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The study of percolation phenomena has various applications ranging from social networks or materials
science to quantum information. The most common percolation models are bond or site percolation for which the
Newman-Ziff algorithm enables an efficient simulation. Here, we consider several nonstandard percolation mod-
els that appear in the context of measurement-based photonic quantum computing with so-called graph states and
fusion networks. The associated percolation thresholds determine the tolerance to photon loss in such systems
and we develop modifications of the Newman-Ziff algorithm to efficiently perform the corresponding percolation
simulations. We demonstrate our algorithms by using them to characterize exemplary fusion networks and
graph states.
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I. INTRODUCTION

In the field of quantum information, graph states are quan-
tum states that can be represented by a graph: vertices are
qubits, the fundamental storage unit of quantum information,
and graph edges represent quantum mechanical entanglement
between the qubits [1]. Such graph states are the key ingre-
dient for measurement-based quantum computing [2,3]. A
suitable large graph state (a so-called cluster state) provides
a universal resource for this quantum computing paradigm
[2,3], allowing quantum computation to be performed by do-
ing measurements on the qubits. This approach is particularly
suitable for photonic implementations of quantum informa-
tion processing, where qubits are encoded in the optical
degrees of freedom of single photons and processed through
linear optical interferometers [4–7]. It is, however, challeng-
ing to realize a sufficiently large graph state of photons
because, first, it is nontrivial to create edges/entanglement
between photons in the graph state, and, second, photons
can be lost with a non-negligible probability ploss. Both of
these limitations lead to imperfect graphs with some level
of randomness, but tools from graph theory such as path-
finding methods [8,9] and percolation models [5,10,11] can
be employed to convert the imperfect graph state into a useful
resource for quantum computing.

To create graph edges, probabilistic entangling opera-
tions [4,12] are typically considered for photonic qubits as
deterministic photon-photon gates are difficult to realize [13].
These can be implemented by joint two-qubit measurements
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called fusions or Bell state measurements, which consume
the two measured photons (graph nodes). The desired mea-
surement outcomes lead to successful fusions which, loosely
speaking, make a connection between two graphs. Other
measurement results herald fusion failure which does not
generate the connection. Using fusions, many small graph
states (named resource states) can be connected to create
larger entangled states [5,11,14]. If a large entangled graph
state is generated by such a process, it can be converted
into a resource for measurement-based quantum computing
through a process called lattice renormalization [9]. Whether
applying many fusion operations leads to such a large graph
state depends on the probability of fusion success, ps, and the
connectivity of all fusions. In the absence of loss, the required
value for ps can correspond to a bond percolation threshold
λbond of the fusion network determined by the geometric ar-
rangement of the fusions [5,10,11]. If ps < λbond, the resulting
graph state consists of small pieces that are not useful for
quantum computing. For ps > λbond, a large connected graph
state is created that percolates the fusion network, spanning
from one of its ends to the other. In the latter case, the
size of the state scales linearly with the system size, pro-
viding the desired resource for measurement-based quantum
computing.

The second issue, photon loss, is problematic for practical
realizations since system efficiencies η = 1 − ploss are so far
significantly below unity. This problem is due to absorption or
leakage inside the employed photonic circuits and especially
due to the employed photon sources [15–18]. A loss leads
to a mixed quantum state [19] and a pure state can only be
retained by removing the neighborhood of the lost qubit (the
qubits that are entangled with the lost qubit) from the graph
by measurements [5,14] [see Fig. 1(a)].

In this paper, we consider probabilistic fusion networks in
the presence of loss. In these fusion networks, small resource
states are fused to make a large entangled state. We show
that the required values for the efficiency η correspond to
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FIG. 1. The different percolation models. (a) Percolation model 1: loss on an existing graph state. Photon loss is compensated by measuring
the neighborhood of a lost qubit in the Z basis, causing the deletion of its entire neighborhood. (b) Fusion of photons from two different graph
states. The fusion can be realized by sending the two fusion photons (encircled by ellipses) to a suitable Bell state measurement setup [4,5,14].
The two photons undergoing the Bell state measurement are removed from the graph, yet the measurement may lead to new connections being
added to the graph depending on the measurement outcome. If the fusion succeeds (s), the neighbor of one fusion photon gets connected to the
neighbor of the other one. If the fusion fails (f), there is no connection. If one or more fusion photons are lost, the neighborhoods of both qubits
involved in the fusion need to be measured in the Z basis, removing these nodes from the graph (gray). (c) Graph state generation from small
resource states. Many star-shaped resource states are arranged on a square lattice and fused (for simplicity illustrated without photon loss).
After the fusions, a new graph state is generated. To be of use for measurement-based quantum computing, the fusion success probability ps

must be above the bond-percolation threshold of the fusion lattice. (d) Loss of a fusion photon/leaf qubit and loss of a central qubit. Loss of
a fusion photon results in the deletion of the central qubit of two star-shaped resource states (left). If a central qubit of a star-shaped resource
state is lost, all central qubits that are connected to it by a successful fusion need to be deleted (right). For this illustration, we have assumed
that most fusions succeed. (e) Percolation model 2: photon losses and fusion failure happen at the same time. In this percolation model, there
are losses of leaf and central qubits, as illustrated. (f) Percolation model 2′: only leaf qubits can be lost. (g) Example of a repeat-until-success
scheme where failed fusions are repeated up to nmax = 2 fusions in total, by generating two new fusion photons. (h) Percolation model 3:
Repeat-until-success scheme with photon loss.

percolation thresholds λη of various new percolation models.
To generate a graph state that is useful for measurement-based
quantum computing, the efficiency must be above λη, which
thus determines the loss tolerance of the fusion network. The
percolation model corresponding to the process of photon loss
differs from standard percolation models (such as bond or site
percolation [20], or a combination of both [21]) as photon loss
is more destructive than a missing site in a site-percolation
model. Therefore, new algorithms are required to efficiently
simulate the corresponding percolation models. We extend the
algorithm developed by Newman and Ziff [22,23] for bond
and site percolation such that it can be used to efficiently
perform these new percolation simulations.

We consider several percolation models: first, a given graph
state suffers photon loss (percolation model 1). Second, many
star-shaped resource states are arranged on a periodic fusion
network. Fusions are applied between fusion photons on the
leaf nodes of neighboring resource states to connect them to
a larger graph. We consider both purely photonic resource
states (percolation model 2) as well as resource states where
the central qubit is the spin of a quantum emitter, e.g., atom
[24] or an equivalent solid-state system [25–30] (percolation
model 2′). Finally, we consider repeat-until-success fusion
networks where quantum emitters can generate new fusion
photons conditioned on the failure of previous fusions (per-
colation model 3).
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We have implemented all algorithms in C and the code
is publicly available as an open-source repository [31]. We
recently used this source code to simulate various lattices of
several dimensions and found that their loss tolerances can
strongly differ [14]. Notably, photonic approaches are not re-
stricted to a particular spatial arrangement of the qubits. This
makes it possible to create lattices with various connection
patterns and this can be used to increase the robustness to
photon loss.

II. GRAPH STATES

Within quantum information science, graph states are rep-
resented by a graph G = (V, E ) corresponding to a quantum
state where the vertices of the graph, V , are the qubits and the
edges, E , are entangling operations between the qubits. The
graph state can be defined as

|G〉 =
∏

(i, j)∈E

Ci j |+〉⊗V , (1)

where Ci j = (|00〉 〈00| + |01〉 〈01| + |10〉 〈10| − |11〉 〈11|)i j

is a controlled-Z gate (controlled phase gate) between qubits
i and j, |+〉 = 1√

2
(|0〉 + |1〉) is an equal superposition of the

two basis states |0〉 and |1〉, and |+〉⊗V represents the product
state where all qubits V are in this state [1]. The order in
which the controlled-Z gates Ci j are applied is irrelevant as
all gates Ci j commute. Therefore, a controlled-Z gate can
be represented by an undirected graph edge ei j = (i, j), and
the graph state can be represented by the set of edges. Since
the controlled-Z operation is an entangling operation when
applied to two qubits in the |+〉 state, the edges represent the
entanglement structure of the state. Graph states are part of
both the larger classes of stabilizer states [32] and the class
of hypergraph states [33]. For more detailed information on
graph states, we refer the reader to Ref. [1].

Single-qubit measurements can be used to manipulate
graph states [1] and use them for universal quantum comput-
ing [2]. For this manuscript, it is only necessary to consider
the effect of Z-basis measurements that project the measured
qubit on the computational basis {|0〉 , |1〉} (the Z basis). To
understand the effect on the graph state, we pick a qubit A ∈ V
and write Eq. (1) as

∏
k∈N (A)

CAk |+〉A |θ〉 = 1√
2

(|0〉A |θ〉 + |1〉A ZN (A) |θ〉), (2)

where |θ〉 = ∏
(i, j)∈E ,i �=A�= j Ci j |+〉⊗V \A is the graph state cor-

responding to the induced subgraph where node A has
been removed from the graph G. N (A) = {k ∈ V | ∃ (A, k) ∈
E} represents all qubits in the neighborhood of A, with ZN (A)

representing a Pauli-Z gate (Z = |0〉 〈0| − |1〉 〈1|) on all these
qubits. Assume one measures qubit A in the Z basis. Project-
ing on the first Z eigenstate, |0〉A, yields the state |θ〉 and thus
corresponds to removing qubit A and its edges from the graph.
Projecting on |1〉A leads to the state ZN (A) |θ〉 corresponding
to qubit A being removed and a Pauli-Z gate applied to all
its neighbors from before the measurement [1]. Since such
single-qubit gates do not change the entanglement properties,
the resulting state has the same computational power as one
without the gates applied and can typically be dealt with

by reinterpreting the outcomes of later measurements. For
this article, the outcomes of the Z-basis measurements are
thus inconsequential and will be ignored, although one will
have to keep track of the outcome in an actual experimental
implementation.

We consider photonic graph states where one of the main
imperfections is the loss of qubits. Loss of qubit A can be in-
terpreted as measuring the qubit without knowing the outcome
of the measurement, i.e., without knowing whether or not
the gates ZN (A) have been applied to the remaining state |θ〉.
The resulting quantum state is thus a mixed state. To retain a
pure quantum state, the qubits in N (A) need to be removed
from the graph by measuring them in the Z basis [5] [see
Fig. 1(a)].1

III. DEFINITION OF THE PERCOLATION MODELS

In this section, we will define the percolation models, for
which we will develop efficient algorithms.

A. Percolation model 1: Loss on graph states

In the first model, we only consider the effect of loss on
an already existing graph state (no fusions), where each qubit
is represented by two states of a single photon, e.g., two
different polarization states. Assume a given graph state |G〉
represented by a graph G = (V, E ). We only consider graphs
that can be embedded as some periodic lattice, but this is,
in principle, not necessary. Assume that |G〉 suffers photon
loss with a rate of ploss = 1 − η. As described before, the
neighborhood of every lost photon needs to be measured in
the Z basis, resulting in the neighbors being removed from the
graph state. This corresponds to a modified site-percolation
model where a missing site leads to a deletion of its entire
neighborhood [see Fig. 1(a)]. The corresponding percolation
threshold λη specifies the fraction of photons (graph nodes
from V ) that at least need to be present (not lost) such that
in the limit of infinite lattice size, there is a connected graph
state left (some induced subgraph of G) which has a size that
scales linearly with the size of G. Such a large graph state is
required for measurement-based quantum computing and the
loss tolerance of the graph state |G〉 is therefore characterized
by λη, where η = 1 − ploss has to be above this number. Such
a percolation model gives a guideline for the loss tolerance
of a given graph state, yet there are weaknesses regarding its
practical applicability: first, photon loss is typically unknown
(unheralded) before doing a destructive measurement [5,8],
yet the required lattice renormalization (see Sec. III D) relies
on knowing the losses before measuring the qubits in a certain
basis. Without quantum nondemolition detection of whether

1This removes the same number |N (A)| + 1 of qubits and so-called
stabilizer generators [32] from the state. Instead, one could extract
a maximum number of stabilizer generators without support on the
lost qubit by Gaussian elimination and continue with the resulting
mixed state. This would typically erase fewer stabilizer generators. If
the considered lattice has no fault-tolerant properties, it is, however,
unclear how to subsequently use the generated mixed state and we
will not pursue this possibility any further.
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or not a qubit is present [34], it is therefore unclear to which
degree the lossy graph state is eventually useful for quantum
computing. Second, it is unclear how the large initial photonic
graph state can be physically created.

B. Percolation models 2, 2′: Loss on fusion network

To alleviate the shortcomings of the model considered
in the previous section, we now switch to a model that
includes the graph state generation. Fusion networks repre-
sent an approach to generate large graph states from smaller
resource states that can more easily be generated experi-
mentally.2 We consider star-shaped resource states and we
assume that fusions [4] of photons at the leaf nodes of the
star-shaped resource states, the fusion photons, are used to
establish connections between the central qubits of different
star-shaped resource states.3 Such a fusion network is illus-
trated in Fig. 1(c). As all the measurements associated with
the fusions commute and the fusions performed are fixed
(no adaptiveness), all fusions can be performed at once (bal-
listically [5]). We only consider fusion networks where the
resource states and the fusions can be arranged on a graph G
with a periodic embedding, the fusion lattice. A node of G
represents a central qubit of a resource state and an edge ei j

represents a fusion of two leaf nodes connected to the central
qubits i and j. The exemplary fusion network in Fig. 1(c)
corresponds to a fusion lattice that is a square lattice, but other
arbitrary lattice geometries are possible.

Fusions can be implemented using linear optics elements
and photon detectors, with the measured photon pattern on
the detectors heralding the successful implementation of the
fusion [4,46]. Fusions are probabilistic, succeeding with a
probability of ps. We assume so-called rotated type-II fusion
that consumes two fusion photons and connects the two cen-
tral nodes of two star-shaped resource states upon success
[5,14,46]. The fusion fails with probability 1 − ps, in which
case the resource states are left mutually unconnected [see
Fig. 1(b)].4 In the absence of photon loss, a large graph state
is therefore generated once ps exceeds the bond-percolation
threshold of the fusion lattice [see Fig. 1(c)] [5,10,11]. In the
percolation models that we will consider in this section, ps

can, in principle, be an arbitrary probability, yet only cer-
tain values correspond to physical Bell measurement setups
and we assume ps = 0.5 corresponding to the most simple
setup.5

Further, we assume that every photon, independent of
whether or not it is used in a fusion, has a uniform probability

2Proposals for generating small resource graph states can be
found in Refs. [35–37] and recent experimental realizations in
Refs. [24,38–43].

3The considered star-shaped resource states are locally equiv-
alent [44,45] to Greenberger-Horne-Zeilinger (GHZ) states, with
|GHZ〉 = 1√

2
(|0〉⊗n + |1〉⊗n).

4A more detailed explanation of the required rotated type-II fusion
can be found in Fig. 4 of Ref. [5] or Fig. A5(d) of Ref. [14].

5The fusion success probability can be improved (boosted) above
ps = 0.5 by using additional photonic resources [47–49] yet ps =
0.5 is easiest to implement in practice.

ploss = 1 − η to be lost.6 When and where the photons are lost
is generally not important as a loss will only be registered by
the absence of a detection event in a measurement such as a
fusion. Thus, the effect on the graph state only depends on
the loss probability, regardless of where the loss is applied.
When one or more photons are lost in a fusion operation, a
pure state is retained by measuring the neighborhood of both
fusion photons [see Fig. 1(b)] [5,14]. The left part of Fig. 1(d)
illustrates the effect of a lost fusion photon on a fusion lattice
in the boundary case ps = 1. Losses in fusions are heralded
[5,46], meaning that one knows about all lost fusion photons
from the measured detection pattern, i.e., one knows that a
photon is lost when it was not detected in the fusion process.
A fusion with two photons attached to two central qubits i
and j has three outcomes [see Fig. 1(b)]: the fusion succeeds,
creating a connection between i and j (probability psη

2); the
fusion fails to create a connection [probability (1 − ps)η2]; or
a photon loss is detected (probability 1 − η2), in which case
i, j need to be removed by Z-basis measurements (see Sec. II).

Loss of a central qubit i has a different effect, which is
illustrated in the right part of Fig. 1(d): if the fusion between
one of the leaf nodes of qubit i and one of the leaf nodes of
qubit j succeeds, qubit j gets connected to qubit i and it thus
needs to be measured in the Z basis if qubit i is lost. In the
case of fusion failure, j is not connected to the lost qubit i and
nothing needs to be done. It is assumed in this illustration that
none of the fusion photons used for connecting qubits i, j are
lost since, in this case, both i, j would need to be measured in
the Z basis anyway.

The leaf qubits are measured in the fusion process such
that losses are heralded. The central qubits, on the other hand,
constitute the final graph state which needs to be measured
in a specific basis to perform quantum computation [2]. Since
the locations of the losses are typically only known when a
measurement fails to detect a photon, it is unclear whether the
generated graph states can be used for quantum computation
in this setting [8,14]. In this case, the efficiency η being above
the corresponding percolation threshold λη thus constitutes a
necessary yet not sufficient condition for generating a graph
state that is a useful resource for quantum computing. Nev-
ertheless, we consider the possibility of all-photonic resource
states as such approaches have been considered also in previ-
ous work [5,11]. We refer to the described percolation model
with all-photonic resource states as percolation model 2, for
which an example is given in Fig. 1(e).

A promising alternative is using resource states where the
central qubit is the spin of a quantum emitter [14] and we
shall refer to the corresponding model as percolation model
2′, which is illustrated in Fig. 1(f). In this case, the central
qubits are not subject to loss, making the generated graph state
suitable for measurement-based quantum computing provided
that it is sufficiently large. This is the case once the efficiency
η is above the corresponding percolation threshold λη of a
sufficiently large fusion network. For percolation model 2′,

6A nonuniform distribution of loss probabilities may originate from
different efficiencies of photon sources [16–18] or different paths that
the photons take, but an investigation of this is beyond the scope of
this work.
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η > λη thus is a necessary and sufficient condition for creating
a graph state that is useful for quantum computing.

C. Percolation model 3: Adaptive fusion network

The success probability ps = 0.5 of the fusions can be a
limitation for the previously discussed scheme. For an im-
plementation based on photon emitters, there is, however, a
strategy to remedy this issue using adaptive fusions. We con-
sider a scheme where the central nodes are spins in quantum
emitters and fusions can be repeated on demand. To establish
a connection between two emitters, each of them creates a
photon entangled with it, e.g., by using a suitable optical
pulse [35,37]. When the fusion succeeds, we proceed with
no further actions. When it fails, it can be repeated until the
fusion either succeeds, a maximum number nmax of fusion
attempts is reached, or photon loss is detected. In Fig. 1(g), the
case of nmax = 2 is illustrated in the absence of photon loss.
When there are no losses, repeating failed fusions effectively
leads to a boosting of the fusion success probability above
ps = 0.5. For the case of nmax in Fig. 1(g), for instance,
a link between two central nodes would be generated with
probability ps + (1 − ps)ps = 0.75, which is well above the
bond-percolation threshold of the fusion lattice (square lattice
with λbond = 0.5 [50]). We note that there are also all-optical
schemes to boost the fusion success probability [47,48,51],
but the proposed repeat-until-success method is less sensitive
to photon loss as additional fusion photons are only generated
on demand.

As before, the percolation model becomes more involved
when photon loss is present, in which case a sequence of
fusion attempts has three possible outcomes: success, failure,
or photon loss. In the success case, no photon loss occurs
and the final fusion succeeds and thus creates a connection
between two central nodes. Fusion failure (no connection)
happens when all nmax fusion attempts fail with no photon
loss. When a photon loss is detected in any of the fusion
attempts, the two quantum emitters are measured in the Z
basis, removing them from the graph. The combination of
these possibilities of fusion outcomes represents percolation
model 3, as illustrated in Fig. 1(h).

The described adaptive approach is related to well-known
schemes for creating spin-spin entanglement via Bell mea-
surements and corresponding repeat-until-success schemes
[52–54]. An advantage of the considered scheme is that fu-
sions do not influence other fusions (they are locally adaptive),
which enables doing all fusions in parallel. That reduces
the overhead compared to adaptive divide-and-conquer ap-
proaches [52,54,55]. Furthermore, our scheme can be applied
to emitters with only a single spin per node (in contrast to,
e.g., Ref. [56]).

D. Lattice renormalization

With the models described above, a large connected cluster
state that scales linearly with the size of the fusion network
or the initial graph state is created if the photon efficiency is
above the percolation threshold λη. The resulting graph state
does not represent a fault-tolerant lattice, which eventually is
required for quantum computing [57]. The obtained cluster

state can, however, be renormalized into such a lattice by
suitable single-qubit measurements [8,9]. A complete inves-
tigation of this process is beyond the scope of this article.
We therefore restrict our analysis to noting that once the effi-
ciency is above the threshold, scalable quantum computation
is, in principle, possible, although different geometries may
be more advantageous than others. Note, further, that it is
required to know all imperfections (losses and fusion fail-
ures) before applying the measurement pattern performing the
lattice renormalization [1,8]. This is fulfilled for percolation
model 3 and percolation model 2′ with a central qubit that
is a spin (since fusion failure and loss of fusion photons is
heralded). In these cases, an efficiency η = 1 − ploss above
the percolation threshold λη is thus a sufficient condition for
generating the desired lattice. In percolation models 1 and 2,
losses can be unheralded, and η > λη thus represents only a
necessary condition, as discussed before.

IV. UNION-FIND ALGORITHM FOR SIMULATING
PHOTON LOSS

The percolation models introduced above give the loss tol-
erance of fusion networks or graph states as parameterized by
the percolation threshold λη. In this section, we give efficient
algorithms for computing λη. For all percolation models, it is
not obvious which lattice is the best choice [14]. In classical
bond or site percolation, a larger vertex degree (coordination
number) of the lattice is typically helpful to lower the perco-
lation threshold. In contrast, when a loss is compensated by
removing all neighbors of a lost photon by Z-basis measure-
ments [see Fig. 1(b)], a graph or fusion network with a high
vertex degree is particularly sensitive to photon loss. How-
ever, a too-low vertex degree makes the graph state or fusion
network fragile due to the higher bond-percolation threshold
[10,11]. To find the optimum in between and simulate various
fusion lattices, a fast algorithm for computing percolation
thresholds λη is required. This algorithm should ideally scale
linearly with the number of qubits/photons and ideally should
be independent of the number nη of sampled values for η. In
the following, we first describe the well-known Newman-Ziff
algorithm [23], which applies to bond or site percolation. In
the subsequent sections, we describe modified algorithms that
can be applied to the percolation models 1 to 3.7

The easiest way to perform classical bond- or site-
percolation simulations is in the canonical ensemble where the
bond (site) probabilities pbond (psite) are fixed and bonds/sites
are randomly occupied according to these probabilities. Con-
nected graph components, their size, or whether they percolate
the lattice can then be obtained with a time complexity that
is linear in the system size by depth- or breadth-first graph
traversal [59]. Constructing a lattice with constant vertex de-
gree (coordination number z), a number of nodes |V |, and
a number of edges |E | = z

2 |V | takes O(|V |) and traversing
the graph (e.g., breadth first) takes O(|V |) as well [23]. In
some two-dimensional percolation simulations, this scaling

7Similar modifications of the Newman-Ziff algorithm have been
developed for other classical percolation models such as bootstrap or
diffusion percolation [58].
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FIG. 2. Algorithms to speed up percolation simulations. (a) The key idea of the Newman-Ziff algorithm [23] illustrated for bond
percolation. Bonds are added one by one in random order and the largest connected component of the graph (green nodes) is monitored.
When two large clusters merge, there is a rapid increase in the size of the largest connected component, as shown on the right. (b) Updating
the connected graph components in classical bond percolation [23]. In the first step (find), the root nodes of the two components that the new
edge connects are identified by following the tree data structure (red arrows). In the second step (union), the two components are merged by
connecting the root node of the smaller component to the root node of the larger one. (c) Illustration of Algorithm 1 for simulating the effect
of loss on a graph state (percolation model 1). Initially, two qubits are lost (red nodes) and the qubits in their neighborhood are therefore
measured in the Z basis (gray). When adding one missing qubit in step 1, several qubits in the neighborhood potentially need to be updated.
This update is done in steps 2–5, where the neighborhoods of all potentially affected nodes are checked for lost qubits. When none of a qubit’s
neighbors are lost, there is no longer any need to measure it in the Z basis and it is added to the graph. (d) Illustration of Algorithms 2a and
2b for simulating the effect of loss when creating a large graph state by fusing star-shaped resource states (percolation model 2). Algorithm
2a: In step 1, a lost central qubit is added (encircled node). All qubits that are not lost and connected to the added qubit by a successful fusion
potentially need to be updated. The update is done in steps 2–4 by applying the rules illustrated in Fig. 1 to all potentially affected qubits.
Algorithm 2b: After step 4 is completed, we assume in step 5 that a previously lost fusion photon is added (encircled node). The subsequent
update algorithm (steps 6 and 7) is similar to before with the difference that only the central node belonging to the added fusion photon and
the central node belonging to its fusion partner need to be updated.

can be slightly improved by parsing only the boundary of a
spanning cluster [23,60]. However, this method does not solve
the general issue described in the following.

To make a percolation simulation for n, different probabil-
ities of bond occupation (pbond) or site occupation (psite), the
computation has to be repeated n times and the running time
becomes O(n|V |) [23]. When many different probabilities
pbond or psite are considered, the factor n becomes a major
hurdle. For classical bond- and site-percolation simulations,
an algorithm that avoids this issue by considering the problem
in the microcanonical ensemble has been developed by New-
man and Ziff [23]. In this algorithm, the number of occupied
bonds/sites is fixed (not the bond/site probability as before).
In the corresponding site-percolation simulations, all nodes
are initially removed and added to the graph in random order,

one by one. [Bond percolation can be performed analogously
by adding bonds as illustrated in Fig. 2(a).] Connected graph
components of existing nodes are stored and when a new
node is added, the corresponding data structure storing the
connected components is updated. At the same time, one
keeps track of the size of the largest connected component S(i)
and a list of Booleans B(i) that specifies if percolation (cluster
spanning [23]) has been achieved after adding node number i.
Having computed 〈S(i)〉 by averaging several simulations of
S(i), the expectation value of the largest component size can
be computed as a function of psite by 8

〈S(psite )〉 =
|V |∑
i=0

〈S(i)〉
(|V |

i

)
pi

site(1 − psite )|V |−i, (3)
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where the binomial coefficients are computed in a normal-
ized way using the iterative method from Ref. [23] (for large
|V |, a Gaussian approximation of the binomial distribution
[61] is an alternative). Replacing S(i) by B(i) in the above
equation computes the probability of percolation for a given
probability psite. It has been shown that the above percolation
simulation has a time complexity of only O(|V |) (with no
factor n) if a suitable union-find algorithm (see below) is used
for merging graph components [23,62].

Critical to implementing such an algorithm is a data struc-
ture that efficiently keeps track of the graph and its connected
components, as well as a method to update it when adding
an edge/node. As in Ref. [23], we use a tree data structure
[63] where every node is either a root node representing an
isolated graph component or it points to a parent node that
is part of the same graph component. An example of such
a data structure and how to update it for bond percolation
is shown in Fig. 2(b), where the simulated graph is drawn
in black and the tree data structure is illustrated by the red
arrows. Adding a previously missing edge is done by updating
the graph and the tree data structure using the union-find
algorithm from Ref. [23]: Following the tree data structure,
the algorithm first determines the root nodes of the two graph
components that the new edge connects (find). (To reduce
the length of subsequently traversed paths, we employ path
compression [23,62] such that the parent node for all nodes
along the path is updated to the root node.) If the two root
nodes are different, the graph components are merged by
making one of the root nodes point to the other (union). To
improve the performance, one attaches the smaller compo-
nent to the larger one (weighted union [23,62]). This union
operation is done in O(1) steps as opposed to an approach
based on an array (lookup table) storing the root node for
every node. The latter would need O(1) for a single find
operation, but O(|V |) to determine all nodes of the cluster
that must be updated in a union. The overall time complexity
would become O(|V |2) in the worst case. In contrast, the
combination of path compression and weighted union using
the tree data structure results in a practically linear time
scaling, O(|V |).9 This result is important for efficiently per-
forming classical bond- or site-percolation simulations [23]
and also is applied in union-find decoders for quantum error
correction [64].

Adding a previously missing node in a site percolation
simulation is done similarly [23]: The algorithm first adds the
new node as an isolated single-node graph component. Then it
adds the edge to the first neighbor and updates the graph, as in

8For most practical cases, the computation of S(i) is the most
time-consuming part of the simulation, although calculating Eq. (3),
technically, has a worse scaling behavior. For large graphs, however,
it is only necessary to take O(log |V |) elements of the sum because
of the rapid decrease of the binomial distribution away from its max-
imum. So the running time for doing this summation for n different
values of psite becomes O(n log |V |).

9There is a nonconstant prefactor which, however, is not expected
to exceed 3 in a system of any realistic size (see Refs. [23,62] for the
discussion of the related Ackermann’s function).

the case of bond percolation.10 This procedure is repeated for
all the other neighbors. We refer to this algorithm for adding
a previously missing node as Algorithm 0 (see Ref. [23] for
more details).

ALGORITHM 0: Add new node.

1 Add a new node to the graph and update the tree data structure
with the algorithm from Ref. [23].

In the following, we describe algorithms that use the tools
described so far to efficiently simulate the percolation models
1 to 3 and obtain the corresponding percolation threshold λη.
Algorithm 1 applies to the loss tolerance of a given cluster
state (percolation model 1). Algorithms 2a and 2b apply to
fusion networks (percolation model 2). Algorithm 2a applies
to lost central qubits of the star-shaped resource states and
thus only is used when the central qubits are photons that
can be lost (percolation model 2). Algorithm 2b applies to
fusion photons and thus is used independently of whether the
central node is a photon (percolation model 2) or a quantum
emitter (percolation model 2′). Finally, Algorithm 3 applies to
a repeat-until-success fusion network (percolation model 3).

ALGORITHM 1: Add lost qubit (qi = L) to the graph state.

/* step 1: change label of lost qubit */

1 qi := MZ ;
/* step 2: list potentially affected qubits */

2 Ṽ := {j ∈ N(i) | qj = MZ} ∪ {i};
/* step 3: update and add qubits */

3 for j ∈ Ṽ do
4 if (� k ∈ N(j) : qk = L) then
5 qj := E;
6 add node j via Algorithm 0;

ALGORITHM 2a: Add lost central qubit (qi = L) to the fusion
network.

/* step 1: change label of lost qubit */

1 qi := MZ ;
/* step 2: list potentially affected qubits */

2 Ṽ := {j ∈ N(i) | qj = MZ ∧ eij = E} ∪ {i};
/* step 3: update and add qubits */

3 for j ∈ Ṽ do
4 if (� k ∈ N(j) : qk = L ∧ ejk = E)∧
5 (� k ∈ N(j) : ejk = L) then
6 qj := E;
7 add node j via Algorithm 0;

10Note that some edges might be labeled as missing due to a finite
bond probability (or, for some of the following algorithms, a finite
fusion probability). In this case, only existing edges are considered.
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ALGORITHM 2b: Add lost fusion photon on edge ei j of fusion
network.

/* step 1: check if any update is needed */

1 cij := cij + 1;
2 if cij = 2 then
3 with probability ps: eij := E;
4 otherwise: eij := F ;

5 else
6 skip steps 2, 3;

/* step 2: list potentially affected qubits */

7 Ṽ := {k ∈ {i, j} | qk �= L};
/* step 3: update and add qubits */

8 for l ∈ Ṽ do
9 if (� k ∈ N(l) : qk = L ∧ elk = E)∧

10 (� k ∈ N(l) : elk = L) then
11 ql := E;
12 add node l via Algorithm 0;

ALGORITHM 3: Add previously lost fusion photon on edge ei j

of adaptive fusion network.

/* step 1: check if any update is needed */

1 cij := cij + 1;
2 if cij = 2 · nij then
3 if bij = 1 then
4 eij = F ;
5 else
6 eij = E;

7 else
8 skip all following steps;

/* step 2: list potentially affected qubits */

9 Ṽ := {i, j};
/* step 3: update and add qubits */

10 for l ∈ Ṽ do
11 if (� k ∈ N(l) : ekl = L) then
12 ql := E;
13 add node l via Algorithm 0;

A. Update rule for percolation model 1

First, we consider percolation model 1 where an existing
photonic cluster state suffers loss. Similar to the Newman-Ziff
algorithm [23], we initially assume that all photons are lost
and then add them one by one, keeping track of the largest
connected graph component or checking if a graph component
percolates. However, new rules are required to update the
graph when a previously lost photon is added. Updating the
cluster state after adding a previously lost qubit i is compli-
cated by the fact that the neighborhood N (i) of a lost qubit
used to be measured in the Z basis [5]. When adding a missing
qubit, those neighbors potentially have to be updated and
added to the graph if there is no longer any need to measure
them in the Z basis. We assign a label qi to every central
qubit of a resource state: qi = L, meaning that the qubit is lost;
qi = MZ , meaning that the qubit needs to be measured in the Z
basis; or qi = E , meaning that the qubit exists (neither lost nor
has to be measured in the Z basis, and therefore is part of the

graph/cluster state). Algorithm 1 describes the corresponding
data structure update when changing the label of a qubit in a
cluster state from lost to not lost (decreasing the number of
lost photons by one).

The algorithm is illustrated in Fig. 2(c). In the first step, the
label of the lost qubit i is changed to qi = MZ , indicating that
it is no longer lost. In the second step, a list Ṽ of all potentially
affected qubits is created [all qubits in the neighborhood N (i)
of qubit i as well as qubit i itself]. In the final step, the
neighborhood of all qubits in Ṽ is checked for lost qubits. If a
lost qubit is still found in the neighborhood of a qubit j ∈ Ṽ ,
no update needs to be done. If no lost qubit is found in the
neighborhood N ( j), the label of the qubit is updated to E . In
the latter case, qubit j was only affected by the loss of qubit
i and can be added to the graph once qubit i is no longer lost.
Adding qubits to the graph is done with Algorithm 0 from
Ref. [23].

B. Update rule for percolation models 2 and 2′

Experimentally more realistic than percolation model 1 is
the construction of a large graph state by fusing many small
star-shaped resource states (percolation model 2) [5,14]. In
this percolation model, fusions between leaf nodes are used to
establish connections and every photon (either in the center
of a star-shaped resource state or a fusion photon on the
leaf) can be lost with a uniform probability ploss = 1 − η. We
assign different labels to every edge ei j (i, j are the numbers
of the central qubits of the star-shaped resource states that
the edge connects upon successful fusion): ei j = E when the
corresponding fusion was successful, ei j = F when the fusion
failed but no photon was lost, and ei j = L when at least one
of the photons on the edge is lost. In the case of loss, we also
need to keep track of whether one (ci j = 1) or zero (ci j = 0)
fusion photons on edge ei j are present (not lost), i.e., whether
both or just one photon was lost.

When adding a previously lost photon, there are two cases:
the photon can be a central qubit of the star-shaped resource
state or it can be a fusion photon on a leaf node. We first
consider the case of adding a lost central qubit to the cor-
responding fusion network (applies to percolation model 2,
but not 2′). The graph update is done by Algorithm 2a [see
Fig. 2(d) for an illustration]. Here the neighborhood N (i)
refers to all qubits in the center of other star-shaped resource
states that one tries to connect to qubit i by a fusion. In the
first step, the label of the lost qubit is changed to qi := MZ as
in Algorithm 1. In the second step, a list Ṽ of all potentially
affected qubits is created. A qubit j �= i can only be affected
by a change of qubit i when there is a connection between both
qubits obtained by a successful fusion (ei j = E ). In the final
step, all potentially affected qubits j ∈ Ṽ are updated. A qubit
can only be added (qj := E ) when it is not connected to a lost
qubit by a successful fusion [� k ∈ N ( j) : qk = L ∧ e jk = E ]
and no fusion photon on any of its edges is lost [� k ∈ N ( j) :
e jk = L].

Next, we consider the case where the lost photon is a fusion
photon between two central qubits i, j. This case applies to
both percolation model 2 and percolation model 2′, with an
example shown in the lower part of Fig. 2(d). Here, Algorithm
2a needs to be slightly modified: First, the edge ei j must be
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updated if and only if the fusion partner of the new qubit is
not lost (ci j = 1 before the update), otherwise ei j = L remains
unchanged and nothing else needs to be done. In the former
case, the edge label is updated to ei j = F or ei j = E with
probabilities of 1 − ps = ps = 1/2, and steps 2 and 3 are
performed. Second, the list of affected central qubits in step
2 must be changed to Ṽ = {i, j}. Algorithm 2b describes the
corresponding graph update rule.

C. Update rule for percolation model 3

So far, we have explored how the Newman-Ziff algorithm
can be modified to simulate the effect of photon loss in fusion
networks where every fusion is performed once, independent
of the outcome of other fusions. In percolation model 3, the
outcome of previous fusions determines whether or not a
fusion is repeated and the algorithms developed so far thus
cannot be applied. In Algorithm 2a, for instance, we initially
labeled all photons as lost (L) and added them one by one.
In percolation model 3, the overall number of photons is
not constant and it is therefore unclear how many photons
exist and where in the graph they are used. We show how a
modification of the Newman-Ziff algorithm nevertheless can
be applied to the adaptive repeat-until-success fusion network
described by percolation model 3.

In percolation model 3, a fusion is repeated until it either
succeeds, fails after a maximum number of repetitions, nmax,
or heralds photon loss before completion. An exemplary tree
diagram for the different fusion outcomes and the associated
probabilities is given in Fig. 3(a). The probabilities that the
fusion attempts on a certain edge succeed (pS̃), fail (pF̃ ), or
terminate with a loss (pL̃) are [54,65]

pF̃ = [η2(1 − ps)]nmax = αnmax , (4)

pS̃ = η2 ps

nmax−1∑
k=0

[η2(1 − ps)]k = α
αnmax − 1

α − 1
, (5)

pL̃ = 1 − pF̃ − pS̃, (6)

where we have used ps = 0.5 for the success rate of a single
fusion attempt and defined α ≡ η2/2. In the case of photon
loss, the two quantum emitter qubits are removed from the
graph by Z-basis measurements, as before.11

Our algorithm to simulate percolation model 3 consists
of two main steps. In the first step, we assume that there is
no photon loss and determine, for every edge ei j , how many
fusion attempts are required for the fusion to succeed. We
label this number of fusion attempts ni j and it is determined
by tossing a random coin until the coin indicates success or
we reach the maximum number of allowed fusions, nmax. The
probability distribution for the frequency of ni j thus decays
exponentially for large values of ni j . When none of the nmax

fusions succeed, we keep track of this by a Boolean array
bi j , where bi j = 0 indicates fusion success and bi j = 1 fusion

11This step is not required for systems where entangler and memory
qubit are two different systems that can be coupled/decoupled on
demand [30,56,66]. For quantum emitters such as quantum dots, such
techniques are, however, only at a very early stage [67].

FIG. 3. (a) Adaptive scheme where fusions are repeated until
either success, heralded photon loss, or nmax = 3 trials is reached.
We have assumed here that the first fusion attempt fails. The scheme
can be realized using quantum emitters with a spin (drawn as black
dots with green arrows) and proceeds by adjacent quantum emitters
generating new fusion photons if an attempt to entangle them with a
fusion fails. When one or more fusion photons are lost, both quantum
emitter spins need to be reinitialized or measured in the Z basis. For
every single fusion attempt, the corresponding outcome is indicated
by the color of the ellipses that indicates the fusion as well as a letter:
s and green ellipse for fusion success (probability η2 ps = η2/2), f
and blue ellipse for fusion failure [probability η2(1 − ps ) = η2/2],
or l and red ellipse for a fusion with a loss (probability 1 − η2).
The dashed rectangular boxes indicate the final outcome of the
repeat-until-success fusion when following the corresponding path.
(b) Schematic illustration of the data structure used for keeping track
of the fusion results when sweeping the number of lost photons. Ev-
ery dashed box represents a fusion that is repeated in case it does not
succeed. The color represents the final outcome of the fusion (green:
success; blue: failure; red: loss) and every dashed circle inside the
boxes represents a fusion photon, with red color indicating that the
photon is lost. In the absence of loss (upper part), the overall fusion
succeeds, except when all individual fusion attempts fail (bi j = 1).
As long as there is one lost photon in the box representing the overall
sequence of fusion attempts (ci j < 2ni j), the fusion terminates by
re-initializing the spin qubit.

failure. The number ni j determines how many potentially
lost photons we have to consider for the edge ei j , namely,
exactly 2ni j , as illustrated in Fig. 3(b). The reason is that after
ni j fusion attempts, no further fusions on ei j are performed
because the fusion either succeeded, or failed when ni j =
nmax ∧ bi j = 1, or because there has been a heralded photon
loss before. So without loss, the overall number of fusion
photons of all fusion attempts is

∑
i j 2ni j .

In the second step, the fusion photons of all the edges
are labeled as lost and are added, one by one, in random
order while updating the connected graph components. In that
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process, an edge keeps the label ei j = L until all its 2ni j fusion
photons are no longer lost. We count, for every edge ei j , the
number of photons that are not lost with a counter variable ci j

(initially zero and increasing when a fusion photon is added
on edge ei j). A change of the graph needs to be done once ci j

reaches 2ni j (before that, the attempt to establish a connection
between nodes i and j always terminates with a photon loss).12

Algorithm 3 describes how this update is done. As the central
qubits qi are quantum emitters (and thus cannot be lost),
Algorithm 3 differs from Algorithm 2b in steps 2 and 3.

Finally, we note that an alternative method for boosting
the fusion success probability uses ancilla entangled photon
pairs [47] and this approach could be similarly modeled. The
probabilities for fusion success and loss of a fusion photon in
this case differ from Eqs. (5) and (6) as 2n photons are used
for every fusion (n = 1 being the standard fusion) to achieve
a success probability of 1 − 1/2n. We, therefore, would have
pF̃ = η(2n )/2n, pS̃ = η(2n )(1 − 1/2n), pL̃ = 1 − η(2n ). Using
2n photons per fusion can be simulated with the approach from
before by setting 2ni j = 2n. Once all fusion photons exist, the
fusion is set to failure with a probability of 1/2n and success
otherwise. Alternatively, since the number of photons is fixed
for the all-photonic boosting, it would be possible to make a
modified Newman-Ziff algorithm by adding lost fusions one
by one instead of virtually adding all individual lost photons.
The size of the largest connected graph component is then
obtained as a function of the number of fusions with no lost
photons. Using the relation between η and pL̃, one can convert
such a simulation into the largest connected graph component
as a function of η by rescaling the x axis. For percolation
model 3, such a simplification is, however, not possible be-
cause pS̃/pF̃ is not constant as a function of η. Even if one
would compute pS̃/pF̃ (by converting pL̃ into η) in every
step where a previously lossy fusion is added, all the fusions
that were added before would appear with a ratio pS̃/pF̃ that
is inconsistent with the current fraction of nonlossy fusions
(respectively, pL̃). Also, when fusion photons as well as other
photons are lost (Algorithm 2a), the only feasible approach is
virtually adding photons one by one and doing the required
data structure update in every step.

V. RESULTS AND RUNNING TIME

We have implemented the described algorithms for the var-
ious percolation models and the source code can be found in
Ref. [31]. More details on the source code and how we verify
parts of the implementation can also be found in Appendix.

In this section, we use these implementations for several
percolation simulations. Figure 4(a) shows an exemplary per-

12This algorithm works because the following is fulfilled: assume
that a fraction η̃ = ∑

i j ci j/
∑

i j 2ni j of all fusion photons has been
updated to not lost. Then the probabilities that the result of the fusion
attempts on a random edge ei j is labeled as failure, success, or loss
are equal to the actual probabilities pF̃ , pS̃, pF̃ in Eqs. (4), (5), and
(6). Thus, Eq. (3) (with |V | being replaced by the number of all
photons,

∑
i j 2ni j , and the averaging being done outside the sum)

yields the expectation value of the largest graph component size as a
function of η̃.

colation simulation (percolation model 2′) of the simple cubic
lattice for different lattice sizes. From such a simulation, we
can obtain the corresponding percolation threshold λη. Fig-
ure 4(b) shows the obtained percolation thresholds for the
percolation models 1, 2, and 2′ on several different lattices.
More simulation results for percolation models 2 and 2′ can
be found in Ref. [14].

Figure 4(c) shows the percolation thresholds for percola-
tion model 3 using the hypercubic (hc) fusion lattices [68].
These simulations are performed for different values of the
maximum number of fusion repetitions (nmax). We observe
that the adaptive scheme investigated here improves the loss
tolerance for the low-dimensional lattices, but makes it worse
in higher dimensions. This trend is also observed for other fu-
sion lattices that we investigated. The reason for the worse loss
tolerance is that repeating the fusions until success increases
the chance that the fusion terminates by photon loss. Using
all-photonic boosting [47,48] would have a similar issue. Of
course, the illustrated adaptive scheme is not ideal: fusions
are, for instance, performed even if it is known that one of the
involved quantum-emitter qubits must be measured in the Z
basis due to a loss in a previous fusion. Problems such as this
can be avoided with more sophisticated adaptive schemes.

Next, we consider the running times of the percolation
simulations. When using Algorithms 1, 2a, 2b, or 3, we expect
that the running time is independent of the number nη of
simulated photon loss probabilities. Without these algorithms,
a new graph traversal needs to be performed for every ef-
ficiency η = 1 − ploss leading to a time that is linear in nη.
Figure 4(d) shows the measured running times as a function of
nη, confirming the expected time scalings with nη. We find that
the simulations using the modified Newman-Ziff algorithms
become more efficient when about a dozen different values for
η are simulated. The speed advantage is key for determining
the loss tolerance of large fusion networks [14].

Furthermore, we expect that the running time as a function
of the system size (number of vertices |V | in the cluster state
or fusion network) scales identically to Ref. [23], meaning
practically linear with |V |. The reason is that the overhead of
Algorithms 1 and 2a compared to Algorithm 0 is a constant
prefactor that depends on the vertex degree of the simulated
lattice. This intuition is supported by Fig. 4(e), where we
find an approximately linear scaling of the running time when
increasing the size of the simulated lattice.

VI. SUMMARY AND OUTLOOK

We have shown that it is possible to use a modification of
Newman and Ziff’s algorithm [23] for nonstandard percola-
tion models motivated by photon loss in cluster states and
fusion networks. We have considered ballistic fusion networks
where many resource states are connected by simultaneous
probabilistic fusions and an adaptive scheme where fusions
are repeated until success. The developed algorithms speed
up the simulation of the considered architectures, which en-
ables running optimizations over many fusion lattices [14].

13Used system: Rocky Linux 8.7 (Green Obsidian), AMD
Opteron(TM) Processor 6276 (single core used per simulation).
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FIG. 4. (a) Simulation of the simple cubic fusion lattice for percolation model 2′ (equivalent to percolation model 3 with nmax = 1). The
size of the simulated lattices is specified by the parameter L, which is the number of unit cells along all three dimensions. (b) Percolation
threshold λη for the diamond (blue), hypercubic (black), and bcc+hc lattices (purple). The dotted lines show the results for percolation model
1, the dashed lines are simulations of all-photonic fusion networks (percolation model 2), and the solid lines correspond to simulations with
quantum emitters as the central qubits (percolation model 2′). (c) Percolation threshold of the hypercubic fusion lattice for different values
of nmax (percolation model 3). (d) Running time for simulating a three-dimensional (3D) simple cubic lattice with L = 100 and so L3 = 106

central nodes, averaged over 20 repetitions.13 The simulations are performed for nη different values of η = 1 − ploss. When using Algorithms 1,
2a, 2b, and 3, the simulation time is constant, independent of nη (solid lines). Without these algorithms, the simulation time increases linearly
with nη (dash-dotted lines). The gray circles indicate the number nη where the modified Newman-Ziff algorithms become more efficient.
(For percolation model 3, we have only implemented a modification of the Newman-Ziff algorithm and thus no dash-dotted line is shown.)
(e) Running time of different percolation simulations as a function of the lattice size |V |. In the case of fusion networks (percolation models 2,
2′, 3), |V | represents the number of central qubits, not counting the fusion photons. The running time of a full percolation simulation (averaged
over 300 repetitions) scales linearly with |V | for a three-dimensional (solid lines) and a four-dimensional (dashed lines) simple cubic lattice.
The dotted lines indicate linear scaling for reference.

Mitigating the photon loss with such optimizations is highly
important as loss is arguably the biggest challenge for pho-
tonic quantum computing and networking.

We have considered star-shaped resource states, but our
algorithms also apply when resource states with a graph struc-
ture of a caterpillar tree are used (like star-shaped resource
states, these states can be generated by a single quantum
emitter [6]). The only condition for our algorithms to work
is that all fusion photons are leaf nodes of the resource state
graphs and thus only have a single neighbor, which also may
apply to some graph states that cannot be generated by a single
quantum emitter [69,70]. Whether similar algorithms can be
applied when fusing other types of states, such as linear chain
graph states [24,35], could be investigated in future works.
Furthermore, policies other than repeat-until-success could be
used in the adaptive scheme to decide whether or not a fusion
is applied. It would be interesting to investigate if similar
modifications of the Newman-Ziff algorithm could be applied
to such percolation models.

Finally, we hope that our results might be inspiring or
useful for other applications in quantum information: per-
colation models can be applied to quantum networks [71],
the bond-percolation threshold of the syndrome graph de-
termines the loss threshold of various topological quantum
error-correction codes [7,34,72–74], and qubit loss in color
codes can be simulated with modified percolation models
[75,76]. In addition, logical errors in topological codes are
operators that span around the code [77]. The transition where
errors plus the decoder output give a percolating operator is
thus a lower bound for the error threshold [78]. All these
points indicate that similar algorithms as the ones developed
here could improve the analysis of quantum error correction in
general.

All data and source code from this work can be found in
Ref. [79]. An updated version of the source code can be found
in Ref. [31]. More data, shown in Ref. [14], can be found in
Ref. [80].
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APPENDIX: SOURCE CODE

1. General description

Our simulation program is written in the programming
language C and is provided as an open-source repository [31].
It can be used to simulate λη for percolation models 1, 2,
2′, and 3 with various lattice geometries in several dimen-
sions. Furthermore, it enables simulating standard bond or site
percolation using the Newman-Ziff algorithm. It also applies
to site-bond or bond-site [21] percolation simulations (where
one parameter being either the bond or site probability is fixed
and the other parameter is simulated over a continuous range
using the Newman-Ziff algorithm). The following explanation
focuses on percolation models 2 and 2′, but the other models
are implemented very similarly.

Every percolation simulation consists of three main steps:
In the first step, a certain lattice with a fixed size is
constructed. We use an adjacency list to represent the
graphs/fusion lattices, keeping the data structure analogous
to Ref. [23]. Therefore, other lattices can be easily built or
taken from the literature where a similar implementation is
used [61]. In the second step, the effect of the random process
of photon loss and fusion failure is simulated. Since the fusion
probability is a fixed parameter given by the physical imple-
mentation, we first randomly set fusions to success/failure.
The effect of photon loss is then simulated using the described
algorithms where all photons are labeled as lost initially and
then added one by one. During that process, we keep track
of the largest component size S(i) or a Boolean array B(i)
specifying if percolation (cluster spanning) has been achieved,
with i specifying the number of photons that are not lost.
This second part of the simulation is repeated several times
for averaging. We estimate the percolation threshold for a
given lattice size as the fraction of nonlost photons η where
cluster spanning is achieved on average when adding photons
one by one.14 In the third step, we determine the percolation
threshold in the limit of infinite lattice size by compensating

14Several different methods could be used instead to determine the
percolation threshold [81–83].

for finite-size effects with an extrapolation (see Ref. [68]).
Furthermore, to obtain the expectation value for the probabil-
ity of percolation or the largest connected component size as a
function of the parameter η, we use Eq. (3). In this way, a plot
such as, for instance, the one shown in Fig. 4(a) is obtained.

For the graph construction in the first step, we provide
several functions that construct lattices such as hypercubic,
diamond, bcc, and fcc in a dimension of choice. In partic-
ular, our implementation allows simulating all lattices from
Ref. [84] including their higher-dimensional generalizations,
all lattices from Ref. [68] except the kagome lattice, and
hypercubic lattices with extended neighborhoods [85–87].

2. Verification of the implementation

To verify our lattice constructions, we have performed clas-
sical site-percolation simulations of lattices with known per-
colation thresholds [68,84]. These simulations can be found in
Ref. [14], where we have simulated two- to six-dimensional
lattices that for periodic boundaries, correspond to various
k-regular graphs (meaning that every node has exactly k
neighbors) with k ∈ [3 . . . 60]. Additionally, we compute here
a few bond-percolation thresholds. Note that none of these
simulations represent a central part of this work, yet an agree-
ment with the literature values is a useful consistency check to
verify that the lattices are correctly defined and implemented.

For the bond-percolation thresholds of the generalized di-
amond lattices [68], we find λbond = 0.6529(10), 0.3893(7),
0.2709(18), 0.2072(15), 0.1646(43) for dimensions 2–6, re-
spectively, which is in agreement with Refs. [68,88,89].
Furthermore, we find λbond = 0.2491 ± 0.0002 for the bond-
percolation threshold of the simple cubic lattice (that roughly
agrees with Ref. [90]), which also represents the syndrome
graph of the Raussendorf-Harrington-Goyal (RHG) lattice
[57]. For the latter, we find a bond-percolation threshold of
λbond = 0.3845(1) and a site-percolation threshold of λsite =
0.4220(5).

The agreement of several simulations with the literature
values verifies that our implementation of the corresponding
lattices is correct. However, the studied percolation models
for photon loss as well as the Algorithms 1, 2a, 2b, and 3
have not been considered in the literature. The bond- and site-
percolation simulations, therefore, do not say anything about
the correctness or the correct implementation of these algo-
rithms. To verify that the implementation of our algorithms is
correct, we have implemented several redundant functions for
the corresponding percolation models without any Newman-
Ziff-type algorithm (see the readme file of the code repository
[31] for more information). We have performed several tests
for which the results were consistent between the different
implementations.
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