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Prerelaxation in quantum, classical, and quantum-classical two-impurity models
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We numerically study the relaxation dynamics of impurity-host systems, focusing on the presence of long-
lived metastable states in the nonequilibrium dynamics after an initial excitation of the impurities. In generic
systems, an excited impurity coupled to a large bath at zero temperature is expected to relax and approach its
ground state over time. However, certain exceptional cases exhibit metastability, where the system remains in an
excited state on timescales largely exceeding the typical relaxation time. We study this phenomenon for three
prototypical impurity models: a tight-binding quantum model of independent spinless fermions on a lattice with
two stub impurities, a classical-spin Heisenberg model with two weakly coupled classical impurity spins, and
a tight-binding quantum model of independent electrons with two classical impurity spins. Through numerical
integration of the fundamental equations of motion, we find that all three models exhibit similar qualitative
behavior: complete relaxation for nearest-neighbor impurities and incomplete or strongly delayed relaxation for
next-nearest-neighbor impurities. The underlying mechanisms leading to this behavior differ between models
and include impurity-induced bound states, emergent approximately conserved local observables, and exact
cancellation of local and nonlocal dissipation effects.

DOI: 10.1103/PhysRevResearch.6.033275

I. INTRODUCTION

A small system (“impurity”) in an excited state and cou-
pled to a large bath (“host”) at zero temperature is usually
expected to relax over time and to approach its ground state.
After the initial excitation of the impurity, the excess energy
is dissipated via the impurity-host coupling and through the
coupling of the host degrees of freedom into the bulk of the
host system (see Fig. 1). For a system with a macroscopically
large number of degrees of freedom subject to the principles of
thermodynamics, this dissipation process is irreversible. This
picture of generic relaxation dynamics explains the interest in
exceptional cases, where the system is trapped in a metastable
state that does not decay on timescales exceeding by far the
typical intrinsic timescales governing the microscopic degrees
of freedom.

Incomplete or delayed relaxation and metastability in
impurity-host models [1,2] is closely related to incomplete
or delayed thermalization of extended lattice models. In both
cases, much of the interest in metastable states is due to
their promise for controlling nonequilibrium dynamics and for
related functionalities [3]. Compared to notoriously difficult
lattice models, models with single or few initially excited im-
purities embedded in a large host represent an interesting class
of comparatively simple systems that may hold a key to the
understanding of metastability. Here, we report on metastable
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states in the real-time dynamics of three different prototypical
system-bath models: an uncorrelated quantum, a classical and
a quantum-classical hybrid model. In all three cases, the exact
dynamics is numerically accessible on long timescales.

In recent decades, much progress has been made in under-
standing the thermalization of generic macroscopically large
quantum systems, the main paradigm of quantum-statistical
physics, and the foundation of thermodynamics [4,5]. Here, an
important concept is the eigenstate thermalization hypothesis
[6–10], as reviewed, e.g., in Ref. [11]. One route to nonther-
mal states of quantum-lattice models is via integrability. For
(one-dimensional) systems with a large number of conserved
local observables, the long-time dynamics may result in a
state described by a generalized Gibbs ensemble [5,12–14].
Another route is provided via disorder, either on the single-
particle level or via many-body localization [15,16].

This is similar to classical Hamiltonian dynamics [17]. It
is known that ergodicity and the equivalence between long-
time and ensemble averages of observables can be broken in
the case of a large number of integrals of motion. Violations
of ergodicity are found for integrable systems [17] but also
for systems parametrically close to integrability [18–21] or in
systems with glassy dynamics [22,23].

For quantum-lattice models, too, proximity to an integrable
point in parameter space may lead to prethermalization and
metastability. This has been analyzed analytically and demon-
strated numerically in several studies [24–28].

For impurity-host systems (or open quantum systems) the
situation is not very different. After an initial local excitation
of the impurity, one generally expects a relaxation of the re-
duced density matrix of the impurity to its (canonical) thermal
state if the impurity-host coupling is weak [2,29–32]. On the
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FIG. 1. Typical structure of an impurity model. The impurities
are coupled to a much larger host system. After an initial local
excitation, the full system, impurities plus host, is expected to relax
locally in its ground state in the vicinity of the impurities after the
excitation energy is dissipated into the bulk.

other hand, in the case of band gaps or finite bandwidths,
incomplete relaxation and residual dissipationless dynamics
may occur [33,34]. Relaxation to nonthermal states may be
found in the gapless case for a sufficiently strong impurity-
bath coupling [34–36].

Recently, a metastable state and incomplete spin relaxation
have been observed in a system consisting of a classical
impurity spin that is exchange coupled to a spinful Su-
Schrieffer-Heeger model at an edge site [37]. Here, the
topological state of the host and the associated presence or
absence of a protected edge mode are found to control the
relaxation of the classical spin. This is a prime example for
an impurity system with prerelaxation dynamics, analogous
to prethermalization in quantum-lattice models. However, the
dynamical decoupling of the impurity and the stabilization
of the excited state on a long timescale is due to a gapped
spectrum for two-particle excitations, which blocks further
energy dissipation. A similar effect has been observed for a
classical spin locally coupled to a one-dimensional half-filled
Hubbard model [38]. In this case the Hubbard-U and the
narrow spectrum of (quantum) spin excitations control prere-
laxation and metastability. Fast but incomplete relaxation to a
metastable intermediate excited state, followed by extremely
slow complete relaxation, is also known from the decay of
a local doublon excitation in the Hubbard model at large U
[39,40], or for a magnetic doublon [41] in the strong-J limit
of the Kondo lattice.

Here, we study the exact real-time dynamics by numerical
integration of the fundamental equations of motion for three
different prototypical impurity models, a quantum, a classical,
and a quantum-classical hybrid model. All share equivalent
geometries, namely, a one-dimensional lattice model serving
as the bath and two additional impurities which are locally
coupled to nearest-neighbor (n.n.) or to next-nearest-neighbor
(n.n.n.) sites of the lattice. Specifically, we study (i) a tight-
binding quantum model of independent spinless fermions
on a lattice with two stub impurities, (ii) a classical-spin
Heisenberg model with two weakly coupled classical impurity
spins, and (iii) a tight-binding quantum model of independent
electrons with two classical impurity spins. The long-time
relaxation dynamics initiated by a local excitation of the impu-
rities can by studied numerically for large lattices in all three

FIG. 2. Sketch of the stub-impurity model of spinless fermions.
Two fermionic impurity sites or orbitals are coupled via a hybridiza-
tion V to a one-dimensional lattice with nearest-neighbor hopping T .
T = 1 sets the energy scale. The host system is at half-filling.

cases, and in all cases we find qualitatively very similar re-
sults: there is complete relaxation to a time-independent final
state in the case of n.n. impurities, while there is incomplete
relaxation or prerelaxation for n.n.n. impurities. In all three
cases the effect can be understood after a thorough theoretical
analysis. However, it turns out that the uncovered mechanisms
are very different. The different systems are discussed sepa-
rately in Secs. II, III, and IV. Our conclusions are summarized
in Sec. V.

II. STUB IMPURITY MODEL

We start the discussion by considering a tight-binding
model with two stub impurities. The host system is given by
noninteracting spinless fermions on a one-dimensional chain
of L sites with open boundaries. The nearest-neighbor hop-
ping T = 1 sets the energy scale. The two impurities (a and
b) are given by two additional sites or orbitals coupling via
a hybridization of strength V to the host sites ia and ib. We
will consider n.n. or n.n.n. sites ia, ib located at the center
of the chain. A sketch of the system is shown in Fig. 2. The
Hamiltonian consists of three terms:

H = Hhost + Himp + Hhyb, (1)

the Hamiltonian of the host,

Hhost = −T
L−1∑
i=1

c†
i ci+1 + H.c., (2)

the impurity sites,

Himp = ε f ( f †
a fa + f †

b fb), (3)

with on-site energy ε f = 0, and the host-impurity hybridiza-
tion,

Hhyb = V (c†
ia

fa + c†
ib

fb) + H.c. (4)

Here, ci annihilates a fermion at site i, and fa annihilates a
fermion at impurity site a.

We study the real-time dynamics of the system after a
quantum quench of the hybridization from zero to a finite
value V . At time t = 0, the state of the host is assumed to
be prepared in its nondegenerate ground state with N = L/2
fermions, i.e., half-filling:

|�host(0)〉 =
occ.∏

k

c†
k |vac.〉 , (5)

where k runs over the one-particle eigenstates of Hhost with
one-particle energies εk < 0. Furthermore, the impurity sites
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a and b are assumed as fully occupied at time t = 0. Hence,
the initial state of the full system is the state

|�(t = 0)〉 = f †
a f †

b |�host(0)〉 . (6)

As the system is noninteracting, it is sufficient to formulate
an equation of motion in terms of the one-particle reduced
density matrix ρ. Its elements are defined as

ρIJ (t ) = 〈c†
JcI〉t . (7)

The indices I, J run over the L + 2 host and impurity sites:
I, J ∈ {1, 2, . . . , L, a, b}. Initially, at t = 0 the density matrix
ρ(0) has a block-diagonal form, with an L × L block repre-
senting the host system and two 1 × 1 blocks representing
the impurities. We are interested in the time evolution of the
occupation numbers

ni(t ) ≡ 〈c†
i ci〉t = ρii(t ) ,

na(t ) ≡ 〈 f †
a fa〉t = ρaa(t ) ,

nb(t ) ≡ 〈 f †
b fb〉t = ρbb(t ) . (8)

At t = 0, we have

ρhost(t = 0) = �(μI − T host ) , (9)

where � denotes the Heaviside step function, μ = 0 the
chemical potential, and T host the hopping matrix of the host
system. Furthermore, ρaa(0) = ρbb(0) = 1.

The time dependence of the density matrix ρ(t ) is obtained
via the von Neumann equation of motion:

i
d

dt
ρ(t ) = [T , ρ(t )] . (10)

Here, T is the hopping matrix of the full system, Eq. (1). The
formal solution of Eq. (10) is given by

ρ(t ) = Ue−iεtU†ρ(0)UeiεtU† , (11)

where the diagonal matrix of one-particle eigenenergies ε and
the unitary matrix U formed by the one-particle eigenstates of
T are obtained by solving the eigenvalue problem

TU = Uε . (12)

The t = 0 state, Eq. (6), is not an eigenstate of the full
Hamiltonian with V > 0. It instead represents a state that is
locally excited, in the vicinity of the impurities. One naively
expects that the local excess energy and the locally enhanced
fermion density at the impurity sites are dissipated to the
bulk of the system over time and that the system approaches
the fully relaxed state that is locally characterized by the
ground-state energy density and the ground-state impurity
occupations.

Numerical results for a system with L = 500 host sites
and impurities a and b coupling to nearest-neighbor (n.n.)
sites ia = 250 and ib = 251 located symmetrically around the
chain center are shown in Fig. 3. On a timescale t ∼ 100, the
impurity occupations na (= nb) relax and approach a value
na ≈ 0.505 close to their ground-state value n(gs)

a = 0.5. Sim-
ilarly, the occupations nia = nib of the host sites closest to the
impurities and also the occupations at more distant sites, e.g.,
nia+20, relax. The characteristic timescale for the dissipation
of particles (and of energy) can be read off from Fig. 3 by
comparing the dynamics of nia with that of nia+20. The total

FIG. 3. Time dependence of the average occupation number na

of the impurity sites a and of the occupation nia of the corresponding
host site ia. In addition the occupation nia+20 of a distant site ia + 20
is displayed. Calculation for a system with L = 500 host sites and
two stub impurities at the nearest-neighbor positions ia = 250 and
ib = 251. Hybridization strength V = 1. Note that inversion symme-
try enforces nb = na and nib = nia . The time unit is set by the inverse
nearest-neighbor hopping 1/T = 1.

system size (L = 500) is large enough such that reflections of
the propagating wave packets at the open system boundaries
do not yet interfere with the dynamics in the vicinity of the
impurities, on the time interval considered.

The time evolution turns out to be completely different,
however, when coupling the two impurities to next-nearest-
neighbor (n.n.n.) host sites. This is demonstrated with Fig. 4.
While we do find a fast initial relaxation, the relaxation
process stops at t ∼ 2, and the impurity occupations start
to oscillate around a value (na ≈ 0.625) that is consider-
ably larger than the ground-state value. These oscillations
are undamped and persistent (until finite-size effects in form
of interference with reflections from the boundaries become
important).

This qualitative difference between n.n. and n.n.n. im-
purities, i.e., complete or incomplete relaxation, is likewise

FIG. 4. The same as Fig. 3, but for stub impurities coupled to
next-nearest-neighbor (n.n.n.) sites ia = 249 and ib = 251. We also
choose L = 499. Therewith, inversion symmetry enforces nb = na

and nib = nia .
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observed for impurities at arbitrarily large but odd or even
distances, respectively. The key to this effect is the absence
or presence of bound single-particle energy eigenstates of the
postquench Hamiltonian.

Two different types of localized eigenstates can be dis-
tinguished: (i) For each of the two impurities, there is a
pair of bound states that split off from the lower and upper
edges of the valence band. These four high-excitation-energy
bound states are localized near the impurities with a weight
that decays exponentially at large distances. The case of
strong hybridization V is instructive. For V → ∞, the hop-
ping term, Eq. (2), can be ignored, and the Hamiltonian
describes a system of two decoupled dimers with two degen-
erate eigenstates at −V , and two more degenerate states at
+V (V > 0). This degeneracy is lifted for finite T 
 V , and
two bonding-antibonding pairs of bound states are formed,
one with negative energies below the bottom of the band
and one with positive energies. As V decreases, the bound
states remain localized and centered around the impurities,
but their weight is increasingly distributed over the lattice. At
V = 1, only a single state from each of the two pairs remains,
a spatially symmetric bound state with negative energy and
an antisymmetric bound state with positive energy, while the
other two states have merged with the bulk continuum. This
first type of bound state is generic and thus present for both
cases of impurities coupled to n.n. and to n.n.n. host sites.

(ii) A bound state of a different, second type is present in
the case of n.n.n. impurities only. It is given by

|ψloc〉 =
√

V 2

V 2 + 2T 2

[
c†

ia+1 + T

V

(
f †
a + f †

b

)]|vac.〉 , (13)

where ia + 1 = ib − 1 denotes the host site between the sites
coupled to the impurities. This state has a finite weight on
this and on the two impurity sites only, it is “superlocalized.”
Furthermore, its eigenenergy, εloc = 0, resides within the con-
tinuum of band states. This type of states is well known from
flat-band systems [42–47]. When coupling a stub impurity to
every second host site, the resulting translationally invariant
tight-binding lattice model has a unit cell consisting of three
sites, and its band structure features a flat band, resulting from
superlocalized states, besides two dispersive bands.

To discuss the impact of bound states on the postquench
relaxation dynamics, we can straightforwardly adapt some
concepts developed in Ref. [10]. Accordingly, we decompose
the expectation value O(t ) ≡ 〈O(t )〉 of a local operator O with
a Heisenberg time dependence as

O(t ) = O + δO(t ) , (14)

where the first term is the long-time average,

O = lim
t→∞

1

t

∫ t

0
dτ O(τ ) , (15)

and where the time-dependent second term δO(t ) is a fluctua-
tion part with a vanishing long-time average. As a measure for
the strength of persistent temporal fluctuations, we consider
the long-time average of the absolute square of the fluctuation
part:

δ2
O = lim

t→∞
1

t

∫ t

0
dτ |δO(τ )|2 . (16)

FIG. 5. Time-averaged fluctuation of the impurity occupation
δ2

na
= δ2

ρaa
, see Eq. (19), as a function of the system size L for n.n.

and n.n.n. impurities.

For O = OIJ = c†
JcI , see Eq. (7), the expectation values

OIJ (t ) = ρIJ (t ) are given by the elements of the one-particle
reduced density matrix. A straightforward computation yields

δ2
ρIJ

=
μ �=ν∑
μν

|UIμ|2|UJν |2|ρμν (t = 0)|2 . (17)

Here, UIμ is the Ith component of the μth eigenvector of the
total hopping matrix, see Eq. (12), and

ρμν (t = 0) = [U†ρ(t = 0)U ]μν (18)

is an element of the one-particle reduced density matrix in
the basis of the eigenstates of the total hopping matrix. Fur-
thermore, we have assumed that there are no degeneracies
and no gap degeneracies in the spectrum of the one-particle
eigenenergies. In our specific case, the spectrum is indeed
nondegenerate. However, particle-hole symmetry implies the
presence of gap degeneracies, i.e., εμ − εν = εμ′ − εν ′ for
μ �= μ′ or ν �= ν ′. This modifies the derivation that led to
Eq. (17), see also Ref. [10], and we find

δ2
ρIJ

=
μ �=ν∑
μν

μ′ �=ν ′∑
μ′ν ′

δεμ−εν ,εμ′ −εν′U
∗
IμUJνUIμ′U ∗

Jν ′

× ρμν (t = 0)ρ∗
μ′ν ′ (t = 0) . (19)

The contribution to temporal fluctuations, measured with
δ2
ρIJ

in Eq. (19), that stems from extended eigenstates must
vanish for L → ∞, as the components of the eigenvectors
are proportional to L−1/2 and hence |Uiμ|2|Ujν |2 ∼ 1/L2 → 0.
On the contrary, the components Uiμ of a localized eigenstate
μ are independent of L and can be large at some sites i,
as compared to the components of delocalized eigenstates,
such that their contributions to ρμν (t = 0) in Eq. (19) become
significant.

This is demonstrated with Fig. 5, where the time average
of fluctuations of the occupation number is shown for one
of the impurity sites. For n.n. impurities, δ2

na
decreases with

increasing L and eventually vanishes in the thermodynamical
limit L → ∞. Note that the first type of bound states, dis-
cussed above under point (i), does not prevent relaxation due
to spatial inversion symmetry, as discussed in Appendix.
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Contrary, in the case of n.n.n. impurities, the strength of
the fluctuations is essentially independent of the system size
for L � 103. The nonvanishing temporal fluctuations result
from a bound state of the second type, see point (ii) above.
This explains the observed incomplete relaxation for the n.n.n.
case, see Fig. 4.

In the L → ∞ limit, the effect of gap degeneracies is
vanishing in the n.n. case. In the n.n.n. case and for large L,
the fluctuation δ2

na
, as computed via Eq. (19), is smaller by

3 × 10−4 (or by about 20%) compared to the value obtained
from Eq. (17), i.e., disregarding gap degeneracies.

Note that in the n.n. case and for L = 500 (see Fig. 3),
the plateau values for the occupation numbers at t ≈ 100,
i.e., na ≈ 0.505 and nia ≈ 0.525, are close to but different
from their L → ∞ expectation values n(gs)

a = n(gs)
ia

= 0.5 in
the ground state of the postquench Hamiltonian. The latter are
fixed by particle-hole symmetry. For longer propagation times
tmax � 100, the plateau in the time evolution (see Fig. 3) is
repeatedly interrupted by revivals (not visible on the timescale
in Fig. 3). When computing the long-time averages, Eq. (15),
including the revivals, we find converged t → ∞ values na ≈
0.510 and nia ≈ 0.526. At L = 500, a propagation time t <

tmax ≈ 0.5 × 104 has turned out to be sufficient.
In fact, the dynamics of a system of noninteracting

fermions is constrained by the constants of motion c†
μcμ.

Hence, the system will relax to a nonthermal state with long-
time averages of na and nia equal to the averages in the
generalized Gibbs ensemble or, equivalently, in the diagonal
ensemble (see Ref. [10]). For an arbitrary operator O, the
diagonal average is defined as

O(D) ≡
∑

J

|CJ |2OJJ , (20)

with CJ = 〈J|�(t = 0)〉 and with OJJ = 〈J|O|J〉. At L = 500,
for example, the numerical values n(D)

a ≈ 0.510 and n(D)
ia

≈
0.526 perfectly agree with the above-mentioned long-time
averages. Repeating the computations for larger system sizes
(up to L = 5000) and extrapolating to L → ∞ yields slightly
smaller values n(D)

a ≈ 0.505 and n(D)
ia

≈ 0.525.
In general, for an integrable system, such as a noninteract-

ing fermion impurity model, the expectation values of local
one-particle observables generically do not relax to a thermal
state, regardless of the presence or absence of bound states.
However, the presence of bound one-particle eigenstates μ

of the postquench Hamiltonian is crucial for the question of
whether there is any relaxation at all or whether the system is
trapped in a metastable state. In the case of n.n.n. impurities,
there is a superlocalized bound state of the stub impurity
model that prevents relaxation and forces the system into a
metastable state without any further dissipation. This explains
the qualitatively different relaxation dynamics for n.n. and for
n.n.n. impurities.

III. CLASSICAL HEISENBERG IMPURITY MODEL

A similar effect in the relaxation dynamics is found for
a purely classical-spin model, i.e., for a one-dimensional
Heisenberg model of L classical spins si (i = 1, ..., L) with
nearest-neighbor antiferromagnetic exchange coupling J > 0,
where in addition two classical impurity spins Sm (m = 1, 2)

FIG. 6. Sketch of a system consisting of two classical impurity
spins (red) locally exchange coupled to a one-dimensional classi-
cal Heisenberg model (blue spins) with open boundary conditions.
K : weak antiferromagnetic local exchange, J: antiferromagnetic
nearest-neighbor exchange interaction of the host spins.

are locally exchange coupled to the host spins at sites i1 and
i2. The geometry is the same as for the stub impurity model,
see Fig. 6 and compare with Fig. 2. The coupling strength of
the local exchange is denoted by K . We assume that K 
 J
and K > 0, i.e., weak antiferromagnetic exchange interaction.
The classical Hamilton function is given by

H = J
L−1∑
i=1

sisi+1 + K
∑

m=1,2

Smsim , (21)

where the products of vectors are to be understood as dot
products. The length of the host spins and of the impurity
spins is set to s ≡ |si| = 1

2 and S ≡ |Sm| = 1
2 , respectively. We

consider a lattice with open boundaries. The sites i1 and i2,
where the impurity spins are coupled to the host, are assumed
to be n.n. or as n.n.n. sites in the center of the lattice. The host
nearest-neighbor exchange coupling fixes the energy scale,
J = 1, and we assume K = 0.01 unless otherwise stated.

The equations of motion are easily derived within the clas-
sical Hamilton formalism by making use of the spin Poisson
bracket [48,49]. They attain the form of Landau-Lifshitz equa-
tions [50]. For the impurity spins we have

d

dt
Sm(t ) = Ksim (t ) × Sm(t ) , (22)

where “×” indicates the cross product, while for the host
spins,

d

dt
si(t ) = J[si−1(t ) + si+1(t )] × si(t )

+K
∑

m

δiim Sm(t ) × si(t ) . (23)

It is immediately apparent that the length of each individual
spin represents a constant of motion such that the spin dynam-
ics is constrained to a configuration space given by the L +
2-fold direct product S ≡ S2 × · · · S2 of 2-spheres with radius
1/2. Furthermore, the total energy and, due to the SO(3)
spin-rotation symmetry of H , the total spin

∑
m Sm + ∑

i si

are conserved. Moreover, the system has an SO(3)-degenerate
ground-state manifold, as opposed to a nondegenerate singlet
state of the quantum-spin model [51].

The spin dynamics is initiated by a parameter quench of the
local exchange coupling from zero to a finite value K at time
t = 0. We assume that the initial state of the system at t = 0
is given by one of the ground states for K = 0. For the host
spins the ground state is given by an antiferromagnetic Néel
state with respect to an arbitrary axis. Specifically, we choose

si(t = 0) = (−1)isez . (24)
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FIG. 7. Time evolution of the x components of two classical
impurity spins S1 and S2 and of the cosine of the enclosed angle
S1S2/S1S2. Excited state at t = 0: host spins are in an antiferromag-
netic Néel state aligned to the z axis, impurity spins point in the x
and y direction, i.e., S1 = 1

2 ex and S2 = 1
2 ey. Geometry parameters:

L = 10 000, i1 = 5000, i2 = 5001. Coupling strengths: J = 1 and
K = 0.01.

The impurity-spin configuration at t = 0 is taken to be non-
collinear, i.e., S1 = Sex and S2 = Sey. This implies that after
switching on K at t = 0, the spin dynamics is immediately
driven by a finite spin torque.

Naively, one again expects that the excitation energy stored
in the center of the chain is dissipated into the bulk of the
system and that locally, in the vicinity of the impurities, the
system approaches a ground-state spin configuration after a
sufficiently long propagation time, assuming that the host of
the system is sufficiently large to avoid unwanted interactions
with excitations backscattered from the chain boundaries.

The equations of motion (22) and (23) are easily solved nu-
merically for systems with L � 104 host sites. For this system
size and for J = 1, there are no finite-size effects in the form
of reflection of spin excitations from the system boundaries up
to a propagation time of t � 104. Figure 7 displays the time
dependence of the x components of two impurity spins and of
the cosine of the enclosed angle for the case that the impurity
spins are locally coupled to nearest-neighbor host spins at
the chain center. We find that after t ≈ 800 the dynamics has
stopped and the system has reached one of its local ground
states with an antiferromagnetic impurity-spin configuration
and with an antiferromagnetic configuration of the host spins
(S1 ↑↓ S2) in the vicinity of the chain center.

For two impurity spins coupled to n.n.n. sites, however, the
time evolution is fundamentally different. As can be seen in
Fig. 8, the system does not relax to a local ground state, at
least not on the numerically accessible timescale. Rather, we
find that after a propagation time t ≈ 1000, the system state
becomes trapped in a stationary state, in which the impurity
spins precess around a common axis. Up to t = 104 there is
hardly any relaxation to the expected ferromagnetic (S1 ↑↑
S2) impurity-spin configuration. The angle enclosed by S1,
and S2 starts to deviate only slightly from its initial zero value
(see green curve).

We also note that the qualitative difference between the
relaxation dynamics for n.n. and for n.n.n. is not due to the

FIG. 8. The same as Fig. 7 but for impurity spins coupling
to n.n.n. host spins. Geometry parameters: L = 10001, i1 = 5000,
i2 = 5002.

larger distance of the impurity spins in the n.n.n. case. While
the distance between the impurities does have an effect on
the relaxation dynamics since it determines the time it takes
for the spins to “communicate” with each other, this distance
dependence turns out as negligible compared to the odd-even
effect that is seen in calculations with larger interimpurity
distances d . In fact, we find quick relaxation for distances
d = 1, 3, 5, . . . and trapping in a stationary state for d =
2, 4, . . . , very similar to the results shown in Figs. 7 and 8
and analogous to the results for the stub impurity model.

The observed odd-even effect is actually related to the
different ground-state spin configurations, i.e., an antiferro-
magnetic and a ferromagnetic impurity-spin configuration for
n.n. and for n.n.n. impurities, respectively, and to the small
coupling constant K 
 J . This becomes obvious when look-
ing at the time derivative of the scalar product S1S2. From
Eq. (22) we get

d

dt
(S1S2) = K (S1 × S2)(si1 − si2 ) . (25)

In the following we argue that, for n.n.n. impurities, the term
on the right-hand side is small as compared to the inverse
of the considered propagation time, in contrast to the n.n.
case, and that this explains the observed odd-even effect.
We consider three lines of argument with increasing level of
sophistication.

In the first and crudest approach, we approximate si2 − si1
in an ad hoc way by its ground-state value. For n.n.n. im-
purities, the Néel ground-state value is s(0)

i2
− s(0)

i1
= 0, and

thus S1S2 is a constant of motion that cannot relax to its
ground-state value S(0)

1 S(0)
2 = 1/4 (see Fig. 8). On the other

hand, for the n.n. case, the right-hand side is generically finite
for the Néel ground state and of the order of K . In fact, there is
a nontrivial dynamics of S1S2, and S1S2 approaches S(0)

1 S(0)
2 =

−1/4 on a timescale �t ≈ 8 × 102 ∼ K−1 (see Fig. 7).
In our second approach we derive an upper bound for

|si1 − si2 | for the case of n.n.n. impurities. For the initial state
considered here, where the host spins form a Néel state, the
excitation energy �E is solely stored in the interaction term
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∝ K , see Eq. (21). It is given by

�E = K
(
S1s(0)

i1
+ S2s(0)

i2

) − K
(
S(0)

1 s(0)
i1

+ S(0)
2 s(0)

i2

)
. (26)

Hence, for an arbitrary initial impurity-spin configuration, the
maximum excitation energy is given by �Emax = K and is
realized for a ferromagnetic alignment of Sm and s(0)

im
.

Assuming that this excitation energy �E is distributed
among the bonds between the closest host spins si1 , sc, and
si2 only (c ≡ i1 + 1 = i2 − 1), we get

�E = J (si1 sc + scsi2 ) − J
(
s(0)

i1
s(0)

c + s(0)
c s(0)

i2

)
= J (si1 + si2 )sc + J/2 . (27)

The right-hand side is at a minimum if the central host spin is
sc = − 1

2
si1 +si2
|si1 +si2 | . With this we find

�E � J

2
− J

2
|si1 + si2 | . (28)

Using s2
1 = s2

2 = 1/4 and the parallelogram law, (s1 + s2)2 +
(s1 − s2)2 = 1, we get

|si1 − si2 |2 � 4
�E

J
− 4

�E2

J2
. (29)

With the above argument, �E � �Emax = K , we find

|si1 − si2 | � 2

√
K

J
. (30)

This upper bound is a very conservative estimate as in the
course of time the excitation energy will be further dissipated
to the bulk of the system, and thus |si1 − si2 | will be even
smaller. We conclude that for K 
 J , the small available
excitation energy of order K very much restricts the host spin
dynamics. Via Eqs. (25) and (30), this implies that S1S2 is
almost conserved if S1 and S2 couple to n.n.n. host spins.

Our third approach is based on a linearization of the
equations of motion. We start from Eqs. (22) and (23) and
substitute Sm = S(0)

m + δSm and si = s(0)
i + δsi, where S(0)

m and
s(0)

i are ground-state spin orientations, while δSm and δsi de-
note the deviations from the ground state.

Linearization of Eqs. (22) and (23) yields

Ṡm = J

[
K

J
s(0)

im
× Sm + K

J
sim × S(0)

m + O
(

K2

J2

)]
, (31)

and

ṡi = J

[(
s(0)

i−1 + s(0)
i+1

) × si + (si−1 + si+1) × s(0)
i +

2∑
m=1

δiim

(
K

J
S(0)

m × si + K

J
Sm × s(0)

i

)
+ O

(
K2

J2

)]
, (32)

where we used

|δSm| = O
(

�E

K

)
= O(1) , |δsi| = O

(
�E

J

)
= O

(
K

J

)
(33)

to estimate the magnitude of the neglected terms. We see that linearization of the equations of motion is possible although
|δSm| = O(1) is not necessarily small. The reasoning is the same that led to Eq. (30), i.e., the maximum values for |δSm| and
|δsi| are limited by the available initial excitation energy �E � K . Impurity spins contribute on the order of K to the total energy,
while host spins contribute on the order of J . The estimates (33) are well supported by our numerical results underlying Fig. 8.

We proceed by computing the time derivative of S1S2 within the linearized theory. With Eqs. (31) and (32) we find

d

dt
(S1S2) = J

[
K

J
(S1 × S2)

(
s(0)

i1
− s(0)

i2

) + K

J

(
S2 × si1

)
S(0)

1 + K

J

(
S1 × si2

)
S(0)

2

]
+ JO

(
K2

J2

)
. (34)

For n.n.n. impurity spins, the first term on the right-hand side vanishes since s(0)
i1

= s(0)
i2

. Furthermore, we can write S(0) = S(0)
1 =

S(0)
2 . Therewith we find

d

dt
(S1S2) = JS(0)

(
K

J
S2 × si1 + K

J
S1 × si2

)
+ JO

(
K2

J2

)
. (35)

With Si = S(0) + δSi and sm = s(0)
m + δsm, exploiting that ground-state spin configurations are collinear, and finally, using

Eqs. (33), one has

d

dt
(S1S2) = JS(0)

[
K

J
δS2 × δsi1 + K

J
δS1 × δsi2 + O

(
K2

J2

)]
= JO

(
K2

J2

)
. (36)

This means that, within the linearized theory, (d/dt )(S1S2) must be considered as zero and that S1S2 is a constant of motion
with a correction of the same order of magnitude as the linearization error only.
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In the case of n.n. impurity spins, restarting from Eq. (34)
with a completely analogous calculation but with an antifer-
romagnetic ground-state alignment s(0)

i1
= −s(0)

i2
, one finds

d

dt
(S1S2) = JS(0)

[
2

K

J
δS1 × δS2

]
+ JO

(
K2

J2

)
, (37)

i.e., there is a nontrivial dynamics on an energy scale that is
by an order of magnitude larger than the linearization error,
such that, even within the linearized theory, S1S2 cannot be
considered as a constant of motion.

We have also studied the dynamics beyond the weak-
coupling regime. For K and J of the same order of magnitude,
one finds a relaxation of S1S2 already after a very short prop-
agation time of t � 100 for both the case of n.n. and of n.n.n.
impurity spins.

For the weak-coupling regime K 
 J , we conclude that
after an initial local excitation of n.n.n. impurity spins, these
show an anomalous relaxation dynamics. There is almost no
relaxation of S1S2, i.e., the enclosed angle is almost a constant
of motion, on a timescale of about t ∼ 104. This must be con-
trasted with the case of n.n. impurity spins, where complete
relaxation is reached after a propagation time of t � 800. In
contrast to the stub-impurities model discussed above, there is
no local symmetry of the (classical) Hamiltonian that would
lead to a conserved local observable. (Quasi-)conservation of
S1S2 is rather emerging in the course of time. After a certain
prerelaxation process (t � 103) with a sufficient dissipation
of energy and spin, the system state has evolved sufficiently
close to one of the ground states locally, i.e., in the vicinity
of the impurities, such that the further dynamics is very well
captured by linearized equations of motion. Indeed, within
the linearized theory, S1S2 is strictly conserved. Its validity
range, however, is not only controlled by the weak local
exchange K 
 J but also by the propagation time. Residual
perturbative deviations from the linear dynamics accumulate
over time, such that complete relaxation of the system, also for
the n.n.n. case, is expected on a long timescale. In fact, indica-
tions for full long-time relaxation are seen at t � 104 in Fig. 8.

IV. QUANTUM-CLASSICAL IMPURITY MODEL

In the case of the quantum-classical impurity model, we
again find a qualitatively very similar effect in the relaxation
dynamics. However, to explain the observed incomplete re-
laxation, it turns out again that a different methodological
approach is necessary.

We consider a spinful single-orbital tight-binding model
on a one-dimensional lattice of L sites with hopping between
nearest neighbors T , where in addition, two classical impurity
spins Sm (m = 1, 2) are locally exchange coupled to the local
electron spins si = 1

2

∑
σσ ′ c†

iσ τσσ ′ciσ ′ at sites i = im of the
lattice via an antiferromagnetic exchange interaction K . Here,
τ denotes the vector of Pauli matrices, and σ =↑,↓ is the
electron spin projection. A sketch of the system is shown in
Fig. 9. The geometry is the same as for the previous models.
As for the classical Heisenberg model, we assume that K is
weak and can be treated perturbatively. The quantum-classical
Hamiltonian is

H = −T
n.n.∑
i j

∑
σ

c†
iσ c jσ + K

∑
m

Smsim . (38)

FIG. 9. Sketch of the quantum-classical hybrid model. Two clas-
sical impurity spins (red) are locally exchange coupled to a system
of conduction electrons on a one-dimensional lattice (blue). K : anti-
ferromagnetic local exchange, T : nearest-neighbor hopping. Green:
absorbing boundary conditions (ABC).

We choose T = 1 to fix the energy (and time) scale and an
antiferromagnetic exchange K > 0. As for the stub-impurity
model, we consider half-filling, i.e., N = L electrons.

The equations of motion [52,53] couple the classical and
the quantum sector of the theory. For the classical impurity
spins, we obtain Landau-Lifshitz–type equations,

d

dt
Sm = K〈sim〉t × Sm(t ) , (39)

similar to Eq. (22). Here, 〈sim〉t is the expectation value in the
N-electron state |�(t )〉 at time t . For a given classical-spin
configuration at time t , the quantum system is uncorrelated,
and hence its real-time dynamics is completely described by
the one-particle reduced density matrix ρ(t ) with elements

ρiσ i′σ ′ (t ) = 〈�(t )|c†
i′σ ′ciσ |�(t )〉 . (40)

Its equation of motion is essentially the same as for the
stub-impurity model, see Eq. (10), but the hopping matrix T
is replaced by the time-dependent effective hopping matrix
T (eff)(t ), which includes the classical impurity spins as time-
dependent external parameters:

T (eff)
iσ i′σ ′ (t ) = δσσ ′Tii′ + K

2
δii′

∑
m=1,2

δiimτσσ ′Sm(t ) . (41)

We study the time evolution of the full system starting at
t = 0 from an initial state where the two impurity spins are
in an excited noncollinear configuration (as in the classical
Heisenberg impurities case, S1 = Sex and S2 = Sey with S =
1
2 ), while the electron system is in its ground state correspond-
ing to this spin configuration. The excitation energy stored in
the vicinity of the impurities is dissipated to the bulk of the
electron system on a timescale that, even for K of the order of
T , typically exceeds by far the timescale that is numerically
accessible when using open boundaries and when reflections
of propagating excitations from the boundaries of the system
shall be avoided. Since the propagation is essentially ballistic,
unphysical reflections from the boundaries that disturb the
dynamics near the impurities will occur at time t ∼ L/T , i.e.,
one would have to work with effective hopping matrices of
very high matrix dimension. For this reason and as indicated
in Fig. 9, we employ so-called absorbing boundary conditions
(ABC), which have been developed and extensively tested
previously, see Ref. [54]. Apart from the conserving von
Neumann term, the resulting equations of motion contain a
dissipative term and are given by

i
d

dt
ρ(t ) = [T eff(t ), ρ(t )] − i{γ, ρ(t ) − ρ0} . (42)

033275-8



PRERELAXATION IN QUANTUM, CLASSICAL, AND … PHYSICAL REVIEW RESEARCH 6, 033275 (2024)

FIG. 10. Time evolution of the x components of the two classical
impurity spins S1 and S2 (blue and orange) exchange coupled to the
conduction-electron system at neighboring sites i1 = 34 and i2 = 35
at the center of a chain with L = 68 sites. Green: cosine of the
angle enclosed by S1 and S2. Initial excited state at time t = 0:
host electron system in its ground state corresponding to the initial
(excited) impurity-spin configuration S1 = 1

2 ex and S2 = 1
2 ey. Fur-

ther parameters: T = 1, K = 1. Absorbing boundary conditions with
nonzero diagonal elements γ2 = γL−1 = 0.115 and γ1 = γL = 0.230
(see text).

Here, ρ0 is the initial ground-state one-particle reduced den-
sity matrix, {·, ·} denotes the anticommutator, and γ is a
diagonal matrix controlling the dissipation rate. It has nonzero
entries only for the outermost two “absorbing” sites on both
sides of the chain. For the concrete computations, we have
fixed the values for γ1 = γL and γ2 = γL−1, as in Ref. [54],
by comparing the resulting spin dynamics using ABC with
the exact spin dynamics, i.e., without the dissipative term in
Eq. (42). This has been done for a shorter propagation time
of t = 5 × 102 and a larger system size such that reflections
from the boundaries are avoided. We find perfect agreement
with γ1 = 0.230 and γ2 = 0.115. However, the results are
quite insensitive to the precise choice. As compared to the
system studied in Ref. [54], the optimal parameters are smaller
because the spin dynamics is much slower.

The impurity-spin dynamics for nearest-neighbor spins as
obtained by solving the coupled equations of motion (39)
and (42) is displayed in Fig. 10. At short times t � 103

there is a pronounced precession dynamics with a small fre-
quency ω ∼ 0.01. This is explained by the indirect RKKY
exchange [55–57] mediated by the electron system, which is
rather weak, even for an exchange interaction of K = T = 1.
On a longer timescale t ∼ 104, the system shows complete
relaxation and the two spins reach their antiferromagnetic
ground-state configuration (see green line in the figure).

For impurity spins coupled to n.n.n. sites, see Fig. 11, the
same precessional motion is found, but with an even smaller
precession frequency. This reflects the smaller RKKY ex-
change due to the increased distance between the spins. How-
ever, the real-time dynamics is qualitatively different, as there
is hardly any relaxation to the ferromagnetic ground-state spin
configuration visible on the numerically accessible timescale.
At time t = 104, the angle enclosed by S1 and S2 deviates
by less than 1% from its initial value only. We conclude that,
as for the other models studied, the system is trapped in an

FIG. 11. The same as in Fig. 10 but for next-nearest-neighbor
impurity spins at i1 = 34, i2 = 36 of a chain with L = 69 sites in
total.

intermediate stationary state and that complete relaxation, if
at all, takes place on a still much longer timescale.

For smaller K (not shown here), the time evolution is
essentially the same in qualitative terms. The only notable dif-
ference is that the dynamics is even slower, i.e., characterized
by smaller precession frequencies and longer relaxation times.

None of the explanations for incomplete relaxation used
for the previously discussed systems is easily applicable to
the quantum-classical model. The linearization of the coupled
equations of motion is not helpful to identify possible local
conserved observables and in fact is not informative due to the
large number of ∼4L2 of degrees of freedom in the quantum
sector, i.e., the density-matrix elements.

With linear-response theory [37,53,58–60], we choose a
different approach. Conceptually, this is limited to the weak
exchange-coupling regime and directly addresses the dynam-
ics of the classical impurity spins. For weak K , the expectation
value of the local spin at site im can be obtained via the Kubo
formula as

〈sim〉t = K
∑

m′=1,2

∫ t

0
dt ′ χmm′ (t ′)Sm′ (t − t ′) . (43)

Here, the response function, the K = 0 retarded magnetic
susceptibility of the electron system, is isotropic χmα,m′α′ (t ) =
δαα′χmm′ (t ) and independent of the spatial direction α =
x, y, z. It is given by

χmα,m′α′ (t ) = −i�(t )e−ηt 〈[simα (t ), sim′ α′ (0)]〉 , (44)

where 〈· · · 〉 is the K = 0 ground-state expectation value and
where η is a positive infinitesimal. A straightforward compu-
tation yields

χmm′ (t ) = �(t )e−ηt Im
[(

e−iT t�(T − μ)
)

imim′

×(
eiT t�(μ − T )

)
im′ im

]
. (45)

Note that the chemical potential μ = 0 at half-filling. For the
evaluation of Eq. (45), we consider large systems with up
to L = 105 sites and choose periodic boundary conditions.
Hence, the hopping matrix is diagonalized as T = UεU†,
where the unitary matrix U with elements Uik = eikRi/

√
L
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describes Fourier transformation from lattice sites i to wave
“vectors” k in the first Brillouin zone. The entries of the
diagonal matrix are given by the tight-binding dispersion εk =
−2T cos(k). We define Aimim′ (k, k′) = U †

kim
Uimk′U †

k′im′Uim′ k =
L−2ei(k′−k)(im−im′ ). Furthermore, we write �εkk′ = εk − εk′ =
−2T [cos(k) − cos(k′)] for short. This yields

χmm′ (t ) = − i

2
�(t )e−ηt

occ.∑
k

unocc.∑
k′

Aimim′ (k, k′)

×(
ei�εkk′ t − e−i�εkk′ t) , (46)

or, after Fourier transformation from time to frequency space,
the frequency-dependent susceptibility

χmm′ (ω) = 1

2

occ.∑
k

unocc.∑
k′

Aimim′ (k, k′)

×
(

1

ω − εk + εk′ + iη
− 1

ω + εk − εk′ + iη

)
.

(47)

Note that we have the symmetry χmm′ (ω) = χm′m(ω) for the
nonlocal elements m �= m′, while the local elements are m in-
dependent, χmm(ω) = χm′m′ (ω), due to translation invariance.
The representation (47) is well suited to compute the Gilbert
damping:

αmm′ = −iK2 ∂

∂ω
χmm′ (ω)|ω=0 (48)

and the RKKY indirect magnetic exchange

Jmm′ = K2χmm′ (ω = 0) , (49)

which determine the effective equations of motion for the
classical-spin dynamics (see Ref. [53]):

Ṡm =
∑

m′
Jmm′Sm′ × Sm +

∑
m′

αmm′Sm × Ṡm′ . (50)

In practice, the results of various calculations for dif-
ferent system sizes L as well as for different η must be
extrapolated to obtain physical results in the thermodynamic
limit L → ∞ and in the limit η → 0. Here, it is important
to take the thermodynamic limit first. This is demonstrated
with Fig. 12, where the local, αmm, and the nonlocal (n.n.n.)
Gilbert damping, αmm′ (m �= m′), are shown as a function
of η for different L. We start the discussion with the local
damping (solid lines). First, we see that for any fixed η �
10−4, the values for the local Gilbert damping nicely con-
verge with increasing L. System sizes of about L = 100 000
are sufficient for numerical convergence unless even smaller
values of η are considered. Second, the converged values
limL→∞ αmm become independent of η with decreasing η,
once η is sufficiently small. We find a rather precise value
limη→0 limL→∞ αmm ≈ −0.0398 K2. Here, we note that tak-
ing the limits in the opposite order yields the unphysical result
limL→∞ limη→0 αmm = 0. This is easily understood. For any
finite L, the spectrum of one-particle energies is gapped. Close
to ω = 0, the finite-size gap is δ ≈ 2π/L. This implies that for
η � δ ≈ 2π/L, the Gilbert damping must start to deviate from
its physical value and approach αmm = 0, as there is no damp-
ing in a finite system. For the practical calculations, it has

FIG. 12. Local (m = m′, solid lines) and nonlocal next-nearest-
neighbor Gilbert damping (m �= m′, dashed lines) α/K2 as a function
of η for different system sizes L as indicated. Results for large
systems with periodic boundary conditions, T = 1.

turned out that when fixing the “infinitesimal” at η ≈ 2π/L, it
is sufficient to control the convergence with respect to L only.

Our considerations for computing the Gilbert damping
likewise apply to the case of n.n.n. spins. There is, however, an
important physical result that can be read off from Fig. 12. In
the case of n.n.n. spins, the converged value for the nonlocal
Gilbert damping (see dashed lines) is exactly the same as
the local damping, i.e., limη→0 limL→∞ αmm′ ≈ −0.0398 K2

for both m = m′ and m �= m′ within numerical accuracy. We
note that a similar result for the nonlocal Gilbert damping has
been found for metallic ferromagnets with quadratic energy-
momentum dispersion [61].

The equality between the local and the nonlocal damping
has in fact important consequences for the spin dynamics,
as can be easily seen when rewriting Eq. (50) explicitly for
two classical spins but with a single Gilbert damping constant
α ≡ α11 = α12 = α12 = α21:

Ṡ1 = JS2 × S1 + αS1 × Ṡ1 + αS1 × Ṡ2 ,

Ṡ2 = JS1 × S2 + αS2 × Ṡ2 + αS2 × Ṡ1 . (51)

Note that only the nonlocal RKKY exchange coupling J ≡
Jmm′ = Jm′m (m �= m′) enters the equations. We immediately
see that the total impurity spin Stot = S1 + S2 and thus S1S2

are constants of motion, as in the case of the classical Heisen-
berg impurity model, see Sec. III. This implies that there is no
relaxation to the ground-state spin configuration at all.

So far we have discussed the case of n.n.n. impurity
spins, where as a consequence of αmm = αmm′ (m �= m′),
there is no relaxation to the ground-state spin configuration.
While for n.n. impurity spins the local Gilbert damping
αmm ≈ −0.398K2 stays the same, we find, on the other hand,
αmm′ ≈ 0.0021K2 (m �= m′) for the nonlocal Gilbert damping.
The signs are such that a solution of Eq. (50) must approach
the ground state, i.e., in the n.n. case an antiferromagnetic
spin configuration. This is consistent with the computed
positive RKKY exchange coupling J12 ≈ 0.0342K2

(HRKKY = J12S1S2) for the n.n. case. On the contrary,
J12 ≈ −0.0189K2 for the n.n.n. case with ferromagnetic
ground-state spin configuration.
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Returning to the n.n.n. case, the equality of the local and
the nonlocal damping can be understood analytically. Using
Eqs. (47) and (48) one finds

αmm′ = i

2
K2

occ.∑
k

unocc.∑
k′

Aimim′ (k, k′)

×
(

1

(−εk + εk′ + iη)2
− 1

(εk − εk′ + iη)2

)
. (52)

Nonzero contributions to the double sum are obtained from
wave vectors close to the Fermi points, i.e., for k, k′ =
±π/2 + O(1/L) only (note that ε(k = ±π/2) = 0 = μ). On
the contrary, for k, k′ = ±π/2 + O(1), the imaginary in-
finitesimal can be disregarded, since we may take η =
O(1/L), as argued above, and thus O(1/L) = η 
 |εk −
εk′ | = O(1), and the two fractions in Eq. (52) cancel exactly
in the thermodynamical limit.

It is thus sufficient to analyze the contributions from k =
±π/2 + δk and k′ = ±π/2 + δk′ with δk, δk′ = O(1/L) for
L → ∞ and show that these give the same result for im′ =
im and for im′ = im + 2. The im, im′ dependence of the Gilbert
damping is due to the weight factor Aimim′ only. We therefore
focus on Aimim′ . Its imaginary part does not contribute to the
double sum in Eq. (52). For the discussion of the real part, we
first consider k = π/2 + δk and k′ = π/2 + δk′:

Re Aimim′ (k, k′) = 1

L2
cos[(−δk + δk′)(im − im′ )]. (53)

Now, if im′ = im, we have Re Aimim′ (k, k′) = L−2, and if im′ =
im + 2, we get

Re Aimim′ (k, k′) = 1

L2

[
1 + O

(
1

L2

)]
, (54)

and, hence, Aimim′ (k, k′) = Aimim (k, k′) + O(L−2). Anal-
ogously, this also holds for k = π/2 + δk and k′ =
−π/2 + δk′ and for k = −π/2 + δk and k′ = π/2 + δk′
and k = −π/2 + δk and k′ = −π/2 + δk′. This concludes
our argument.

The argument extends to arbitrary im, im′ if im′ − im is even,
but fails at macroscopic distances im′ − im = O(L). It is also
invalid for n.n. impurities and, more generally, for odd dis-
tances between the impurities, because for k = π/2 + δk and
k′ = −π/2 + δk′, e.g., we have Aimim′ (k, k′) = 1 for im = im′

and Aimim′ (k, k′) = −1 + O(L−2) for n.n. im, im′ , and for odd
distances.

Since our explanation of the incomplete relaxation is based
on perturbative-in-K linear-response theory, it is necessary to
compare corresponding results with those of the full theory
(using absorbing boundary conditions), Eqs. (39) and (42).
We choose K = T for this comparison. This provides us with
a comparatively fast spin dynamics. Results are displayed in
Figs. 13 and 14 for the cases of n.n. and n.n.n. impurity spins.

We find a slight phase offset in the precessional motion for
the n.n.n. case (Fig. 14). On the logarithmic timescale, this
offset is constant. Furthermore, at late times t ∼ 104, a tiny
deviation of the angle enclosed by the two spins from its initial
t = 0 value is visible in the results from the full theory, hinting
towards complete relaxation on a much longer timescale. This
is missing in the linear-response approach.

FIG. 13. Comparison between the full spin dynamics (solid
lines), as obtained from the exact equations of motion (39) and
(42) and absorbing boundary conditions, and linear-response spin
dynamics (dashed lines), as obtained from Eq. (50) with numerically
determined parameters α11 = α22 = −0.0398, α12 = α21 = 0.0021,
and J12 = J21 = 0.0342, see Eqs. (48) and (49), respectively. Time
evolution of the x component of S1 (blue) and cosine of the angle
enclosed by S1 and S2 (green) for the case of n.n. impurity spins. All
other parameters as in Fig. 10. In particular, K = T = 1.

For the n.n. case, where the spin dynamics is much more
complicated, the perturbative method also does an almost per-
fect job, see Fig. 13. While we observe the same but slightly
larger phase shift and a slightly longer relaxation time, all the
qualitative features of the spin dynamics are fully captured.

We conclude that linear-response approach itself, i.e., per-
turbation theory in K , is quite reliable even for comparatively
strong K ∼ T , and errors accumulating up to a timescale t ∼
104/T do not affect the qualitative trend of the spin dynamics.
This also holds for the typical additional approximations that
are necessary to arrive at Eqs. (48) and (49), i.e., weak retar-
dation effects and time independence of the Gilbert damping,
see Refs. [53,59]. All in all, the numerical results demonstrate
that the proposed mechanism based on the analysis of the
nonlocal Gilbert-damping term in fact captures the essence of
the incomplete relaxation.

FIG. 14. Comparison between the full spin dynamics and linear-
response spin dynamics (calculated damping and exchange parame-
ters: α11 = α22 = α12 = α21 = −0.0398, and J12 = J21 = −0.0189)
as in Fig. 13 but for next-nearest-neighbor impurity spins. All other
parameters as in Fig. 11. In particular, K = T = 1.
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V. CONCLUSIONS

Using numerical simulations, we have studied the exact
real-time dynamics of three different prototypical one-
dimensional model systems with two impurities coupled
locally to nearest-neighbor or to next-nearest-neighbor sites of
the host. In all cases we considered an initial state with a local
excitation at or near the impurities. The unifying theme of all
three models studied is the conservation (or the approximate
conservation) of observables that are localized in the vicinity
of the impurities. Furthermore, in all cases the presence of
these (quasi) conserved observables depends on the system
geometry, and in all cases this is crucial for the relaxation
dynamics.

The independent-electron tight-binding quantum model
with two stub impurities is conceptually the simplest. Due to
the lack of interactions, it is integrable; its real-time dynamics
is strongly constrained by a macroscopically large number
of conserved observables. This implies that local one-particle
observables do not relax to their ground-state values but to a
nonthermal GGE-like state respecting the constraints. How-
ever, it depends crucially on the geometry, i.e., on the relative
position of the impurities, whether or not a complete relax-
ation to a time-independent state for t → ∞, for an infinitely
extended system, actually occurs. In the case of impurities
coupled to n.n.n. sites, we find persistent oscillations up to
the numerically accessible timescale, i.e., before unwanted
reflections from the boundaries set in.

The classical Heisenberg model with two locally exchange
coupled classical impurity spins shows very similar behav-
ior. For n.n. impurity positions, there is a fast and complete
relaxation to the ground-state impurity-spin configuration. In
contrast, in the n.n.n. case, an (almost) undamped oscillatory
spin dynamics is found, when the local exchange coupling K
is weak compared to the host exchange J . Complete relaxation
to the ground-state configuration is not observed on the nu-
merically accessible timescale. However, the numerical data
indicate that complete relaxation is possible on a much longer
timescale, so that the system actually exhibits prerelaxation.
This is an essential difference from the noninteracting quan-
tum system.

Qualitatively the same results are found for the quantum-
classical hybrid model with two classical impurity spins
locally exchange coupled to an independent-electron system
on the one-dimensional lattice, i.e., fast complete relaxation
to the ground-state spin configuration in the n.n. case, while
in the n.n.n. case and after a fast prerelaxation, a metastable in-
termediate state is formed in which the impurity spins undergo
an (almost) undamped oscillation. This intermediate state is
stable up to t � 104 in units of the inverse hopping. Again, we
assume that the impurity-host coupling, the local exchange K ,
is sufficiently weak.

An explanation for the observed very different behavior for
n.n. vs n.n.n. geometries, common to all three models, does
not seem obvious. In fact, quite different theoretical concepts
have been put forward as explanations.

The incomplete relaxation of the quantum system with
n.n.n. impurities is due to the presence of a superlocalized
energy eigenstate bound to the impurities and thus due to
a local observable commuting with the Hamiltonian. The

superlocalized state is reminiscent of the states forming flat
bands in tight-binding models on lattices with characteristic
geometries.

The metastability of the classical-spin model, on the other
hand, could be traced back to an approximately conserved
local observable, reminiscent of explanations for the prether-
malization of interacting lattice models parametrically close
to an integrable point. In fact, we had to assume that K 
 J ,
which places the model parametrically close to the trivial
K = 0 point. Here, the weak-coupling limit has allowed us
to linearize the equations of motion and thus to understand
the approximate conservation law. This is remarkable be-
cause the fluctuations δSm of the impurity spins around their
ground-state configuration S(0)

m are not at all small, since the
metastable state is far from the ground state. Rather, the argu-
ment can be based on the fact that the excitation energy is of
the order of K 
 J , and that each impurity spin contributes of
the order of K to the total energy, as opposed to the host spins
which contribute of the order of J . We note that this reasoning
seems possible only for impurity models.

The analysis of the real-time dynamics of the quantum-
classical hybrid model is much more complicated, since a
simple linearization of the equations of motions is not very
feasible and not justified. However, the limit of weak local
exchange coupling K 
 T could be exploited in another way,
namely, by time-dependent perturbation or linear-response
theory. This turns out to be reliable even up to interme-
diate couplings K ∼ T and propagation times t � 104 in
units of the inverse hopping parameter. Within the linear-
response framework, the stability of persistent oscillations in
the spin dynamics in the case of n.n.n. impurities is nicely ex-
plained by a perfect cancellation of local with nonlocal Gilbert
damping constants. However, the exact dynamics obtained
numerically clearly indicates that, beyond the perturbatively
accessible timescale, the nonequilibrium steady state is actu-
ally metastable and that there is further relaxation on a much
longer timescale.

While it seems to make no qualitative difference for the
relaxation dynamics if quantum degrees of freedom are re-
placed by classical ones or vice versa, the geometry is a
crucial factor. Common to all three models studied is the
bipartite system geometry, i.e., the one-dimensionality of the
host lattice with nearest-neighbor couplings between host
sites, and the local host-impurity coupling. Admittedly, we ex-
pect that next-nearest-neighbor host or nonlocal host-impurity
couplings (hopping or spin-exchange couplings) break the
(meta)stability of the nonequilibrium state in the case of n.n.n.
impurities and lead to (faster) complete relaxation. However,
parametric proximity to the bipartite geometry, e.g., weak
nonlocal host-impurity couplings, should still lead to a sig-
nificantly different relaxation dynamics between impurities at
n.n. and n.n.n. positions. Thus, we believe that our results
provide valuable insights for our understanding of metastable
states and the control of nonequilibrium dynamics. The study
of the relaxation dynamics of impurities coupled to a host
system on a two- or three-dimensional lattice is one of the
promising avenues of further research.

Furthermore, it would be very interesting to study the
relaxation dynamics for systems including quantum rather
than classical spins or, more generally, for correlated quantum
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impurity models and to check the robustness of the results
against quantum fluctuations. It is quite conceivable that also
in such systems the geometry plays a crucial role for the
existence of (approximately) conserved local quantities. Of
course, it will be technically more challenging to reach the
relevant timescales. For one-dimensional systems, however,
matrix-product-state approaches [62] seem to be suitable to
study relaxation dynamics, e.g., see Ref. [63].
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APPENDIX: COMPLETE RELAXATION IN THE CASE OF
NEAREST-NEIGHBOR STUB IMPURITIES

We consider the model Eq. (1) with n.n. stub impurities
for V = 1 (corresponding to Figs. 3 and 5), where there are
two bound states at energies outside the band continuum.
Let us refer to these bound eigenstates of the postquench
Hamiltonian as μ = b1 and μ = b2, respectively. When cal-
culating the fluctuations via Eq. (17), the only contributions to
the double sum that are nonvanishing in the thermodynamical

limit L → ∞ are due to these bound eigenstates. Hence,
there are essentially only two terms to be taken into account:
μ = b1, ν = b2 and μ = b2, ν = b1. Consider a correspond-
ing element of the initial one-particle reduced density matrix
at time t = 0 in the basis of the eigenstates of the postquench
Hamiltonian:

ρb1b2 (t = 0) =
∑

IJ

U †
b1IρIJ (t = 0)UJb2 . (A1)

To exploit the mirror symmetry of the system under reflection
at the chain center, we define Ĩ = L − I , if I is a host site,
while Ĩ shall refer to the other impurity site, if I is an impurity
site. With this notation we can symmetrize the summation as
follows:

ρb1b2 (0) = 1

2

∑
IJ

[
U †

b1IρIJ (0)UJb2 + U †
b1 Ĩ

ρĨ J̃ (0)UJ̃b2

]
. (A2)

The node theorem in quantum mechanics requires that the
lowest-energy state, say Ub1 , be symmetric under reflec-
tion, i.e., Ub1I = Ub1 Ĩ , while the highest-energy state Ub2

is antisymmetric, UJ̃b2
= −UJb2 . This immediately implies

ρb1b2 (0) = 0. We conclude that there are no fluctuations sur-
viving the thermodynamical limit L → ∞ in the case of n.n.
impurities. Note that this argument is invalid for the n.n.n.
case. The reason is that the inversion symmetry is different
due to a different inversion center, i.e., there is an invariant
site ia + 1 = ib − 1, as opposed to the n.n. case.
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