor performance depends on
a bodywide network of multifractal flows [69–71]. In a
practical context, understanding these multifractal fluctua-
tions may aid in detecting disorders [72,73] and providing
noninvasive but targeted interventions to support accurate
perceptual performance [74–77]. Examples abound in phys-
iology with multifractal structure supporting these ambitions:
multifractality has been shown to discriminate cognitive
performance using electroencephalography (EEG) signals
[78,79], age-related changes in the peripheral cardiovascu-
lar system through laser Doppler flowmetry (LDF) signals
[80,81], Parkinson’s and Huntington’s diseases based on stride
intervals [82,83], Parkinson’s disease through postural center
of pressure (CoP) fluctuations [84], arrhythmia detection [85],
chronic heart disease diagnosis [86], congestive heart failure
assessment [87,88], and fibromyalgia evaluation [89] using
electrocardiogram (EKG) signals. Additionally, multifractal
analysis has shown promise in identifying migraine patterns
based on cerebral blood flow [81], amyotrophic lateral sclero-
sis (ALS) symptoms using electromyography (EMG) signals
[90], Alzheimer’s disease diagnosis through EEG signals [91],
detection of driving fatigue via EEG signals [92], and identi-
fication of metastatic bone disease from microscopic images
[93]. Multifractal geometries are not just theoretically con-
sonant with the role of multiplicative interactions that drive
cascades but are empirically effective as predictors in standard
regression models of adaptive organismal functioning.

Indeed, multifractal spectral features have proven their
efficacy in supporting machine learning across various do-
mains, from physiology to perception, action, and cognition.
For example, the incorporation of multifractal features into
machine-learning algorithms has enabled the discrimination
between healthy, interictal, and seizure activities [94], au-
tomatic seizure [95–97] and intention [98] detection using
EEG signals, early detection of diabetic retinopathy us-
ing macular images [99,100], Alzheimer’s disease diagnosis
via functional magnetic resonance imaging (fMRI) images
[101–103], texture discrimination of hepatocellular carcinoma
in histopathological images [104], fatigue assessment using
EMG signals [105,106], glioma detection in brain MRI scans
[107], and classification of breast cancer from ultrasound im-
ages [108]. Thus, ample evidence suggests that multifractal
features could enhance the ability of machine-learning models
to detect the rich texture of cascade-like nonlinear interactions
across scales. Multifractal features have also supplemented
machine learning in understanding what constitutes “good”
arts and music. Multifractal features offer the capability to
discern the textural regularities present in paintings by Vincent
van Gogh across different periods and differentiate between
van Gogh’s works and those of his contemporaries [109].
The multifractal analysis offers intriguing insights into mu-
sic’s melodic and rhythmic dimensions, both in humans and
birds [110–112]; in humans, specifically distinguishing var-
ious styles of music based on the shape and opening width
of the multifractal spectrum. Furthermore, emotional nu-
ances like happiness, sadness, calmness, and anxiety within
Indian classical music can be discerned to comparable ex-
tents using both machine-learning models and multifractal
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FIG. 1. Schematic of the present study.

characteristics [113], and incorporating multifractal descrip-
tors into machine-learning models shows promise in enhanc-
ing the classification accuracy of music performers [114].

All of the foregoing examples offer intriguing examples
of how multifractal properties might be useful for classifying
overt properties of adaptive function; that is, we could confirm
these classifications with an eventual assay or biopsy or with
a direct question to a verbal human. Successful machine-
learning discrimination can thus often focus on extreme cases
with clear benchmarks for success. For example, when identi-
fying patients with Parkinson’s disease, the analysis typically
involves two pre-labeled groups, healthy adults and those with
Parkinson’s disease, resulting in high discrimination accu-
racy (e.g., [115–118]). However, an open question is how to
develop machine learning to discern what we cannot later
confirm straightforwardly. For instance, real-world scenar-
ios present diverse patient pools exhibiting Parkinsonism to
varying degrees or Parkinsonism-like manifestations of non-
Parkinson’s origins [119–121]. The deep structure of potential
cascading dynamics may be diagnostically ambiguous and
cluttered by overlapping symptoms or measurement errors.
In such conditions, and generally as well, it is crucial for
machine-learning models to identify the underlying generative
processes leading to emergent multifractal structure. This is
because the multifractal structure may encompass a variety
of interacting processes in various ways, which can be ob-
scured beneath it [44–46]. Knowing exactly how a resulting
cascade process arose will be rare outside of numerical sim-
ulation. However, it would be both scientifically interesting
and clinically insightful if machine-learning strategies could
capitalize upon the relationship between multifractal features
and the cascade-like generating mechanism, which may not
map singly to any local anatomical part or single specific
tissue, for example, a tumor [122]. Whether current machine-
learning models can analytically discern various sources

contributing to nonlinear interactions across scales remains
uncertain. This uncertainty is significant because the poten-
tial insights of multifractal features would be limited without
the ability to discriminate between the nuances of generative
mechanisms. Ultimately, we are curious whether machine
learning could transform multifractal features from intriguing
downstream consequences of possible cascade dynamics into
effective detection/prediction of latent or ambiguous physical
processes.

The paper is organized as follows: We conducted numer-
ical simulations of 15 types of binomial cascade processes
generated by a spectrum of noise processes. These include ad-
ditive white Gaussian noise (awGn), fractional Gaussian noise
(fGn), and various amalgamations (Fig. 1). These processes
demonstrate additive and multiplicative interactions, with a
stochastic combination of the two interaction types occurring
across constituent noise processes at different scales. We used
multifractal analysis to estimate a wide range of multifractal-
spectral features for the simulated cascade time series to
multifractal analysis. Subsequently, we used cross-correlation
analysis on these features to investigate whether they capture
specific or nuanced aspects of the multifractal structure. We
used principal component analysis (PCA) across these mul-
tifractal spectral features to discern whether and how these
features contribute to multifractal signatures of nonlinearity in
each cascade type above and beyond the cascades’ linear fea-
tures. Finally, we deployed fully connected neural networks
to classify the 15 distinct cascade processes based on multi-
fractal spectral features. We anticipated observing variations
across cascade types in cross-correlation and PCA results, in-
dicative of multiple pathways leading to emergent multifractal
structure. Moreover, we hypothesized that if neural networks
could delineate the hierarchical structure of multiplicative cas-
cades, they should be capable of discriminating between these
cascade processes.
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II. METHODS

A. Generating random cascade series

1. Prior cascade simulation using binomial
fracturing and applying binomial noise

Cascade processes manipulate ng cells successively over
g generations distributing the proportion pi, j that each ith
parent cell in generation j (for j < g, i � nj) bequeaths to
nc children cells in generation j + 1 each carrying pk, j+1,
for i � k � n j+1. We produced 15 types of random binomial
cascades as described below across multiple combinations
of the constituent noise and cross-generation relationships.
Cascades are “binomial” when two children cells inherit the
proportion from each parent cell from the prior generation
(i.e., nc = 2). Cascades are multiplicative or additive when
the nc children-cell proportions reflect nc different multiplica-
tions or additions, respectively, governing the distribution of
the parent cell’s proportion. These cascades produce children
cells by binomially fracturing the parent cells from generation
to generation. In this framework, binomial noise terms might
match the children cells (Fig. 2). For every ith parent cell
in generation j, binomial noise terms could be determinis-
tic, for example, applying the same noise terms W1 = 0.25
and W2 = 0.75 to calculate the proportions in the (2i − 1)th
and the 2ith children cells in the ( j + 1)th generation as
p2i−1, j+1 = pi, jW1 and p2i, j+1 = pi, jW2, respectively.

2. Beyond binomial noise terms: Random binomial-fracturing
cascades with noise terms defined across entire generations

to test for effects of additivity and multiplicativity

We used numerical simulations of random cascades to ap-
proximate the heterogeneity of random component processes
and measured outcomes frequently appearing in biological
and psychological measurements. This work preserved the
traditional binomial fracturing across successive generations
to maintain the same rate of lengthening the cascading time
series. However, whereas traditional binomial cascade model-
ing often repeats the same set of weights W1 and W2 separately
for each ith parent [48], we generated the cascade series
using noise terms defined across the entire generation, either
as awGn, fGn, or progressively stronger or weaker temporal
correlations in awGn and fGn, respectively. So, we defined
the noise term Wt, j+1, t = 1, 2, . . . , nj+1 as a Gaussian dis-
tribution with μ = 1 and σ = 1 with linear correlation of
noise terms in fGn from t = 1, 2, . . . , nj+1 determined by
HfGn which was 0.5 or 1 for ideal awGn or ideal fGn,
respectively.

(1) Additive awGn cascades. Noise terms for generation
j + 1 follow Wt, j+1 = awGn, μ = 1, σ = 1 (where μ is mean
and σ is standard deviation), and the (2i − 1)th and 2ith
children cells in the ( j + 1)th generation hold proportions
pi + W2i−1, j+1 and pi + W2i, j+1, respectively.

(2) Additive fGn cascades. Noise terms for generation
j + 1 follow Wt, j+1 = f Gn, μ = 1, σ = 1, HfGn = 1, and the
(2i − 1)th and 2ith children cells in the ( j + 1)th gen-
eration hold proportions pi + W2i−1, j+1 and pi + W2i, j+1,
respectively.

(3) Additive fractalizing noise cascades. Noise terms
for generation j + 1 follow Wt, j+1 = f Gn, μ = 1,

σ = 1, HfGn = 1
14 ( j + 1), and the (2i − 1)th and 2ith

children cells in the ( j + 1)th generation hold proportions
pi + W2i−1, j+1 and pi + W2i, j+1, respectively.

(4) Additive defractalizing noise cascades. Noise terms
for generation j + 1 follow Wt, j+1 = f Gn, μ = 1, σ =
1, HfGn = 1 − 1

14 ( j + 1), and the (2i − 1)th and 2ith chil-
dren cells in the ( j + 1)th generation hold proportions pi +
W2i−1, j+1 and pi + W2i, j+1, respectively.

(5) Additive mixed noise cascades. Noise terms for j +
1 follow Wt, j+1 = f Gn, μ = 1, σ = 1, HfGn = { 0.5

1 , and the
(2i − 1)th and 2ith children cells in the ( j + 1)th gen-
eration hold proportions pi + W2i−1, j+1 and pi + W2i, j+1,
respectively.

(6) Multiplicative awGn cascades. Noise terms for gen-
eration j + 1 follow Wt, j+1 = awGn, μ = 1, σ = 1, and the
(2i − 1)th and 2ith children cells in the ( j + 1)th generation
hold proportions piW2i−1, j+1 and piW2i, j+1, respectively.

(7) Multiplicative fGn cascades. Noise terms for gen-
eration j + 1 follow Wt, j+1 = f Gn, μ = 1, σ = 1, HfGn = 1,
and the (2i − 1)th and 2ith children cells in the ( j +
1)th generation hold proportions piW2i−1, j+1 and piW2i, j+1,
respectively.

(8) Multiplicative fractalizing noise cascades. Noise
terms for generation j + 1 follow Wt, j+1 = f Gn, μ = 1, σ =
1, HfGn = 1

14 ( j + 1), and the (2i − 1)th and 2ith children cells
in the ( j + 1)th generation hold proportions piW2i−1, j+1 and
piW2i, j+1, respectively.

(9) Multiplicative defractalizing noise cascades. Noise
terms for generation j + 1 follow Wt, j+1 = f Gn, μ = 1, σ =
1, HfGn = 1 − 1

14 ( j + 1), and the (2i − 1)th and 2ith children
cells in the ( j + 1)th generation hold proportions piW2i−1, j+1

and piW2i, j+1, respectively.
(10) Multiplicative mixed noise cascades. Noise terms for

j + 1 follow Wt, j+1 = f Gn, μ = 1, σ = 1, HfGn = { 0.5
1 , and

the (2i − 1)th and 2ith children cells in the ( j + 1)th genera-
tion hold proportions piW2i−1, j+1 and piW2i, j+1, respectively.

(11) Additomultiplicative awGn cascades. Noise terms
for generation j + 1 follow Wt, j+1 = awGn, μ = 1, σ = 1,
and the (2i − 1)th and 2ith children cells in the ( j + 1)th
generation hold proportions pi�W2i−1, j+1 and pi�W2i, j+1, re-
spectively, with � = {+

× .
(12) Additomultiplicative fGn cascades. Noise terms

for generation j + 1 follow Wt, j+1 = f Gn, μ = 1, σ =
1, HfGn = 1, and the (2i − 1)th and 2ith children cells in
the ( j + 1)th generation hold proportions pi�W2i−1, j+1 and
pi�W2i, j+1, respectively, with � = {+

× .
(13) Additomultiplicative fractalizing noise cascades.

Noise terms for generation j + 1 follow Wt, j+1 = f Gn, μ =
1, σ = 1, HfGn = 1

14 ( j + 1), and the (2i − 1)th and 2ith chil-
dren cells in the ( j + 1)th generation hold proportions
pi�W2i−1, j+1 and pi�W2i, j+1, respectively, with � = {+

× .
(14) Additomultiplicative defractalizing noise cascades.

Noise terms for generation j + 1 follow Wt, j+1 = f Gn, μ =
1, σ = 1, HfGn = 1 − 1

14 ( j + 1), and the (2i − 1)th and 2ith
children cells in the ( j + 1)th generation hold proportions
pi�W2i−1, j+1 and pi�W2i, j+1, respectively, with � = {+

× .
(15) Additomultiplicative mixed noise cascades. Noise

terms for j + 1 follow Wt, j+1 = f Gn, μ = 1, σ = 1, HfGn =
{ 0.5

1 , and the (2i − 1)th and 2ith children cells in the ( j + 1)th
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FIG. 2. Cascades provide a mathematical framework for understanding how complex distributions arise from iteratively subdividing and
perturbing probability mass with noise across finer timescales. In the left and center panels, we observe random additive and multiplicative
cascades implementing various noise terms through addition and multiplication across 15 successive generations. The right panel showcases
a cascade with an admixture of additivity and multiplicative interactions. For clarity, we have normalized the data by maxima and vertically
spaced them by a unit.
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generation hold proportions pi�W2i−1, j+1 and pi�W2i, j+1, re-
spectively, with � = {+

× .
We simulated cascades comprising 214 = 16 384 samples

in the fifteenth and ultimate generation, aiming to elucidate
the underlying factors contributing to multifractal patterns in
biology and psychology. We generated a 100 cascading time
series for cross-correlation and principal component analyses
for each type. Regarding machine-learning models, we sim-
ulated 10 000 cascading time series for each type, with 98%
allocated to the training set and 2% to the validation and the
testing set.

B. Multifractal analysis

1. Assessing multifractal nonlinearity using
the direct-estimation of singularity spectrum

We used Chhabra and Jensen’s [42] direct method for all
analyses. This method estimates multifractal spectrum width
�α by sampling a series x(t ) at progressively larger scales
using the proportion of signal Pi(n) falling within the vth bin
of scale n as

Pv (n) =
∑v·n

k=(v−1) n+1 x(k)∑
x(t )

, n = {4, 8, 16, . . . } < T/8.

(1)
As n increases, Pv (n) represents a progressively larger
proportion of x(t ),

P(n) ∝ nα, (2)

suggesting a growth of the proportion according to one
“singularity” strength α [123]. P(n) exhibits multifractal dy-
namics when it grows heterogeneously across time scales n
according to multiple singularity strengths, such that

P(nv ) ∝ nαv , (3)

whereby each vth bin may show a distinct relationship
of P(n) with n. The width of this singularity spectrum,
�α = (αmax − αmin), indicates the heterogeneity of these
relationships [43,124].

Chhabra and Jensen’s [42] method estimates P(n) for Nn

nonoverlapping bins of n sizes and transforms them into a
“mass” μ(q) using a q parameter emphasizing higher or lower
P(n) for q > 1 and q < 1, respectively, in the form

μv (q, n) = [Pv (n)]q∑Nn
j=1[Pj (n)]q

. (4)

Then, α(q) is the singularity for mass μ-weighted P(n) esti-
mated as

α(q) = − lim
Nn→∞

1

ln Nn

Nn∑
v=1

μv (q, n) ln Pv (n)

= lim
n→0

1

ln n

Nn∑
v=1

μv (q, n) ln Pv (n). (5)

Each estimated value of α(q) belongs to the multifractal spec-
trum only when the Shannon entropy of μ(q, n) scales with n

according to the Hausdorff dimension f (q) [42], where

f (q) = − lim
Nn→∞

1

ln Nn

Nn∑
v=1

μv (q, n) ln μv (q, n)

= lim
v→0

1

ln n

Nn∑
v=1

μv (q, n) ln μv (q, n). (6)

For values of q yielding a strong relationship between
Eqs. (5) and (6)—in this study, correlation coefficient r >

0.95—the parametric curve (α(q), f (q)) or (α, f (α)) con-
stitutes the multifractal spectrum and �α (i.e., αmax − αmin)
constitutes the multifractal spectrum width. r determines that
only scaling relationships of comparable strength can support
the estimation of the multifractal spectrum, whether generated
as cascades or surrogates. Using a correlation benchmark
aims to operationalize previously raised concerns about mis-
specifications of the multifractal spectrum [125].

2. Calculating TMF based on comparison with iterated amplitude
adjusted Fourier transform (IAAFT) surrogates

We employed the iterated amplitude adjusted Fourier trans-
form (IAAFT) to derive tMF. The goal was to ascertain
whether nonzero �α values were indicative of multifrac-
tality stemming from nonlinear interactions across various
timescales. We compared �α between the original time series
and a set of 32 IAAFT surrogates [126,127]. The IAAFT tech-
nique symmetrical rearranges the original values around the
autoregressive structure, generating surrogates that randomize
the phase ordering of the spectral amplitudes in the series
while preserving linear temporal correlations. We computed
the one-sample t-statistic, denoted as tMF, by calculating the
difference between �α for the original series and the same
for the 32 surrogates, divided by the standard error of the
spectrum width for the surrogates.

3. Multifractal spectral features

Multifractal spectra manifest as intricate functions, dis-
playing diverse widths and heights throughout their two-
dimensional domain. They showcase asymmetry and irregular
spacing across different parameter ranges q, denoting variabil-
ity in the heterogeneity of fluctuations. To comprehensively
capture the nuanced facets of multifractal spectra, we in-
tegrated a diverse array of features, encompassing a broad
spectrum of characteristics for each cascade time series, as
depicted in Fig. 3 and Table I.

C. Principal component analysis (PCA)

Principal component analysis (PCA) is a statistical tech-
nique for dimensionality reduction; we employed PCA to
identify the underlying patterns and reduce the dimensionality
of our dataset. This method extracts a set of linearly uncorre-
lated variables, called principal components, from the original
multifractal spectral features. These components capture the
maximum variance in the data while minimizing information
loss. In MATLAB (Mathworks Inc., Natick, MA), PCA analy-
sis was conducted using built-in functions, enabling efficient
computation and visualization of the results. We conducted
PCA on the correlation matrix comprising the 13 multifractal
spectral features separately for each of the 15 cascade types.
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TABLE I. Multifractal spectral features.

Features

Multifractal spectral width of the original time series, �α

Multifractal spectral width of the IAAFT surrogate time series, �αSurr

Multifractal nonlinearity, TMF

Left-side width of the original spectrum, �αLeft

Right-side width of the original spectrum, �αRight

Horizontal location of the singularity, α f (α)=1

Height of the original spectrum, � f (α)
Left-side height of the original spectrum, � f (α)Left

Right-size height of the original spectrum, � f (α)Right

Difference in the left- and right-side height of the original spectrum, � f (α)|Left−Right|
Mean of α values, α

Mean of f (α) values, f (α)
Number of points in the original spectrum, NSpec

Utilizing the correlation matrix—as opposed to using the co-
variance matrix—entails standardizing each variable to have a
mean of 0 and a standard deviation of 1, effectively addressing
the challenge posed by the varying magnitude scales of dif-
ferent features [128]. Finally, to visually depict the similarity
among principal components, we employed Lloyd’s algorithm
[129] for k-means clustering, partitioning the principal com-
ponents into four distinct clusters.

D. Machine-learning classifiers

A neural network can be likened to an intricate function
approximator, striving to synchronize its outputs, fθ (Xi ), with

FIG. 3. Determining multifractal spectral features of cascade
processes. The multifractal spectrum of each trajectory was created
by plotting the parametric curve {α(q), f (q)}. α(q) is the singularity
exponent and f (q) the corresponding singularity dimension as de-
fined in Eqs. (5) and (6).

the true target values, Ŷi, based on the corresponding input
data Xi [130,131]. A neural network consists of multiple lay-
ers of interconnected neurons at its core. Within each layer,
the output value of a neuron denoted as Ok,l in layer l , is
computed as the weighted sum of all neurons in the preced-
ing layer, Ok,l−1, followed by passage through an activation
function h:

Ok′,l = h

(∑
k

θ
(l )
k′,kOk,l−1 + θ

(l )
k′,0

)
. (7)

Here, θ
(l )
k′,k represents the weight connecting neuron k′ in the

lth layer to neuron k in the (l − 1)th layer, with θ
(l )
k′,0 serving as

an additional offset. The output fθ (Xi ) of the neural network
mirrors the values of the neurons in the final layer, while the
input Xi reflects the values of the neurons in the initial layer.

The neural network’s weights, denoted collectively as θ ,
are determined by minimizing a loss function applied to a
training dataset. Often, this loss function takes the form of
the negative-log-likelihood loss [130]:

Lnll = −
∑

i

log p(Ŷi| fθ (Xi )). (8)

Here, p(Ŷi| f θ (Xi)) signifies the probability assigned by the
neural network to the true target Ŷi given input Xi. In classifica-
tion tasks, our objective typically involves predicting discrete
probabilities, labeled as pi,k , regarding each class k as the true
label for input Xi. In this scenario, the negative-log-likelihood
transforms into the widely recognized cross-entropy
loss [132]:

Lcel = −
∑
i,k

Ŷi,k log(pi,k ), (9)

where Ŷi,k = δ jik is a binary indicator of the true label ji of
input Xi.

This loss function is optimized by applying stochas-
tic gradient descent [133]. This study employed an ad-
vanced variant of stochastic gradient descent called “adaptive
moment estimation” (Adam) [134]. Additionally, we in-
tegrated “stochastic weight averaging Gaussian” (SWAG),
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which captures the uncertainty of the neural network’s weight
parameters, θ , towards the end of the training process.
This entails fitting an approximate Gaussian distribution
to the observed changes of θ during the gradient descent
process [135].

The neural network utilized in this study comprised three
hidden layers with dimensions of 256, 128, and 128, employ-
ing the rectified linear unit (ReLU) [136] as the activation
function. We arrived at this specific architecture after carefully
observing the performance of various architectures during
both the training and evaluation phases. The network gener-
ates membership scores for each of the five classes as a “logit
vector,” denoted as Zi = fθ (Xi ), with values subsequently
related to model probabilities pi,k through a normalized ex-
ponential (softmax) function [137],

pi,k = exp (zi,k )∑
k exp (zi,k )

. (10)

For machine learning, we created and extracted MFS fea-
tures from the 10 000 cascade series for each type. This
dataset was subdivided into a training dataset comprising
9, 800 samples per type and validation and test datasets com-
prising 100 samples per type each. To train the neural network,
we conducted 800 epochs, systematically shuffling the train-
ing dataset and dividing it into batches of size 256, with
each epoch representing one pass through the entire training
dataset. The network weights are iteratively updated with each
batch to minimize the loss function [Eq. (10)], employing the
Adam optimizer with a learning rate decaying from 10−3 to
10−4. In the final 100 epochs, we estimated SWAG [135],
involving the determination of a Gaussian probability density
function on the network weights θ . These parameters were
chosen via optimization of the neural network performance
on the validation dataset, while the results reported hereafter
are obtained from the separate test set.

III. RESULTS

A. An admixture of additivity and multiplicative
interactions produce diversity in cascade processes

Upon visually inspecting the apparent shape of result-
ing cascade processes, intriguing patterns emerged in the
behavior of processes exclusively characterized by additive,
multiplicative, and additomultiplicative interactions. Exclu-
sive additivity notably tended to produce cascade time series
with remarkable similarity (Fig. 4). Conversely, exclusively
multiplicative interactions yielded highly non-Gaussian time
series, displaying pronounced deviations from typical Gaus-
sian distributions (Fig. 5). These cascade time series exhibited
striking similarity, featuring tightly clustered fluctuations.
However, the intricate interplay between additivity and multi-
plicative interactions emerged as a crucial factor in generating
a diverse spectrum of cascade time series. Additomulti-
plicative cascades showcased a superior amalgamation of
non-Gaussian characteristics and tightly clustered fluctua-
tions. This intricate blend gave rise to a rich tapestry of
data patterns closely resembling those observed in real-world
contexts, highlighting the importance of considering such

interaction blends in modeling and comprehending adaptive
biological and psychological phenomena (Fig. 6).

B. Multifractal spectral features loaded onto the principal
components in varying ways depending on the cascade type

Our initial investigation explored the cross-correlation dy-
namics among the 13 multifractal spectral features for awGn
cascades. Notably, these relationships exhibited an assort-
ment of strengths, ranging from highly positive (depicted in
shades of blue) to notably negative (depicted in shades of
brown; Fig. 7). This diversity underscores the importance
of incorporating multiple, rather than singular, multifractal
spectral features in causal modeling. Furthermore, these as-
sociations were dynamic, exhibiting variations across additive
(Fig. 7, top left), additomultiplicative (Fig. 7, top right), and
multiplicative awGn cascades (Fig. 7, top middle)—in sequen-
tial order—each comprising the same underlying constituent
noises. A key observation was the progressive weakening of
these relationships from additive to multiplicative to addit-
omultiplicative awGn cascades. This trend suggests that the
correlation among multifractal spectral features diminishes as
the interactions become more heterogeneous. Alternatively,
one could interpret this decline in correlation coefficients as
indicative of multifractal spectral features encoding more var-
ied aspects of the multifractal structure in more heterogeneous
cascades.

We then examined the loadings of the 13 features along the
first two principal components, PC1 and PC2. As expected,
the features exhibited distinct loadings across the additive
(Fig. 7, bottom left), multiplicative (Fig. 7, bottom middle),
and additomultiplicative (Fig. 7, bottom right) awGn cascades.
For instance, the left-side height of the original spectrum,
� f (α)Left, width of the original spectrum, �α, and the hor-
izontal location of the singularity, α f (α)=1, showed the largest
loadings on PC1, and �α, the height of the original spectrum,
� f (α), and �α showed the largest loadings on PC2 for addi-
tive, multiplicative, and additomultiplicative awGn cascades,
respectively (see Table II). Interestingly, even the most com-
monly used features �α and multifractal nonlinearity, TMF,
loaded differently across the three types of awGn cascades,
although both these features always loaded heavily on PC1
for additive and multiplicative awGn cascades and on PC2
for additomultiplicative awGn cascades. While most features
displayed positive loading either along PC1 or PC2, grouping
features with similar factor loadings revealed variations across
the additive, multiplicative, and additomultiplicative awGn
cascades. Finally, the first four components were enough to
explain more than 95% variance in the multifractal structure
in each case: additive (Fig. 8, left), multiplicative (Fig. 8, mid-
dle), and additomultiplicative (Fig. 8, right). This implies that
regardless of which features loaded onto the first two principal
components, a highly correlated structure existed among these
multifractal spectral features for each type of awGn cascade.

Figures 9–12 report the cross-correlation matrices and fea-
ture loadings for fGn, fractalizing, defractalizing, and mixed
noise cascades. Similar patterns of results were observed for
all four types of cascades. Key findings included variations
in how different features loaded onto the first two principal
components, with features exhibiting positive loadings also
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FIG. 4. Representative time series of the five types of random additive cascades in the tenth generation.

differing across the various constituent noise types. Nonethe-
less, these features showed an extreme diversity of their
loading patterns based not just on the constituent noise but
also on whether the interactions among these noises were
additive, multiplicative, or additomultiplicative (left, middle,
and right panels in Figs. 9–12). Overall, we observed signif-
icant variability in the rank order of the multifractal spectral
features as they loaded onto PC1 and PC2 across the different
types of cascades (see Table II). However, in all cases, the
first four components were sufficient to explain more than
95% of the variance in the multifractal structure: additive
(Fig. 8, left), multiplicative (Fig. 8, middle), and additomul-
tiplicative (Fig. 8, right). These PCA results further support
the notion that despite variations in feature loading onto the
first two principal components, a highly correlated structure
among multifractal spectral features exists for each cascade
type. However, this correlated structure exhibits considerable
variability depending on the type of noise and the interactions
that contribute to the emergent multifractal structure.

C. Neural networks struggled to classify
multiplicative cascade processes

We trained an “omnibus” neural network exclusively to
predict the cascade model based on 13 distinct features ex-
tracted from the multifractal spectrum. In Fig. 13, we present
the confusion matrix illustrating the likelihood of the network
predicting each true class (columns) as one of the 15 classes
(rows). Therefore, the probabilities for correct predictions can
be retrieved from the diagonal entries. The confusion matrices
reveal that the network demonstrates an overall rather low ac-
curacy of 45.5% in accurately identifying the cascade model.
Accuracy varied significantly across the 15 types of cascades:
additive (fGn 49%, awGn 54%, fractalizing 45%, defractaliz-
ing 68%, mixed 61%), multiplicative (fGn 47%, awGn 20%,
fractalizing 69%, defractalizing 46%, mixed 61%), and addit-
omultiplicative cascades (fGn 55%, awGn 38%, fractalizing
40%, defractalizing 19%, mixed 10%). We observed a general
drop in accuracy for the additomultiplicative case and poor

033276-10
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FIG. 5. Representative time series of the five types of random multiplicative cascades in the tenth generation.

accuracy for multiplicative fGn and additomultiplicative
mixed noise cascades.

Next, we evaluated the performance of the same neural
network, specifically for classifying additive, multiplicative,
and additomultiplicative cascades, distinguishing them based
on their constituent noises. When applied solely to additive
cascades, the model achieved a remarkably high accuracy
of 91.6% (Fig. 14, top left). However, this accuracy de-
creased to 75.4% for multiplicative cascades and 70.6% for
additomultiplicative cascades. Interestingly, in each case, the
accuracy was highest for the fractalizing scenario (0.98, 1.0,
and 0.99, respectively) and lowest for the mixed case (0.85,
0.65, and 0.41, respectively). Training the network after re-
moving only additive, multiplicative, or additomultiplicative
cascades resulted in yet lower but consistent accuracy, hover-
ing around 50% (specifically, 55.5%, 52.2%, or 55.0% after
removing additive, multiplicative, or additomultiplicative cas-
cades, respectively; Fig. 14, bottom). Therefore, it appears that
multiplicative interactions override the actual properties of the
constituent noise, making it difficult to discriminate among

the various cascade types in the multiplicative and addito-
multiplicative cases. Moreover, the admixture of additive and
multiplicative cascades further accentuated this issue.

A significant advantage of feature-based machine learning,
compared to non-feature-based approaches applied directly
to raw sensor data utilizing convolutional or recurrent archi-
tectures [138], is its enhanced interpretability. Feature-based
machine learning enables the identification of each feature’s
impact on the neural network’s performance. For instance,
one can selectively manipulate a feature, change its position
among the inputs, and observe the resulting decrease in accu-
racy attributed to this feature’s misplacement. More broadly,
one can rank the various features based on their importance
to the model. Table III illustrates the feature importance
for all seven neural networks, revealing several noteworthy
trends. The most crucial feature was α f (α)=1 for the overall
network model, which remained consistent across all other
six models except when considering only additive cascades.
In that case, �αLeft emerged as the most important feature,
consistent with the previous finding that additive interactions
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FIG. 6. Representative time series of the five types of random additomultiplicative cascades in the tenth generation.

TABLE III. Multifractal spectral feature importance for the seven neural networks classifying different cascade types.

Only Without

All Additive Multiplicative Additomult. Additive Multiplicative Additomult.

α f (α)=1 �αLeft α f (α)=1 α f (α)=1 α f (α)=1 α f (α)=1 α f (α)=1

� f (α)Left α f (α)=1 �αLeft �αSurr �αLeft �αLeft �αSurr

�αLeft �α �αSurr �αLeft �αSurr � f (α)Left NSpec

NSpec � f (α)Left � f (α)Left �α NSpec �α �αLeft

�α � f (α)Right �αRight � f (α)Left � f (α)Left � f (α)Right � f (α)Left

�αSurr NSpec NSpec NSpec �αRight NSpec �αRight

� f (α)Right � f (α) �α �αRight �α � f (α) �α

�αRight �αSurr � f (α)Right � f (α) � f (α) �αSurr � f (α)Right

� f (α) TMF α � f (α)Right � f (α)Right �αRight � f (α)
TMF �αRight TMF TMF TMF TMF TMF

� f (α)|Left−Right| � f (α)|Left−Right| � f (α) � f (α)|Left−Right| f (α) � f (α)|Left−Right| f (α)
f (α) f (α) f (α) f (α) � f (α)|Left−Right| f (α) α

α α � f (α)|Left−Right| α α α � f (α)|Left−Right|
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FIG. 7. Correlation matrices of multifractal spectral features for random additive (top left), multiplicative (top center), and additomulti-
plicative (top right) white noise cascades with additive white Gaussian noise, awGn, multipliers, and feature loading plots of the corresponding
first two principal components (bottom). C1 through C4 represent the principal components grouped into four clusters using k-means clustering.

lead to leftward skewed spectra [44–46]. The multifractal
spectral width, �α, and multifractal nonlinearity, T MF, which
are commonly utilized features for modeling the multifractal

structure of empirical measurements [126,139,140], did not
feature among the top three features in either the “omnibus”
model or the neural networks trained exclusively on additive,

FIG. 8. Percentage variance explained by the 13 principal components for random additive (left), multiplicative (center), and additomulti-
plicative (right) cascades with the five types of constituent noises. the thick and thin lines denote the cumulative and individual variances.
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FIG. 9. Correlation matrices of multifractal spectral features for random additive (top left), multiplicative (top center), and additomultiplica-
tive (top right) pink noise cascades with additive fractional Gaussian noise, fGn, multipliers, and feature loading plots of the corresponding first
two principal components (bottom). C1 through C4 represent the principal components grouped into four clusters using k-means clustering.

multiplicative, and additomultiplicative cascades, even after
excluding one of these types of cascades.

IV. DISCUSSION

Machine-learning models consistently demonstrate im-
peccable performance when trained on data from highly
homogeneous and extreme populations, such as interbeat in-
terval series comparing healthy adults to those diagnosed
with chronic heart failure (e.g., [141–143]) or EEG signals
comparing healthy adults to those diagnosed with schizophre-
nia (e.g., [144–146]). However, the efficacy of these models
often plummets to chance levels when applied to more het-
erogeneous groups [20,21]. This study aimed to interrogate
the notion that machine-learning models may inadequately
encapsulate the intricacies inherent in physiological signals. It
leverages the well-established understanding that physiologi-
cal signals exhibit multifractal nonlinearity, stemming from
multiplicative interactions across diverse spatial and temporal
scales. Specifically, this investigation focuses on the multi-
fractal properties as features intrinsic to 15 distinct types of
binomial cascade processes generated by a spectrum of noise
processes, including awGn, fGn, and various amalgamations.
These processes exhibit additivity and multiplicative interac-
tions, with a stochastic fusion of the two interaction types

occurring across constituent noise processes at diverse scales
that we call additomultiplicative. Cross-correlation analysis
applied to diverse multifractal spectral features reveals that
these features adeptly capture nuanced aspects of the cascad-
ing time series, demonstrating minimal redundancy. Principal
component analysis, employed across 13 distinct multifrac-
tal spectral features, reveals multiple routes to the emergent
multifractal structure within these cascade processes. Fully
connected neural networks unexpectedly struggled to clas-
sify the 15 distinct types of cascade processes based on
the respective multifractal spectral features (45.5% accu-
racy) yet demonstrated improved accuracy when confronted
only with additive (91.6%), multiplicative (75.4%), or ad-
ditomultiplicative (70.6%) ones. These findings imply that,
while traditional principal component analysis reveals distinct
loadings attributed to individual noise processes, the mul-
tiplicative nature effectively conceals constituent processes
from neural networks. This suggests that neural networks
may lack the hierarchical depth required to effectively dis-
tinguish between diverse cascading processes, potentially
limiting their utility in studying biological and physiological
phenomena that can be better modeled as cascade dynamics.

The primary finding of note revolves around the cross-
correlation analysis applied to a diverse array of multifractal
spectral features, revealing their adeptness in capturing
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FIG. 10. Correlation matrices of multifractal spectral features for random additive (top left), multiplicative (top center), and addito-
multiplicative (top right) fractalizing noise cascades with anticorrelated Gaussian noise multipliers characterized by fGn, HfGn = 0, and
incrementally increasing HfGn to 1 across 15 generations, and feature loading plots of the corresponding first two principal components
(bottom). C1 through C4 represent the principal components grouped into four clusters using k-means clustering.

nuanced aspects of cascading time series with minimal re-
dundancy. Traditionally, multifractal spectrum analysis has
predominantly focused on two facets: the width of the mul-
tifractal spectrum and the disparity between the spectrum
widths of the original time series and those of its surrogates,
computed as either �Orig − �Surr [126] or as TMF [48,139].
Additionally, some researchers have advocated considering
asymmetry in the multifractal spectrum to interpret distortions
in the hierarchical organization of complex multiplicative pro-
cesses (e.g., [147,148]). While these conventional multifractal
spectral features may offer valuable insights and potentially
represent the most salient characteristics of multifractal struc-
ture, the relatively weak and uniform correlation relationships
observed among the 13 multifractal spectral features incorpo-
rated in the present study suggest that these features might
not fully capture the diversity within multifractal structure.
Therefore, there could be analytical merit in incorporating
these additional features. However, elucidating interpretive
explanations regarding the specific determinants of each fea-
ture remains elusive, precluding theoretically informed use of
these features beyond brute-force machine-learning applica-
tions. Future endeavors could enhance our comprehension of
the significance of each multifractal spectral feature in terms

of time series heterogeneity, thus facilitating their utilization
in modeling stochastic cause and effect.

The second noteworthy finding pertains to the distinctive
loading patterns observed across various multifractal spec-
tral features along the first two principal components. These
loading patterns exhibited clear distinctions among cascades
comprising different types of noise interactions across gen-
erations, reflecting processes occurring at diverse spatial and
temporal scales, including awGn, fGn, fractalizing, defrac-
talizing, and mixed noises. Moreover, these loading patterns
effectively differentiated between additive, multiplicative, and
additomultiplicative interactions across these diverse noise
processes. Thus, the diverse multifractal spectral features con-
veyed distinct information types, reflecting heterogeneity’s
unique aspects across different cascades. We had previously
noted that, while traditional features, often employed in linear
causal modeling [149–151], tend to disrupt ergodicity, mul-
tifractal descriptors, in contrast, exhibit ergodicity [47–51],
thereby offering a dependable and consistent set of causal
predictors of the adaptive biological and psychological func-
tion [60,63–67,69–71,152–154]. The current discovery that
multifractal spectral features can delineate distinct patterns
of heterogeneity, capturing both the constituent noise and
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FIG. 11. Correlation matrices of multifractal spectral features for random additive (top left), multiplicative (top center), and additomulti-
plicative (top right) defractalizing noise cascades with correlated Gaussian noise multipliers characterized by fGn, HfGn = 1, and gradually
decreasing HfGn to 0 across 15 generations, and feature loading plots of the corresponding first two principal components (bottom). C1 through
C4 represent the principal components grouped into four clusters using k-means clustering.

the nature of interactions—whether additive, multiplicative,
or various amalgamations—lends credence to these modeling
endeavors. It implies that incorporating multifractal descrip-
tors as causal factors in modeling adaptive biological and
psychological functions can unveil mechanisms that may re-
main obscured by summarizing stochastic time series using
alternative descriptors [155].

The third and final notable finding pertains to the per-
formance of neural networks in discriminating among the
15 cascade types. Surprisingly, these neural networks en-
countered difficulties classifying the distinct types of cascade
processes, achieving only 45.5% accuracy when confronted
with additive, multiplicative, and additomultiplicative cas-
cades simultaneously. Nonetheless, the accuracy of these
neural networks significantly improved when confronted
solely with classifying cascades of different noise types within
the additive category (91.6%), the multiplicative category
(75.4%), or the additomultiplicative (70.6%) category of cas-
cades. These difficulties resembled previous performance of
fully connected neural networks in discerning between five
prominent models of anomalous diffusion trajectories [52].
Anomalous diffusion trajectories deviate from Fick’s theory

of diffusion, exhibiting a power-law pattern of mean squared
displacement (〈x2(t )〉 ∝ tα with α �= 1), and this previous
study included five diffusion models: fractional Brownian
motion (FBM), scaled Brownian motion (SBM), controlled-
time random walk (CTRW), annealed transient time motion
(ATTM), and Lévy walk (LW) [9,156]. We had previously
also reported the widespread presence of multifractal struc-
tures within these diffusion models, suggesting a common
origin within a cascade-dynamical framework [51]. There-
fore, the ability of neural networks to differentiate between
these models based on multifractal characteristics aligned
well with prior expectations and findings in the field. The
present performance of neural networks proved disappointing,
indicating that these cascades might be more intricate and hi-
erarchical than diffusion models. Indeed, the failure of neural
networks to differentiate between various cascade models may
be attributed to the multiplicative nature of these cascades,
which may effectively conceal the constituent processes from
the neural networks. This suggests that neural networks may
lack the hierarchical depth necessary to effectively distinguish
between diverse cascading processes, potentially limiting
their applicability in studying biological and physiological
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FIG. 12. Correlation matrices of multifractal spectral features for random additive (top left), multiplicative (top center), and additomulti-
plicative (top right) mixed noise cascades with Gaussian noise multipliers characterized by either ideal fGn (i.e., HfGn = 0.5) or ideal awGn
(i.e., HfGn = 1) randomly selected at each generation, and feature loading plots of the corresponding first two principal components (bottom).
C1 through C4 represent the principal components grouped into four clusters using k-means clustering.

FIG. 13. Confusion matrix showing the accuracy of cascade clas-
sification across all cascade types. The values in each cell encode the
likelihood of the network predicting each true class (columns) as one
of the 15 classes (rows).

phenomena better represented by cascade dynamics. It may
be useful in this case to supplement the multifractal features
with more traditional features.

Instead, cascades that incorporate multifractal noise open
up a field of theoretical inquiry that paves a path towards
scaling a multifractal model of biological and psychological
processes up from single observables to an entire organism;
a path that network science has already begun to hint at
[157]. The present exploration of cascades with multifractal
noise is an early step in learning how to interpret our single
observables’ multifractality better. The present work does not
give indicators of network topology; instead, it offers a view
of how classic categories of cascades (i.e., additive and mul-
tiplicative) react to and involve multifractal noise that might
spread through the system from spatiotemporally neighboring
points of cascade dynamics. This work informs this line of
theoretical inquiry by indicating that the mathematical form
of cascade dynamics (i.e., additive or multiplicative) radically
changes the effect of the simulated observable absorbing mul-
tifractal noise. For instance, we confirmed a previous finding
that multiplicative cascades show stronger TMF signatures
of nonlinearity with progressively more generations [45,46].
However, multifractal cascades generate much stronger TMF

signatures of nonlinearity with multifractal noise than less
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FIG. 14. Confusion matrices showing the accuracy of cascade classification within only the random additive (top left), multiplicative (top
center), and additomultiplicative (top right) cascades and across all cascade types without using the random additive (bottom left), multiplicative
(bottom center), and additomultiplicative (bottom right) cascades. The values in each cell encode the likelihood of the network predicting each
true class (columns) as one of the 5 classes (rows).

multifractal IAAFT noise. This point extends the previous
finding that multiplicative cascades involving fGn showed
greater TMF than multiplicative cascades with awGn [46].
Hence, we may be able to rank order the strength of multifrac-
tal nonlinearity from the greatest to the least for multiplicative
cascades involving multifractal noise with wider spectra or
more nonlinear temporal correlations, multifractal noise with
narrower spectra more closely approximating monofractal
fGn, as well as awGn. This work also informs this approach
by indicating that noise with greater multifractal spectrum
width (e.g., in the comparison between nonlinearly multifrac-
tal noise and IAAWT noise) and greater nonlinear temporal
correlations (i.e., in the contrast between nonlinearly mul-
tifractal noise and IAAFT noise) can promote specifically
different forms of ergodicity breaking.

We must perceive organisms not as uniform entities but
rather as intricate and task-responsive assemblages of numer-
ous degrees of freedom [158,159]. Here, “degrees of freedom”
denotes the myriad intricacies within a system that can vary
and become accessible for control or adaptation in response to
specific task constraints [160–163], thus illustrating cascading
dynamics [164] that lead to the emergence of new adaptive

behaviors shaping the entire system [165–172]. Accordingly,
network science has embarked on modeling multifractality
as a refined representation of the cascade relationships that
potentially govern an organism’s allocation of degrees of
freedom; a notion supported both theoretically [157] and em-
pirically [53–71]. Moreover, multifractality may encapsulate
broader system properties beyond what a single observable
can capture. The hierarchical structure implicit in any ob-
servable likely extends beyond that observable and reflects
the aggregates influencing that observable. Therefore, there
is reason to believe that the multifractal structure of any
single observable should reflect not only the broader sys-
tem containing it but also the novel interactions it engages
in. Indeed, in our study involving the full-body motion of
human participants during a perceptual task [70,153], ba-
sic network analyses revealed extensive connections among
anatomical components, showcasing numerous pairwise re-
lationships between current multifractality in one observable
and subsequent multifractality in another. This empirical ev-
idence suggests that multifractality in any observable may
bear the signature of multifractality elsewhere in the system.
The present “failure” of neural networks in discriminating
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among the 15 cascade types implies that machine learning
might presently lack the capability to facilitate investigations
centered on the genesis of emergent multifractal structures in
empirical biological and psychological measurements.

Hence, the current simulation is a pivotal stride in delin-
eating the constraints of machine-learning models. We have
illuminated the potential prematurity in employing machine
learning for interpreting multifractal outcomes, particularly
when expecting our cascade-like measurements to mirror
multifractal signatures stemming from cascade processes oc-
curring elsewhere within the same organism. While our
simulation encompassed basic additive, multiplicative, and
additomultiplicative cascades, refining the cascade structures
to simulate diverse network interactions contributing to cas-
cade dynamics could introduce further complexities as we
strive to elucidate the nexus between distributed coordination
and multifractal cascades [157]. This challenge is exacer-
bated by “stochastic resonance” or “noise-based” stimulation
beyond conventional “white-noise” structures like awGn to
encompass more inherently naturalistic fractal and multifrac-
tal forms of stimulation [74–77,173,174], which generate an
enormous diversity of multifractal processes [44–46]. The
theoretical advancements requisite to bring these insights into
machine learning necessitate the development of capabilities
to decipher the hierarchical characteristics of these cascade
models [175].

Machine learning for networked flows of multifractality

A prominent challenge in applying machine-learning mod-
els to multifractal structures stems from the absence of
well-defined expectations. On the one hand, insights gleaned
from examining the multifractality of a single observable have
potentially transcended simple discriminatory capacities, such
as associating varying degrees of multifractality with health
conditions (e.g., [87,176,177]). Indeed, machine learning has
often successfully discriminated between health and disease
states [90,102,103,178,179]. Nonetheless, nonlinear proper-
ties of a single observable may encapsulate aspects of an
entire organism’s functioning, as seen in cases like Parkin-
son’s disease [72,73,180–183]. While one observable may
seemingly exist independently, it could also function as part
of a loosely interactive ensemble, where loose interactions
among observables within the ensemble are permissible. For
instance, simulation studies investigating individual cascade
processes have been pivotal in elucidating the sequential
variations observed when a person presses a button with
their forefinger to signal one-second intervals [184,185]. This
approach is fundamental in advancing a cascade-dynamical
representation of finger behavior in such tasks. However, it is
crucial to recognize that the pressing of a fingertip represents
merely the immediate point of contact between the entire
organism and the task environment. Acknowledging that a
single button press is merely the surface manifestation of
an organism-wide phenomenon, we understand that fingertip
actions emerge from a vast network of anticipatory postural
adaptations and longer-range postures distributed across the
entire movement system [165–172]. Presumably, what we
observe in a single observable reflects the endogenous flow
of coordinating cascades from interconnected observables

within the organism alongside any exogenous stimulation
(e.g., [74–77,173,174]). The spatiotemporal dissemination
challenges our machine-learning endeavors, as they do not
appear capable of diagnosing organism-wide flows from mul-
tifractal results derived from individual observables.

Two immediate avenues that have leveraged machine
learning within the broader umbrella of multiscale mod-
eling include understanding fundamental physics [15] and
fine tuning parameters for established physics-based quan-
daries. Recent advancements showcase this potential: from
employing data-driven approaches to resolve unexplained
issues related to elasticity [11] to uncovering partial dif-
ferential equations for various nonlinear dynamical systems
[10,12–14]. While this domain holds significant promise,
particularly when paired with deep learning, it necessitates
a profound comprehension and direct engagement with the
underlying learning machines [186]. The success of these
attempts is partially due to the modeled systems following
the so-called “low-dimensional chaos” wherein a few param-
eters can summarize the system’s entire dynamics. However,
our observations’ underlying systems can exhibit a broader
spatiotemporal structure [187,188]. Moreover, the fractal na-
ture of these systems supports the theoretical notion that we
should be able to extract global dynamics from the lower-
dimensional projections manifested in our observations [189].
We have probably not exclusively selected observables with
multifractal characteristics; rather, multifractal structure likely
represents a more ubiquitous trait of the entire organismic
system. The hierarchical arrangement implicit in any given
observable is unlikely to be solely attributed to that specific
observable; instead, it likely mirrors the collective interac-
tions of numerous components, as demonstrated through our
cascading numerical simulations. Whether the data-driven,
physics-based machine-learning models can outperform the
neural networks employed in the current study in classifying
multifractal cascades remains to be determined.

Machine-learning techniques have exhibited remarkable
prowess in image recognition, finding direct utility in diag-
nostics across electrophysiology, radiology, and pathology,
leveraging extensively annotated datasets [190–194]. How-
ever, the efficacy of machine learning often wanes when
tasked with prognosis, particularly in deciphering complex
physiological time series. In this realm, classical physics-
based simulation maintains its indispensable role. In taking
stock of the foregoing analyses and tests, we have a few
choices about where to seek the limitations and the routes for
future investigation. On the one hand, we see a ceiling on the
efficacy of multifractal features as classifiers, and this ceiling
could signify a fundamental limit to what multifractal descrip-
tion can show. However, multifractality is the distinguishing
feature of cascade dynamics, and multifractal geometry is
the only known formalism for addressing cascade structures.
So, either we need to look for elaborations of multifractal
geometry (e.g., beyond the f (α) spectrum [195,196]), or we
need to acknowledge potential limitations of machine learning
[20,21]. On the latter point, we must concede that these archi-
tectures’ correlation metrics to support classification may not
necessarily be the only ones or those best poised to classify
cascade-driven ergodicity-breaking time series. On the other
hand, principal component analysis showed finer sensitivity to
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the different features contributing to multifractal nonlinearity,
suggesting that, once we arrive at the ergodic description of
cascade dynamics using multifractal geometry [47–51], these
multifractal descriptors reveal how different categories of cas-
cade exhibit different routes towards multifractal nonlinearity.
Cascade dynamics exhibit systematicity at the level of ergodic
descriptors via multifractal geometry, underscoring the need
for future research to investigate the ergodicity of traditional
classifiers and the performance of machine-learning architec-
tures beyond correlation metrics [47–51]. In this study, we
avoided using raw data for classification due to the ergodicity-
breaking aspect of cascade dynamics, where short samples
fail to capture long-term dynamics. Future work will explore
whether applying deep learning and convolutional neural net-
works is better suited for modeling the hierarchical structure
of cascade time series and addressing ergodicity-breaking
phenomena. We aim to refine the machine-learning classifica-
tion of raw ergodicity-breaking cascade time series, aligning
them more accurately with this ergodic description and paving
the way for more robust and insightful analyses.

No data were used for the research described in the
article.
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